,, Poisson 3 3. t t y,, y n Nµ, σ 2 y i µ + ɛ i ɛ i N0, σ 2 E[y i ] µ * i y i x i y i α + βx i + ɛ i ɛ i N0, σ 2, α, β *3 y i E[y i ] α + βx i

Similar documents
2 H23 BioS (i) data d1; input group patno t sex censor; cards;

5 Armitage x 1,, x n y i = 10x i + 3 y i = log x i {x i } {y i } 1.2 n i i x ij i j y ij, z ij i j 2 1 y = a x + b ( cm) x ij (i j )

(iii) x, x N(µ, ) z = x µ () N(0, ) () 0 (y,, y 0 ) (σ = 6) *3 0 y y 2 y 3 y 4 y 5 y 6 y 7 y 8 y 9 y ( ) *4 H 0 : µ

H22 BioS t (i) treat1 treat2 data d1; input patno treat1 treat2; cards; ; run; 1 (i) treat = 1 treat =

t sex N y y y Diff (1-2)

H22 BioS (i) I treat1 II treat2 data d1; input group patno treat1 treat2; cards; ; run; I

一般化線形 (混合) モデル (2) - ロジスティック回帰と GLMM

Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

本文/目次(裏白)

講義のーと : データ解析のための統計モデリング. 第3回

第86回日本感染症学会総会学術集会後抄録(I)

1 15 R Part : website:

日本内科学会雑誌第97巻第7号

日本内科学会雑誌第98巻第4号

パーキンソン病治療ガイドライン2002

研修コーナー

抄録/抄録1    (1)V

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

12/1 ( ) GLM, R MCMC, WinBUGS 12/2 ( ) WinBUGS WinBUGS 12/2 ( ) : 12/3 ( ) :? ( :51 ) 2/ 71

201711grade1ouyou.pdf

講義のーと : データ解析のための統計モデリング. 第5回

60 (W30)? 1. ( ) 2. ( ) web site URL ( :41 ) 1/ 77

k2 ( :35 ) ( k2) (GLM) web web 1 :

kubostat2015e p.2 how to specify Poisson regression model, a GLM GLM how to specify model, a GLM GLM logistic probability distribution Poisson distrib

6.1 (P (P (P (P (P (P (, P (, P.

untitled

LLG-R8.Nisus.pdf

6.1 (P (P (P (P (P (P (, P (, P.101

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x

kubostat7f p GLM! logistic regression as usual? N? GLM GLM doesn t work! GLM!! probabilit distribution binomial distribution : : β + β x i link functi

k3 ( :07 ) 2 (A) k = 1 (B) k = 7 y x x 1 (k2)?? x y (A) GLM (k

kubostat2017e p.1 I 2017 (e) GLM logistic regression : : :02 1 N y count data or

「スウェーデン企業におけるワーク・ライフ・バランス調査 」報告書

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα =

i Armitage Q. Bonferroni 1 SAS ver9.1.3 version up 2 *1 *2 FWE *3 2.1 vs vs vs 2.2 5µg 10µg 20µg 5µg 10µg 20µg vs 5µg vs 10µg vs 20µg *1 *2 *3 FWE 1

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

1 1 x y = y(x) y, y,..., y (n) : n y F (x, y, y,..., y (n) ) = 0 n F (x, y, y ) = 0 1 y(x) y y = G(x, y) y, y y + p(x)y = q(x) 1 p(x) q(

2 / 39

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

日本内科学会雑誌第102巻第4号

kubostat2017c p (c) Poisson regression, a generalized linear model (GLM) : :

y = x 4 y = x 8 3 y = x 4 y = x 3. 4 f(x) = x y = f(x) 4 x =,, 3, 4, 5 5 f(x) f() = f() = 3 f(3) = 3 4 f(4) = 4 *3 S S = f() + f() + f(3) + f(4) () *4

kubostat2017j p.2 CSV CSV (!) d2.csv d2.csv,, 286,0,A 85,0,B 378,1,A 148,1,B ( :27 ) 10/ 51 kubostat2017j (

1 Tokyo Daily Rainfall (mm) Days (mm)

*1 * Wilcoxon 2 2 t t t t d t M t N t M t n t N t n t N t d t N t t at ri

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

分布

y i OLS [0, 1] OLS x i = (1, x 1,i,, x k,i ) β = (β 0, β 1,, β k ) G ( x i β) 1 G i 1 π i π i P {y i = 1 x i } = G (

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

tokei01.dvi

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

プリント

( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp

スライド 1


O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

(2/24) : 1. R R R

プログラム

放射線専門医認定試験(2009・20回)/HOHS‐05(基礎二次)

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

³ÎΨÏÀ

: , 2.0, 3.0, 2.0, (%) ( 2.

,2,4

α β *2 α α β β α = α 1 β = 1 β 2.2 α 0 β *3 2.3 * *2 *3 *4 (µ A ) (µ P ) (µ A > µ P ) 10 (µ A = µ P + 10) 15 (µ A = µ P +


meiji_resume_1.PDF

直交座標系の回転

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co


dvi

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

Part () () Γ Part ,

gr09.dvi

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

TOP URL 1

GLM PROC GLM y = Xβ + ε y X β ε ε σ 2 E[ε] = 0 var[ε] = σ 2 I σ 2 0 σ 2 =... 0 σ 2 σ 2 I ε σ 2 y E[y] =Xβ var[y] =σ 2 I PROC GLM

プログラム

AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

Use R

TOP URL 1

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

newmain.dvi

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =


ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1


all.dvi

第1章 微分方程式と近似解法

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

x T = (x 1,, x M ) x T x M K C 1,, C K 22 x w y 1: 2 2

読めば必ずわかる 分散分析の基礎 第2版

Transcription:

Armitage.? SAS.2 µ, µ 2, µ 3 a, a 2, a 3 a µ + a 2 µ 2 + a 3 µ 3 µ, µ 2, µ 3 µ, µ 2, µ 3 log a, a 2, a 3 a µ + a 2 µ 2 + a 3 µ 3 µ, µ 2, µ 3 * 2 2. y t y y y Poisson y *

,, Poisson 3 3. t t y,, y n Nµ, σ 2 y i µ + ɛ i ɛ i N0, σ 2 E[y i ] µ *2 3.2 2 i y i x i y i α + βx i + ɛ i ɛ i N0, σ 2, α, β *3 y i E[y i ] α + βx i *2 ɛ i *3 x i 2

3.3 3 i p i x i x i p i p i + exp α βx i α, β y +exp α βx y +exp x *4 0.8 0.6 0.4 0.2-0 -5 5 0 y +exp x x y +exp x 0 *5 p i 0 *6 4 2 x i α, β, µ, µ i 4. y *4 α 0, β *5 y +exp α βx y x y +exp x 0 *6 expα + βx expα + βx + exp α βx + expα + βx 3

4.. t t t fixed effect 2 3 i j y ij Nµ i, σ 2 y ij µ i + ɛ ij ɛ ij N0, σ 2 y ij E[y ij ] µ i µ i *7 y ij *8 fixed effect y ij µ + α i + β j + γ ij + ɛ ij ɛ ij N0, σ 2 E[y ij ] µ + α i + β j + γ ij µ, α i, β j, γ ij y ij 4..2 y i α + βx i + ɛ i ɛ i N0, σ 2 *9 E[y i ] α + βx i α, β y i 2 E[y i ] α + β x i + β 2 x 2i + + β k x ki E[y i ] α + β x i + β 2 x 2 i + + β k x k i α, β,, β k α, β,, β k *7 E[y ij ] µ i *8 µ i µ + α i E[y ij ] µ + α i µ, α i E[y ij ] µ + α i *9 y i Nα + βx i, σ 2 4

4..3 2 i j x ij y ij µ + α i + βx ij + ɛ ij ɛ ij N0, σ 2 α i x ij β E[y ij ] µ + α i + βx ij µ, α i, β y i 4.2 4.2. 3 y i i 0, y i p i y i Bernoulli Bep i * 0 hx +exp x y i Bep i p i hα + βx i hx α+βx i hx +exp x h x log * h pi p i log α + βx i p i h x log log x x x x x x * 2 *0 Bernoulli * y +exp x x y + exp x y + exp x y exp x log y «x y log y x y y log x x *2 logitx log x x logitx log «y x log y y ««y x x log y +exp x x x 5

y i Bernoulli * 3 logitp i α + βx i 4.2.2 Φx 2π exp t2 2 dt x y i Bep i p i Φα + βx i Φx Φ x * 4 Φ p i α + βx i α, β Φ x y i Bernoulli Φ x 4.2.3 Poisson Poisson 2 0 i y i λ i Poisson P oλ i λ i x i λ i e α+βx i log log λ i α + βx i α, β y i P oλ i log λ i α + βx i y i Poisson * 5 log x 5 * 6 5. 5 y i x i i,, 5 *3 Bernoulli *4 *5 Poisson *6 3 6

y i, 0 x i mmhg 0 20 30 40 0 50 60 y i 0 5 * 7 p i Bernoulli p i Bernoulli Bep i y Bep, y 2 Bep 2, y 3 Bep 3, y 4 Bep 4, y 5 Bep 5 y i fy i p i p y i i p i yi i,, 5 5 fy p p y p y, fy 2 p 2 p y2 2 p 2 y 2, fy 3 p 3 p y3 3 p 3 y 3, fy 4 p 4 p y 4 4 p 4 y 4, fy 5 p 5 p y 5 5 p 5 y 5 p i p i + exp α βx i expα + βx i + expα + βx i 5 x i p expα + βx expα + 20β + expα + βx + expα + 20β, p 2 expα + βx 2 expα + 30β + expα + βx 2 + expα + 30β p 3 expα + βx 3 expα + 40β + expα + βx 3 + expα + 40β, p 4 expα + βx 4 expα + 50β + expα + βx 4 + expα + 50β p 5 expα + βx 5 expα + 60β + expα + βx 5 + expα + 60β y i Bep i p i expα + βx i + expα + βx i pi log α + βx i logitp i α + βx i p i *7 n x Bernoulli 7

p i p i α, β * 8 α, β 5.2 α, β 5.2. p i p i Lα, β y,, y 5 5 fy i p i i fy p fy 2 p 2 fy 3 p 3 fy 4 p 4 fy 5 p 5 p p 2 p 3 p 4 p 5 y 0, y 2, y 3, y 4 0, y 5 expα + 20β + expα + 20β expα + 40β + expα + 40β + expα + 20β expα + 30β + expα + 30β expα + 50β + expα + 50β expα + 30β + expα + 30β expα + 60β + expα + 60β expα + 40β + expα + 40β + expα + 50β expα + 60β + expα + 60β *8 β H 0 : β 0 8

lα, β y,, y 5 log Lα, β y,, y 5 log log + expα + 20β + expα + 20β + log + expα + 50β expα + 30β + expα + 30β expα + 30β + log + expα + 30β + log expα + 60β + expα + 60β expα + 40β + expα + 40β + expα + 50β expα + 40β + log + expα + 40β expα + 60β + expα + 60β log + expα + 20β + {log expα + 30β log + expα + 30β} + {log expα + 40β log + expα + 40β} log + expα + 50β + {log expα + 60β log + expα + 60β} log + expα + 20β + α + 30β log + expα + 30β + α + 40β log + expα + 40β log + expα + 50β + α + 60β log + expα + 60β log + expα + 20β log + expα + 30β log + expα + 40β log + expα + 50β log + expα + 60β + 3α + 430β α, β α l α α, β y,, y 5 expα + 20β + expα + 20β β l β α, β y,, y 5 expα + 30β expα + 40β expα + 50β expα + 60β + expα + 30β + expα + 40β + expα + 50β + expα + 60β + 3 20 expα + 20β 30 expα + 30β expα + 40β 50 expα + 50β 60 expα + 60β + expα + 20β + expα + 30β + expα + 40β + expα + 50β + expα + 60β + 430 l α α, β y,, y 5 0 l β α, β y,, y 5 0 exp α + 20 β + exp α + 20 β exp α + 30 β exp α + 40 β exp α + 50 β exp α + 60 β + exp α + 30 β + exp α + 40 β + exp α + 50 β + exp α + 60 β + 3 0 20 exp α + 20 β 30 exp α + 30 β exp α + 40 β 50 exp α + 50 β 60 exp α + 60 β + exp α + 20 β + exp α + 30 β + exp α + 40 β + exp α + 50 β + exp α + 60 β + 430 0 9

α, β * 9 SAS 5.2.2 SAS proc logistic SAS data d; input y x; cards; 0 20 30 40 0 50 60 run; proc logistic proc genmod 2 proc logistic proc genmod proc logistic proc logistic datad descending; model yx; run; * 20 WORK.D y 2 binary logit Fisher s scoring binary logit y i Bernoulli Fisher s scoring α, β * 2 *9 5 0 *20 descending y 0, y y 0 proc genmod *2 Fisher s scoring 0

y y y 0 0 descending Probability modeled is y y GCONVE-8 AIC 8.730 0.302 SC 8.340 9.52-2 Log L 6.730 6.302 * 22 H0: BETA0 2 Pr > ChiSq 0.4277 0.53 Score 0.467 0.586 Wald 0.3947 0.5298 p i +exp α βx i H 0 : β 0 x i * 23 * 24 Wald 2 Pr > ChiSq Intercept -5.7094 9.72 0.3450 0.5570 x 0.0439 0.0700 0.3947 0.5298 *22 *23 β 0 p i +exp α x i *24

p i + exp α βx i logitp i α + βx i Intercept α x β Intercept α x β { α 5.7094 β 0.0439 * 25 x Pr > Chisq H 0 : β 0 H 0 : β 0 Wald p i + exp5.7094 0.0439x i x 20,, x 5 60 p + exp5.7094 0.0439 20 0.39, p 2 + exp5.7094 0.0439 30 0.50 p 3 + exp5.7094 0.0439 40 0.6, p 4 + exp5.7094 0.0439 50 0.7 p 5 + exp5.7094 0.0439 60 0.79 x 0.8 0.6 0.4 0.2 2 y 80 00 20 40 60 80 200 +exp5.7094 0.0439x 95% Wald x.045 0.9.98 *25 x x x β 2

x x x + px p i log pi ôddspx + exp5.7094 0.0439x, px + + exp5.7094 0.0439x + p i α + βx i pi p i expα + βx i px px + exp 5.7094 + 0.0439x, ôddspx + exp 5.7094 + 0.0439x + px px + * 26 OR ÔR ôddspx + ÔR ôddspx exp0.0439.045 exp 5.7094 + 0.0439x + exp 5.7094 + 0.0439x exp 5.7094 + 0.0439x exp0.0439 exp 5.7094 + 0.0439x x ÔR exp β 0 x + x + 0 ÔR exp0 β.552 SAS proc logistic datad descending; model yx; units x0; run; x 0 0.552 5.2.3 SAS 2 proc genmod proc genmod proc genmod datad descending; model yx / linklogit distbin; run; model Bernoulli *26 p oddsp p p p [oddsp bp bp 3

WORK.D Binomial Logit y proc logistic PROC GENMOD y PROC GENMOD is modeling the probability with y. PROC GENMOD y descending y 0 / 3 6.3024 2.008 3 6.3024 2.008 Pearson 2 3 4.9694.6565 Pearson X2 3 4.9694.6565-3.52 proc logistic AIC proc logistic 2Log 2 deviance Wald 95% 2 Pr > ChiSq Intercept -5.7094 9.72-24.7624 3.3435 0.34 0.5570 x 0.0439 0.0700-0.0932 0.8 0.39 0.5298 Scale 0.0000 0.0000.0000.0000 Note: α, β proc logistic Scale Scale overdispersion 4

6 General Linear Model Generalized Linear Model 2 GLM GLM SAS Proc GLM Proc GLM GLM Linear Model LM * 27 Proc GLM LM GLM 7 2 proc logistic proc genmod 2 * 28 7. data d; input y x; cards; 0 20 0 30 0 40 50 60 run; x 45 x < 45 y 0 x 45 y 2 y 0 * 29 7.. proc logistic proc logistic *27 GLM GLIM LM GLM *28 *29 OK 5

WARNING WARNING LOGISTIC 7..2 proc genmod proc genmod WARNING: Hessian.0868635408 0.000 proc logistic 7.2 data d; input y x; cards; 0 20 0 30 30 50 60 run; x 30 y 0 y x 30 x < 30 y 0 x > 30 y x 30 y 0, y 0, * 30 7.2. proc logistic proc logistic *30 SAS 6

WARNING WARNING LOGISTIC * 3 7.2.2 proc genmod proc genmod WARNING: Hessian * 32 *3 *32 7