EV Fig.. Contactless power transfer system. (a) Single-sided winding transformer. Fig. 2. Detailed equivalent circuit. x 0, x, x 2 r 0 r, r 2 C P R L

Similar documents
D IEEJ Transactions on Industry Applications Vol.137 No.11 pp DOI: /ieejias Circuit Analysis and Characterization of Contactles

Table 1. Reluctance equalization design. Fig. 2. Voltage vector of LSynRM. Fig. 4. Analytical model. Table 2. Specifications of analytical models. Fig

Fig. 1. Relation between magnetron anode current and anode-cathod voltage. Fig. 2. Inverter circuit for driving a magnetron. 448 T. IEE Japan, Vol. 11

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

. Fig. AC bus k k V I S Fig. 4. Fig. 3. The position of two lines The equivalent circuit model of line impedance Z(k) = V I S () Fig f [Hz], c[m

IIC Proposal of Range Extension Control System by Drive and Regeneration Distribution Based on Efficiency Characteristic of Motors for Electric

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori

Instability of Aerostatic Journal Bearings with Porous Floating Bush at High Speeds Masaaki MIYATAKE *4, Shigeka YOSHIMOTO, Tomoaki CHIBA and Akira CH

Estimation of Photovoltaic Module Temperature Rise Motonobu Yukawa, Member, Masahisa Asaoka, Non-member (Mitsubishi Electric Corp.) Keigi Takahara, Me

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi

1

Synthesis and Development of Electric Active Stabilizer Suspension System Shuuichi BUMA*6, Yasuhiro OOKUMA, Akiya TANEDA, Katsumi SUZUKI, Jae-Sung CHO

Fig. 1 Schematic construction of a PWS vehicle Fig. 2 Main power circuit of an inverter system for two motors drive

JFE(和文)No.4-12_下版Gのコピー

パナソニック技報

<95DB8C9288E397C389C88A E696E6462>

013858,繊維学会誌ファイバー1月/報文-02-古金谷

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

XFEL/SPring-8

Fig, 1. Waveform of the short-circuit current peculiar to a metal. Fig. 2. Waveform of arc short-circuit current. 398 T. IEE Japan, Vol. 113-B, No. 4,

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

On the Wireless Beam of Short Electric Waves. (VII) (A New Electric Wave Projector.) By S. UDA, Member (Tohoku Imperial University.) Abstract. A new e

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

D IEEJ Transactions on Industry Applications Vol.133 No.3 pp DOI: /ieejias DC-DC Principle of Surge Voltage of a Rectifier in I

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4)

( ) 2. ( ) 1. 1, kg CO2 1 2,000 kg 1 CO2 19 % 2,000 2, CO2 (NEDO) (COURSE50) 2008 COURSE50 CO2 CO2 10 % 20 %

<32322D8EA D89CD8D8797B294C E8A968388DF814589C193A1899B E5290EC8F438EA12D966B8A4393B98F5C8F9F926E95FB82CC8BC7926E F5

Extended Summary pp Design and Implementation of Study Support System for Electric Circuit Using Virtual Oscilloscope Masashi Ohchi Member (Sa

2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.

PowerPoint プレゼンテーション

原稿.indd

Fig. 2 Signal plane divided into cell of DWT Fig. 1 Schematic diagram for the monitoring system

1611 原著 論文受付 2009 年 6 月 2 日 論文受理 2009 年 9 月 18 日 Code No. 733 ピクセル開口率の向上による医用画像表示用カラー液晶モニタの物理特性の変化 澤田道人 石川晃則 1) 松永沙代子 1) 1) 石川陽子 有限会社ムツダ商会 1) 安城更生病院放射

The Evaluation on Impact Strength of Structural Elements by Means of Drop Weight Test Elastic Response and Elastic Limit by Hiroshi Maenaka, Member Sh

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット


Fig. 3 Coordinate system and notation Fig. 1 The hydrodynamic force and wave measured system Fig. 2 Apparatus of model testing

燃焼圧センサ

alternating current component and two transient components. Both transient components are direct currents at starting of the motor and are sinusoidal

2 1) 2) 3) 4) 5) 6) Development of Second Generation Wireless In-Wheel Motor with Dynamic Wireless Power Transfer Hiroshi Fujimoto Takuma Takeuchi Kat

<303288C991BD946797C797592E696E6464>

磁気測定によるオーステンパ ダクタイル鋳鉄の残留オーステナイト定量

teionkogaku43_527

学位研究17号

平常時火災における消火栓の放水能力に関する研究

16−ª1“ƒ-07‘¬ŠÑ

Quantitative Relationship between SAR and Temperature Rise inside Eyeball in a Realistic Human Head Model for 1.5 GHz-Microwave Exposure Kiyofumi Taka

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

チョークコイル・リアクタ

110 B U N S E K I K A G A K U Vol Fig. 1 system Schematic diagram of the plasma measurement Fig. 2 Photograph of a time-resolved obserbation

A Nutritional Study of Anemia in Pregnancy Hematologic Characteristics in Pregnancy (Part 1) Keizo Shiraki, Fumiko Hisaoka Department of Nutrition, Sc

SICE東北支部研究集会資料(2012年)

320 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /., No.1, -,* -,/ (,**1) 8 * ** *** * ** *** E#ect of Superheated Steam Treatment on the Preservation an

IPSJ SIG Technical Report Secret Tap Secret Tap Secret Flick 1 An Examination of Icon-based User Authentication Method Using Flick Input for

( ) [1] [4] ( ) 2. [5] [6] Piano Tutor[7] [1], [2], [8], [9] Radiobaton[10] Two Finger Piano[11] Coloring-in Piano[12] ism[13] MIDI MIDI 1 Fig. 1 Syst

大学における原価計算教育の現状と課題

The Evaluation of LBB Behavior and Crack Opening Displacement on Statically Indeterminate Piping System Subjected to Monotonic Load The plastic collap

日本感性工学会論文誌

パナソニック技報

yasi10.dvi

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

[2] OCR [3], [4] [5] [6] [4], [7] [8], [9] 1 [10] Fig. 1 Current arrangement and size of ruby. 2 Fig. 2 Typography combined with printing

知能と情報, Vol.30, No.5, pp

2. CABAC CABAC CABAC 1 1 CABAC Figure 1 Overview of CABAC 2 DCT 2 0/ /1 CABAC [3] 3. 2 値化部 コンテキスト計算部 2 値算術符号化部 CABAC CABAC

ON STRENGTH AND DEFORMATION OF REINFORCED CONCRETE SHEAR WALLS By Shigeru Mochizuki Concrete Journal, Vol. 18, No. 4, April 1980, pp. 1 `13 Synopsis A

& Vol.2 No (Mar. 2012) 1,a) , Bluetooth A Health Management Service by Cell Phones and Its Us

Q [4] 2. [3] [5] ϵ- Q Q CO CO [4] Q Q [1] i = X ln n i + C (1) n i i n n i i i n i = n X i i C exploration exploitation [4] Q Q Q ϵ 1 ϵ 3. [3] [5] [4]

Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science,

VHDL-AMS Department of Electrical Engineering, Doshisha University, Tatara, Kyotanabe, Kyoto, Japan TOYOTA Motor Corporation, Susono, Shizuok

2-1. HEV EV EV EV EV EV 8 1 HEV HEV 196

研究論文(2)

**編集*

3_23.dvi

特-2.indd

Fig. 1 Hydrostatic Thrust Bearing Fig. 2 Point loading of elastic half-space

: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

16_.....E...._.I.v2006

FUJII, M. and KOSAKA, M. 2. J J [7] Fig. 1 J Fig. 2: Motivation and Skill improvement Model of J Orchestra Fig. 1: Motivating factors for a

The copyright of this material is retained by the Information Processing Society of Japan (IPSJ). The material has been made available on the website

パナソニック技報

17 Proposal of an Algorithm of Image Extraction and Research on Improvement of a Man-machine Interface of Food Intake Measuring System

植物23巻2号

A Study of Effective Application of CG Multimedia Contents for Help of Understandings of the Working Principles of the Internal Combustion Engine (The

No EV 26 Development of Crash Safety Performance for EV Ichiro Kamimoto Masaki Motoki Masaki Ueno SKYACTIV engine HEV Hybrid Electric Ve

Fig. 4. Configuration of fatigue test specimen. Table I. Mechanical property of test materials. Table II. Full scale fatigue test conditions and test

Journal of Geography 116 (6) Configuration of Rapid Digital Mapping System Using Tablet PC and its Application to Obtaining Ground Truth

130 Oct Radial Basis Function RBF Efficient Market Hypothesis Fama ) 4) 1 Fig. 1 Utility function. 2 Fig. 2 Value function. (1) (2)


Vol.54 No (July 2013) [9] [10] [11] [12], [13] 1 Fig. 1 Flowchart of the proposed system. c 2013 Information

28 Horizontal angle correction using straight line detection in an equirectangular image

untitled

渡辺(2309)_渡辺(2309)

Vol. 48 No. 3 Mar PM PM PMBOK PM PM PM PM PM A Proposal and Its Demonstration of Developing System for Project Managers through University-Indus

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s

プラズマ核融合学会誌11月【81‐11】/小特集5

Present Situation and Problems on Aseismic Design of Pile Foundation By H. Hokugo, F. Ohsugi, A. Omika, S. Nomura, Y. Fukuda Concrete Journal, Vol. 29

Transcription:

D IEEJ Transactions on Industry Applications Vol.32 No. pp.9 6 DOI: 0.54/ieejias.32.9 Novel Core Structure and Iron-loss Modeling for Contactless Power Transfer System of Electric Vehicle Masato Chigira, Student Member, Yuichi Nagatsuka, Non-member, Yasuyoshi Kaneko,Member, Shigeru Abe, Member, Tomio Yasuda, Member, Akira Suzuki, Non-member 20 3 25 20 0 3 A contactless power transfer system for electric vehicles needs to have a high efficiency, a large air gap, good tolerance to misalignment in the lateral direction and be compact and lightweight. In this paper, a new.5 kw transformer has been developed using novel H-shaped core which is more efficient, more robust to misalignment and lighter than previous rectangular core to satisfy these criteria, and its characteristics are described. An efficiency of 95% was achieved across 70 mm mechanical gap. The modeling of iron-loss in the equivalent circuit is also presented. The calculated efficiency using this model shows good agreement with experimental results. Keywords: electric vehicle, contactless power transfer system, efficiency, core, temperature rise test, iron-loss. () (3) (4) (8) Auckland Boys 2009 (3) 200 Flux pipe (9) (0) 338-8570 255 Saitama University 255, Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan 00-00 -- Technova Inc. --, Uchisaiwai-cho, Chiyoda-ku, Tokyo 00-00, Japan 444-92 0 AISIN AW CO., LTD. 0, Takane, Fujii-cho, Anjo 444-92, Japan H.5 kw 240 300 40 mm 3.9 kg 70 mm ±50 mm 94% k r 0 r 0 r 0 2. 2 () Fig. 2 2 C S, C P R L Fig. 2 a = N /N 2 r 0 r, r 2 > 0 khz c 202 The Institute of Electrical Engineers of Japan. 9

EV Fig.. Contactless power transfer system. (a) Single-sided winding transformer. Fig. 2. Detailed equivalent circuit. x 0, x, x 2 r 0 r, r 2 C P R L 2 3 C P f 0 (= ω 0 /2π) x 0 x 2 ω 0 L 2 () ω 0 C P = x p = x 0 + x 2 = ω 0 L 2 () C S (2) ω 0 C S = x s = x 0 x 2 x 0 + x + x (2) 2 2 4 (2) () (2) C S C P () (2) V IN V 2 I IN I D V IN = bv 2, I IN = I D/b, b = x 0 + x (3) 2 b (2) (3) 2 5 x 0 Fig. 2 r 0 (3) η (4) η max R Lmax (5) (4) (5) R L IL 2 η = R L IL 2 + r I2 IN + = r 2 I2 2 R L + r b + r 2 2 R L + ( RL x P ) 2 (4) Fig. 3. η max = (b) Double-sided winding transformer. Single and double-sided winding transformers. + 2r 2 x P 2 6 r, R Lmax = x P + r b 2 r 2 + b 2 r 2 (5) () (3) (4) (8) k k 2 40% (3) Fig. 3(a) (A) (B) (A) (B) k 4 y (A) (B) k 0 IEEJ Trans. IA, Vol.32, No., 202

EV 3. H 3 H Fig. 4(a) (5) Fig. 4 x k Fig. 4(b) H H () (2) (3) (4) H Table x y H Table 2 Fig. 4 Table 2 H 3.9 kg 4.6 kg 2.9 kg 2.0 kg 70 mm ±30 mm x ±45 mm y ±50 mm H (a) Transformer with rectangular core. (b) Transformer with H-shaped core. Fig. 4. Transformer s photographs and their dimensions. Table. Design goal. Table 2. Specification. IEEJ Trans. IA, Vol.32, No., 202

EV H 5mm H 70 mm 60 mm R L LCR C S C P H () (2) Fig. 400 mm 600 mm mm 3 2 70 mm Table 3. Parameters of standard position (gap = 70 mm). Table 3 H k η max H r 2 f 0 x 0 (= 2π f 0 l 0 ) Table 4 Fig. 5 η (= P 2 /P ) 70 mm 95.3% 94.6% H 94.9% Fig. 5 H V IN I IN V 2 V IN I IN I 2 L 2 C P 3 3 H Fig. 6 x y Fig. 4 l 0 k L 2 C P () C S C P R L Fig. 2 V 2 V L Table 4. Experimental results (gap = 70 mm). Fig. 5. Wave forms of transformer with H-shaped core. (a) With change in gap length. Fig. 6. (b) With change in positions. Experimental results for transformer with H-shaped core. 2 IEEJ Trans. IA, Vol.32, No., 202

EV Fig. 7. Characteristics with resistance-load change. Fig. 8. Temperature rise test. V L /V 2 80 Ω k b (3) V 2 /V IN P OUT =.5 kw V IN V IN V 2 (3) η 40 mm 70 mm 00 mm 95.2% 94.9% 93.% 3 4 70 mm x 45 mm y 50 mm Table 4 Fig. 6(b) V 2 /V IN y η 93.% H 93.0% y 2.2% H.9% H y 94% H y 0.2 T 0.22 T 0.5 T.5 kw 3 5 70 mm x = y = 0 V L R L 60 240 Ω Fig. 7 Fig. 7 (4) R L V L /V 2 (6) η V IN V 2 V 2 /V IN 4. H 4 70 mm 40 mm 40 mm 00 mm 00 mm C S C P () (2) 00 mm P OUT =.5 kw V IN 00 mm k 0.24 b 0.24 70 mm V IN η Fig. 6(a) 70 mm 00 mm 30 mm 93.5% 92.% 89.7% ±30 mm 9.9% 70 mm 94.5% 2.5% B 2 0.24 T 0.5 T 00 mm ± 30 mm.5 kw 4 2 H AC00 V.5 kw 4 0 H Fig. 8 3 20 C 60 C 8 η.0% 4 3 3kW AC00 V AC200 V H 3kW 70 mm x = y = 0 Table 4 η 94.7% B 2 0.29 T 3kW 3 IEEJ Trans. IA, Vol.32, No., 202

EV.5 kw R L = 80 Ω.5 kw H 3kW 5. 2 5 (4) r 0 k r 0 r 0 5 V, V 2 V, V 2 V, V 2 (3) b V, V 2 R L r 0 Fig.9 5 r 0 Fig. 9(a) V 2 V 20 V IN (6) P A V = V I IN V V V 0 P C (V ) V P C2 (V 20 ) V 20 P A = P C (V ) + P C2 (V 20 ) = P r IIN 2 r 2I2 2 (6) 2 Fig. 9(b) V = V (< V 0 ) V IN (7) P B V 2 V 20 P C (V 0 ) + P C2 (V 20 ) = P A + P C P B = P D (9) 5 r 0 R L Fig. 2 I 0 (0) r 0 r 0 = P D = P C (V 0 ) + P C2 (V 20 ) (0) I0 2 I0 2 H.5 kw 3kW Table 5 Table 5 V 2, V 22 V 20 (9) P C P A P B r 0 Table 6 H.5 kw 3kW Table 5 P D Table 6 Other loss 5 2 Fig. 2 r 0 2 5 η R L η max () (2) (3) R L IL 2 η = R L IL 2 + r I 2 IN + r 2I2 2 + r 0 I 2 0 = R L + r b +r 2 2 + ( RL x P R L ) 2 +r 0 ( b) 2 b 2 + ( RL x P ) 2 () r R Lmax = x + r 2 + r 0 ( b)2 P b 2 r 2 + r 0 (2) η max = + 2r 2 + r 0 r + r 2 + r 0 ( b)2 x P b 2 r 2 + r 0 (3) Fig. 7 (4) () P B = P C (V ) + P C2 (V 2 ) = P r IIN 2 (7) 3 Fig. 9(b) V V 0 V IN (8) P C V 22 V 20 Table 5. No-load test results. P C = P C (V 0 ) + P C2 (V 22 ) = P r I 2 IN (8) 4 P C2 (V 2 ) P C2 (V 22 ) 0 Table 6. Breakdown of transformer loss. (a) With resonant capacitors. (b) Without resonant capacitors. Fig. 9. Circuit for no-load test. 4 IEEJ Trans. IA, Vol.32, No., 202

EV Fig. 0. Efficiency as a function of resistance load. Fig. 0.5 LCR 6. H.5 kw 70 mm H 240 300 40 mm 3.9 kg ±50 mm 94% r 0 r 0 C.-S. Wang, O.H. Stielau, and G.A. Covic: Design consideration for a contactless electric vehicle battery charger, IEEE Trans. Ind. Electronics, Vol.52, No.5, pp.308 34 (2005) 2 Y. Kamiya, Y. Daisho, and H. Matsuki: Inductive Power Supply System for Electric-driven Vehicles, IEEJ Journal, Vol.28, No.2, pp.804 807 (2008) (in Japanese),, Vol.28, No.2, pp.804 807 (2008) 3 M. Budhia, G.A. Covic, and J.T. Boys: Design and Optimisation of Magnetic Structures for Lumped Inductive Power Transfer Systems, IEEE ECCE, pp.208 2088 (2009) 4 T. Iwata, N. Ehara, Y. Kaneko, S. Abe, T. Yasuda, and Ida: Comparison of characteristic by Transformer Winding Method of Contactless Power Transfer Systems for Electric Vehicle, The Paper of Technical Meeting on Semiconductor Power Converter (SPC), IEE Japan, SPC-09-39, pp.09 4 (2009) (in Japanese),, SPC-09-39, pp.09 4 (2009) 5 N. Ehara, Y. Nagatsuka, Y. Kaneko, S. Abe, T. Yasuda, and K. Ida: Compact and Rectangular Transformer of Contactless Power Transfer System for Electric Vehicle, Proc. of 2009 Japan Industry Applications Society Conference, IEE Japan, No.2-25 (2009) (in Japanese), 2, No.2-25 (2009) 6 S. Noguchi, Y. Nagatsuka, Y. Kaneko, S. Abe, T. Yasuda, and A. Suzuki: Compact and Rectangular Transformer of Contactless Power Transfer System for ElectricVehicle, Proc. of 200 Japan Industry Applications Society Conference IEE Japan, No.2-6, pp.ii-259-262 (200) (in Japanese), 22, No.2-6, pp.ii-259 262 (200) 7 Y. Nagatsuka, N. Ehara, Y. Kaneko, S. Abe, and T. Yasuda: Compact Contactless Power Transfer System for Electric Vehicles, Proc. of 200 International Power Electronics Conference (IPEC200-Sapporo), IEE Japan, pp.807 83 (200) 8 Y. Nagatsuka, S. Noguchi, Y. Kaneko, S. Abe, T. Yasuda, K. Ida, A. Suzuki, and R. Yamanouchi: Contactless Power Transfer System for Electric Vehicle Battery Charger, Proc. of 25 th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium and Exhibition (EVS-25), shenzhen China (200) 9 M. Budhia, G.A. Covic, and J.T. Boys: A New Magnetic Coupler for Inductive Power Transfer Electric Vehicle Charging Systems, IEEE IECON 200, pp.248 2486 (200) 0 G.A. Covic, J.T. Boys, M. Budhia, and C.-Y. Huang: Electric Vehicles- Personal transportation for the future, Proc. of 25 th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium and Exhibition (EVS-25), shenzhen China (200) T. Fujita, Y. Kaneko, and S. Abe: Contactless Power Transfer Systems using Series and Parallel Resonant Capacitors, IEEJ Trans. IA, Vol.27, No.2, pp.74 80 (2007-2) (in Japanese), D, Vol.27, No.2, pp.74 80 (2007-2) 2 Y. Kaneko, S. Matsushita, Y. Oikawa, and S. Abe: Moving Pick-up Type Contactless Power Transfer Systems and their Efficiency using Series and Parallel Resonant Capacitors, IEEJ Trans. IA, Vol.28, No.7, pp.99 925 (2008-7) (in Japanese), D, Vol.28, No.7, pp.99 925 (2008-7) 3 Y. Kaneko and S. Abe: Contactless Power Transfer Systems, IEEJ Journal, Vol.28, No.2, pp.796 799 (2008) (in Japanese),, Vol.28, No.2, pp.796 799 (2008) 987 0 5 200 3 4 5 IEEJ Trans. IA, Vol.32, No., 202

EV 987 9 2009 3 20 3 952 2 974 3 ITS 999 2007 2009 965 6 22 987 3 989 3 990 4 995 2 2000 4 2008 4 958 7 3 98 3 949 3 29 97 6 976 997 200 2004 4 985 IEEE 6 IEEJ Trans. IA, Vol.32, No., 202