) (M w ) km 100km M w SN 3) Hz Hz m S 12) (D) 30km (1) No. Earthquake Date Mw Focal Depth (

Similar documents
) (M w ) km 1km M w SN 3).2.331Hz.15.21Hz 1.4 3m S 12) (D) 3km (1) No. Earthquake Date Mw Focal Depth (km) Number of rec



On the Detectability of Earthquakes and Crustal Movements in and around the Tohoku District (Northeastern Honshu) (I) Microearthquakes Hiroshi Ismi an

8km M km M M8.4 1M M M 東北地方太平洋沖で想定されていた地震 Fig % 8 9% M8. 6 3m M % Fig.1 Distribution of

0-

Microsoft Word doc

Key Words: wavelet transform, wavelet cross correlation function, wavelet F-K spectrum, 3D-FEM

耐震ガイドライン2章

untitled

Background We have constructed a database of strong-motion records and have obtained a new attenuation relation for Japan. (Kanno et al., 2006; BSSA)

8-5 中国・四国・九州地方の地殻変動

Microsoft Word - mitomi_v06.doc

/ / M. km km. m 図 1 CMT Hi-net CMT F-net CMT 図 1 PGV K-NET KiK-net 2. 地震および地震動の概要 / M JMA. / M JMA. 図 1 CMT PGV

Fig. 1. Horizontal displacement of the second and third order triangulation points accompanied with the Tottori Earthquake of (after SATO, 1973)

1793 Detailed Distributions of Seismic Intensity and Tsunami Heights of the Kansei off Miyagi Prefecture Earthquake of February 17, 1793 Yuichi NAMEGA

地震動予測手法の現状


神奈川県西部山北南高感度地震観測井の掘削および孔内検層,Borehole Drilling and Physical Properties of the Yamakita-minami Seismic Observatory in Western Ka

Time Variation of Earthquake Volume and Energy-Density with Special Reference to Tohnankai and Mikawa Earthquake Akira IKAMi and Kumizi IIDA Departmen

渡辺(2309)_渡辺(2309)

2007年新潟県中越沖地震(M6.8)による 首都圏の長周期地震動

* Meso- -scale Features of the Tokai Heavy Rainfall in September 2000 Shin-ichi SUZUKI Disaster Prevention Research Group, National R

2008年1月11日に岩手県釜石沖で発生した地震(M4.7)について

7-1 2007年新潟県中越沖地震(M6.8)の予測について

yasi10.dvi

2013SuikoMain.dvi

‚æ1‘Íp

第6回:データセットの結合

The Plasma Boundary of Magnetic Fusion Devices

5b_08.dvi

Supplementary data

JFE.dvi

untitled

第2回:データの加工・整理

(1809) 桜島火山における多項目観測に基づく火山噴火準備過程解明のための研究

1

<95DB8C9288E397C389C88A E696E6462>

untitled

6-11 地震の深さの下限分布と地殻の熱構造―近畿地方中北部について―

kobe_sar4.p65



(1) 2

untitled

teionkogaku43_527

和文.PDF

首都圏直下の地震と強震動―安政江戸地震と明治東京地震―

The Environmental Monitoring 2017 Surface water [1] Total PCBs /surface water (pg/l) Monitored year :2017 stats Detection Frequency (site) :46/47(Miss


1) 2 3) 4) 5) [a] Tahara, M., K. Uehira, H. Shimizu, M. Nakada, T. Yamada, K. Mochizuki, M. Shinohara, M. Nishino, R. Hino, H. Yakiwara, H. Miyamachi,

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.

スライド 1

untitled


Qx-Qy2 cbmo=arctanv ax=-arctanzzxylay=ax+ r am-(ax+a) RS-1ksineccosImo2S(sin-sinmo)2 RT-ks sin bsincbmosin -sin qs mo Rc-1sinsinImodam2sin-sinoUm dys=

Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applie

11-4 地震波の伝播と強震動生成のシミュレーション

untitled

兵庫県立大学学報vol.17

7章 構造物の応答値の算定

09_加藤_紀要_2007


On the Wireless Beam of Short Electric Waves. (VII) (A New Electric Wave Projector.) By S. UDA, Member (Tohoku Imperial University.) Abstract. A new e

"Moir6 Patterns on Video Pictures Taken by Solid State Image Sensors" by Okio Yoshida and Akito Iwamoto (Toshiba Research and Development Center, Tosh

CHARACTERISTICS OF LOVE WAVE GENERATED AROUND A DIPPING BASEMENT By Susumu NAKAMURA, Iwao SUETOMI, Shinichi AKIYAMA and Nozomu YOSHIDA Source mechanis

光学

untitled

QRNL11-1.pm

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

untitled

04-“²†XŒØ‘�“_-6.01

倉田.indd

Rolly E. RIMANDO *** Jessie DALIGDIG *** Arturo DAAG *** Surface Faulting Associated with the Philippine Earthquake of 1990 Takashi NAKATA *, Hiroyuki

防災科学技術研究所主要災害調査第48号;2011年東北地方太平洋沖地震の強震動;Strong Motions of the 2011 Tohoku-Oki Earthquake

大大特研究委託業務の成果報告書の作成について(案)

H1-H4*.ai

地質調査研究報告/Bulletin of the Geological Survey of Japan


Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu

Unknown

<32322D8EA D89CD8D8797B294C E8A968388DF814589C193A1899B E5290EC8F438EA12D966B8A4393B98F5C8F9F926E95FB82CC8BC7926E F5

2. Twitter Twitter 2.1 Twitter Twitter( ) Twitter Twitter ( 1 ) RT ReTweet RT ReTweet RT ( 2 ) URL Twitter Twitter 140 URL URL URL 140 URL URL

untitled

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

SERPWatcher SERPWatcher SERP Watcher SERP Watcher,

砂浜砕波帯における流れと地形変化


5D1 SY0004/14/ SICE 1, 2 Dynamically Consistent Motion Design of Humanoid Robots even at the Limit of Kinematics Kenya TANAKA 1 and Tomo

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

Journal of the Combustion Society of Japan Vol.58 No.185 (2016) ORIGINAL PAPER 火災旋風近傍の流れに関する研究 Flow Around a Fire Whirl *

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi

_念3)医療2009_夏.indd

Detailed Spatial Distributions of Foreshock and Aftershock Activities of Small Earthquakes Kiyoshi ITO and Akio KUROISO Abuyama Seismological Observat

474 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /-, No.3,.1..2* (,**0) 24 Measurement of Deterioration of Frying Oil Using Electrical Properties Yoshio

2007-Kanai-paper.dvi


Rによる計量分析:データ解析と可視化 - 第3回 Rの基礎とデータ操作・管理

News_Letter_No35(Ver.2).p65

_先端融合開発専攻_観音0314PDF用

Transcription:

1) e-mailsmidorik@enveng.titech.ac.jp 2) e-mailootake@ctie.co.jp (M) M M M 1)4) 0.20.3( 0.40.7) 5) 6),7) 7)10) 6) 9) -59-

1968 2001 33 11) (M w ) 5.5 8.3 km 100km M w 3335 1980 SN 3) 0.2 0.3310Hz 0.15 0.210Hz 1.4 30m S 12) (D) 30km (1) No. Earthquake Date Mw Focal Depth (km) Number of recordings P.G.A. P.G.V. Fault Type 1 Off Tokachi 1968.5.16 8.2 15 10 10 Inter-plate 2 Off Nemuro Pen. 1973.6.17 7.8 25 5 4 Inter-plate 3 Near Izu Oshima 1978.1.14 6.6 7 8 8 Crustal 4 Off Miyagi Pref. 1978.6.12 7.6 37 13 10 Inter-plate 5 East off Izu Pen. 1980.6.29 6.5 7 15 15 Crustal 6 Off Urakawa 1982.3.21 6.9 25 10 8 Crustal 7 Nihonkai-Chubu 1983.5.26 7.8 6 17 17 Inter-plate 8 Off Hyuganada 1984.8.7 6.9 30 9 7 Intra-plate 9 Central Iwate Pref. 1987.1.9 6.6 73 9 5 Intra-plate 10 Northern Hidaka Mt. 1987.1.14 6.8 120 13 6 Intra-plate 11 East off Chiba Pref. 1987.12.17 6.7 30 173 47 Crustal 12 Off Kushiro 1993.1.15 7.6 105 35 17 Intra-plate 13 Off Noto Pen. 1993.2.7 6.3 15 12 7 Crustal 14 Southwest off Hokkaido 1993.7.12 7.7 10 24 15 Inter-plate 15 East off Hokkaido 1994.10.4 8.3 35 41 17 Intra-plate 16 Far off Sanriku 1994.12.28 7.7 35 57 21 Inter-plate 17 Hyogo-ken Nanbu 1995.1.17 6.9 10 74 43 Crustal 18 Off Hyuganada 1996.10.19 6.7 25 159 98 Inter-plate 19 Northwestern Kagoshima Pref. 1997.3.26 6.1 6 121 65 Crustal 20 Northwestern Kagoshima Pref. 1997.5.13 6.0 7 133 71 Crustal 21 Northern Yamaguchi Pref. 1997.6.25 5.8 10 196 82 Crustal 22 Off Shizuoka Pref. 1998.5.3 5.5 3 77 46 Crustal 23 Northern Iwate Pref. 1998.9.3 5.8 10 66 26 Crustal 24 Off Hyuganada 1998.12.16 5.8 32 44 30 Inter-plate 25 Southeastern Hokkaido 1999.5.13 6.4 104 96 45 Intra-plate 26 Northern Wakayama Pref. 1999.8.21 5.8 70 249 172 Intra-plate 27 Off Nemuro Pen. 2000.1.28 6.7 56 46 21 Intra-plate 28 Northeastern Chiba Pref. 2000.6.3 5.9 48 135 90 Inter-plate 29 Off Ibaraki Pref. 2000.7.21 6.1 49 176 108 Inter-plate 30 Tottori-ken Seibu 2000.10.6 6.8 11 370 207 Crustal 31 Central Mie Pref. 2000.10.31 5.5 43 278 198 Intra-plate 32 Geiyo 2001.3.24 6.7 51 411 263 Intra-plate 33 Off Hyuganada 2001.4.25 5.6 42 253 201 Intra-plate -60-

30km (2) 11) A (cm/s 2 ) (cm/s)x (km)b C k log A = b log(x + C) kx (D30km) (1) log A = b + 0.6log(1.7D + C) 1.6 log(x + C) kx (D30km) (2) k 4) 0.003 0.002 C (M w )(3)(4) C = 0.0060 10 0.5Mw (for PGA) (3) C = 0.0028 10 0.5Mw (for PGV) (4) b 4) (M w )(D) i (S i ) 3 b = am w + hd + d i S i + e (5) a h d Intra-event Inter-event Total e Crustal Inter-plate Intra-plate Standard deviation Standard deviation Standard deviation Peak ground acceleration 0.59 0.0023 0.00 0.08 0.30 0.02 0.27 0.16 0.30 Peak ground velocity 0.65 0.0024 0.00 0.05 0.15-1.77 0.24 0.16 0.28 ahd i e a h M w =7.0 3050100km -61-

M w =7.0 20km 1.2 2.0 1.1 1.4 (Total Error) 10 0.30 0.28 9 M w (5.8) M w =5.8 (Intra-event Error) (Inter-event Error) ( 0.27)( 0.16) 2),7),9) Total error Intra-event error Inter-event error Frequency Acc. Acc. Acc. Inter-event error Intra-event error Data-Northern Yamaguchi Date-Northern Iwate Median for Northern Yamaguchi Median for Northern Iwate Median Attenuation Relationship Acc. Acc. Acc. -62-

(Mw) M 5.55.96.06.56.6 6.97.68.3 M 9),13),14) M M 50km 200km 0.3 50km 0.3 50km 10km 0.2 15) M 7) 50cm/s 2 0.32 600cm/s 2 0.14 0.30 1) 2) 3) 50km 4) -63-

a1) a2) a1) 16) M 9) a2) 17) 3.5km/s 2.8km/s 3 1.7 0.16 0.08 18),19) Somerville et al. 20) M6.5 50km 0.6 3 1.5 21) 1/4 45 15Hz 22)24) ( 0.27) b) (Q) Lg 25) 100200km 26) -64-

2040km (Qs) 27) 50km K-net Qs 030km 3Hz Qs 1001000 28) 87 Qs 3Hz Qs 200400 Qs 200300300400 100km 0.1 200km 0.2 c) 1971 1km 0.10 29) SMART-1 ( 2km) M M M 45 0.14 M6.5 0.08 30) 30) 30) 25km20km 2km 150 31) Vs 600m/s Vs 100m/s 30m 10% 31) Vs 100 200m/s 10 50% 20m 10% Vs 300m/s 15% 31) 4.25.2 12 50150km 100km 0.21 0.20 0.02 0.2 10) ( 0.2 ) M 45 SMART-1 30) 0.14-65-

0.12 M 0.08 0.12 0.15 d) 6),9) km 500cm/s 2 100km 1993 1978 30m S (AVS30) AVS30 100300m/s300600m/s600m/s 3 (AVS30=100300m/s) Variance vs. P.G.A.(pred.) Acc. Variance vs. P.G.V.(pred.) Vel. AVS30=100 ~300m/s AVS30=300 ~600m/s AVS30=600 ~2600m/s -66-

() 4.1 a1)( INTER ) M M M 100km 4.2 0.1 0.15 ( INTER-S ) 0.1 INTER-S M INTER-S = 0.1 (6) ( INTRA ) 4.1 a2) ( INTRA-S )4.1 17) 0.1 21) 0.05 INTRA-S = 0.05 (7) 4.2 ( INTRA- P ) INTRA-P = ( (X) 2 + (0.001X) 2 ) 0.5 (X40km) ( (44-0.1X) 2 + (0.001X) 2 ) 0.5 (X40km) (8) 4.2 26) 40km 27),28) 4.2 4.3 0.1 0.1 0.15 ( INTRA-G )4.4 INTRA-G = ( 0.08 2 + 0.12 2 ) 0.5 = 0.14 (9) ()( INTER )( INTRA ) -67-

( INTER )(6)( INTRA )(7)(9) () = ( INTER 2 + INTRA 2 ) 0.5 = ( INTER-S 2 + INTRA-S 2 + INTRA-P 2 + INTRA-G 2 ) 0.5 (10) 0 INTRA-P 0 0.18 INTER-S INTRA-S INTRA-G 0.3 INTRA-P INTRA-P (8) 0.004 (10) M M M M M 1) Fukushima, Y. and T. TanakaA New Attenuation Relation for Peak Horizontal Acceleration of Strong Earthquake Ground Motion in Japan, Bull. Seism. Soc. Am., Vol.80, 1990, pp.757-783. 2) 87 24 1997 pp.161-164. 3) No.523, 1999 pp.63-70. -68-

4) Joyner, W.B. and D.M. BoorePeak Horizontal Acceleration and Velocity from Strong-Motion Records Including Records from the 1979 Imperial Valley, California, Earthquake, Bull. Seism. Soc. Am., Vol.71, 1981, pp.2011-2038. 5) Abrahamson, N.A. and K.M. ShedlockOverview, Seism. Res. Lett., Vol.68, 1997, pp.9-23. 6) Donovan, N.C. and A.E. BornsteinUncertainties in Seismic Risk ProceduresJournal of the Geotechnical Engineering Division, American Society of Civil Engineers, 104, 1978, pp.869-887. 7) Campbell, K.W. and Y. BozorgniaNear-Source Attenuation of Peak Horizontal Acceleration from Worldwide Accelerograms Recorded from 1957 to 1993, Proc. Fifth U.S. National Conf. on Earthquake Engineering, Vol.3, 1994, pp.283-292. 8) Idriss, I.M.Evaluating seismic risk in engineering practice, Proceedings of the Eleventh International Conference on Soil Mechanics and Foundation Engineering, San Francisco, 1985, pp.255-320. 9) Youngs, R.R., N. Abrahamson, F.I. Mkdisi, and K. SadighMagnitude Dependence Variance of Peak Ground Acceleration, Bull. Seism. Soc. Am., Vol. 85, 1995, pp.1161-1176. 10) Douglas, J. and P. M. SmitHow Accurate Can Strong Ground Motion Attenuation Relations be?, Bull. Seism. Soc. Am., Vol.91, 2001, pp.1917-1923. 11), 11 (CD-ROM), 2002, 117. 12) Midorikawa, S., M. Matsuoka and K. SakugawaSite Effects on Strong-Motion Records Observed During The 1987 Chiba-ken-toho-oki, Japan Earthquake, 9 1994 pp.e085-e090. 13) Youngs R.R., S.J. Chiou, W.J. Silva and J.R. Humphrey Strong Ground Motion Attenuation Relationships for Subduction Zone Earthquakes, Seism. Res. Lett., Vol.68, 1997, pp.58-73. 14) Campbell, K.W.Empirical Near-Source Attenuation Relationships for Horizontal and Vertical Components of Peak Ground Acceleration, Peak Ground Velocity and Pseudo-Absolute Acceleration Response Spectra, Seism. Res. Lett., Vol.68, 1997, pp.154-179. 15) Abrahamson, N.A. and W.J. SilvaEmpirical Response Spectral Attenuation Relations for Shallow Crustal Earthquakes, Seism. Res. Lett., Vol.68, 1997, pp.94-127. 16),, 545, 2001, pp.51-62. 17) 2 40 1987 pp.397-404. 18) 546 2001 pp.47-53. 19), 2001, pp.59-60. 20) Somerville, P. et al.: Modification of Empirical Strong Motion Attenuation Relations to Include the Amplitude and Duration Effects of Rupture Directivity, Seism. Res. Lett., Vol.68, 1997, pp.199-222. 21) 10, Vol.1, 1998, pp.133-138. 22) Satoh, T. : Empirical Frequency-Dependent Radiation Pattern of the 1998 Miyagiken-Nanbu Earthquake in JapanBull. Seism. Soc. Am., Vol.92, 2002, pp.1032-1039. 23) 2002 pp.141-142. 24) (1Hz ) 2002 pp.143-144. -69-

25) 27 1999 pp.17-28. 26), 1997, 1997, B41-P02. 27),, Vol.54, 2002, pp.475-488. 28) JMA87 9 1994 pp.751-756 29) McCann, M.W. and D.M. BooreVariability in Ground Motions: Root Mean Square Acceleration and Peak Acceleration for the 1971 San Fernando, California, Earthquake, Bull. Seism. Soc. Am., Vol.73, 1983, pp.615-632. 30) Abrahamson, N.A. Statistical Properties of Peak Ground Accelerations Recorded by the SMART 1 Array, Bull. Seism. Soc. Am., Vol.78, 1988, pp.26-41. 31) Rodriguez, V.H.S. and S. Midorikawa: Applicability of the H/V Spectral Ratio of Microtremors in Assessing Site Effects on Seismic Motion, Earthquake Engineering & Structural Dynamics, Vol.31, 2002, pp.261-279. 2002 9 7 2003 1 7 Empirical Analysis of Variance of Ground Motion Intensity in Attenuation Relationships MIDORIKAWA Saburoh 1) and OHTAKE Yu 2) 1) Member, Professor, Department of Built Environment, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Dr. Eng. 2) Graduate Student, Department of Built Environment, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Ms. Eng. (Currently Engineer, CTI Engineering Co., Ltd.) ABSTRACT The variance of peak horizontal accelerations and velocities of the Japanese strong-motion data set is examined. The standard errors of the data from the empirical attenuation relationships are calculated. The standard error decreases with increasing magnitude, with decreasing the distance, and with increasing the amplitude. The amplitude dependence of the error seems much stronger than the magnitude and distance dependences. The distance dependence can be caused by the effects of scattering and absorption of seismic waves in the path. The strong amplitude dependence can be interpreted by multiplying of the effects of the maginitude and distance dependences. Key Words: Attenuation Relationship, Variance, Magnitude Dependence, Distance Dependence, Amplitude Dependence -70-