スライド 1

Similar documents
MOSFET HiSIM HiSIM2 1

Hall効果測定による化合物半導体中の不純物準位の評価に関する研究

untitled

Mott散乱によるParity対称性の破れを検証

untitled

PowerPoint Presentation

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H


C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

PowerPoint プレゼンテーション

untitled

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee


Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE

untitled

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4)

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

2.1: n = N/V ( ) k F = ( 3π 2 N ) 1/3 = ( 3π 2 n ) 1/3 V (2.5) [ ] a = h2 2m k2 F h2 2ma (1 27 ) (1 8 ) erg, (2.6) /k B 1 11 / K

放射線化学, 92, 39 (2011)

日立金属技報 Vol.34

¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤® - No.7, No.8, No.9

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

1 2 1 a(=,incident particle A(target nucleus) b (projectile B( product nucleus, residual nucleus, ) ; a + A B + b a A B b 1: A(a,b)B A=B,a=b 2 1. ( 10

untitled

PDF

理論懇2014

1 2 LDA Local Density Approximation 2 LDA 1 LDA LDA N N N H = N [ 2 j + V ion (r j ) ] + 1 e 2 2 r j r k j j k (3) V ion V ion (r) = I Z I e 2 r

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

Laves A-B AB 2 MgCu 2 (C14) MgZn 2 (C15) MgNi 2 (C36) Laves VASP ZrCr 2 Laves VASP(Vienna Ab-initio Simulation Package) Laves Energy-Volume Quasi-Harm

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.


FPWS2018講義千代

untitled

総研大恒星進化概要.dvi

global global mass region (matter ) & (I) M3Y semi-microscopic int. Ref.: H. N., P. R. C68, ( 03) N. P. A722, 117c ( 03) Proc. of NENS03 (to be

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori

untitled

chap1_MDpotentials.ppt

jse2000.dvi

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

陦ィ邏・2

磁気測定によるオーステンパ ダクタイル鋳鉄の残留オーステナイト定量

1.7 D D 2 100m 10 9 ev f(x) xf(x) = c(s)x (s 1) (x + 1) (s 4.5) (1) s age parameter x f(x) ev 10 9 ev 2

06’ÓŠ¹/ŒØŒì

Drift Chamber

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

September 9, 2002 ( ) [1] K. Hukushima and Y. Iba, cond-mat/ [2] H. Takayama and K. Hukushima, cond-mat/020

QMI_10.dvi

4/15 No.

Motivation and Purpose There is no definition about whether seatbelt anchorage should be fixed or not. We tested the same test conditions except for t

JAMSTEC Rep. Res. Dev., Volume 12, March 2011, 27 _ 35 1,2* Pb 210 Pb 214 Pb MCA 210 Pb MCA MCA 210 Pb 214 Pb * 2

物性物理学I_2.pptx

1.06μm帯高出力高寿命InGaAs歪量子井戸レーザ

Microsoft Word - 章末問題

放射線化学, 97, 29 (2014)

A Nutritional Study of Anemia in Pregnancy Hematologic Characteristics in Pregnancy (Part 1) Keizo Shiraki, Fumiko Hisaoka Department of Nutrition, Sc

宇宙理論研究室ガイダンス

塗装深み感の要因解析

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

EGunGPU

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

輻射の量子論、選択則、禁制線、許容線

25 3 4

2

IA



udc-2.dvi

02-量子力学の復習

<95DB8C9288E397C389C88A E696E6462>

X線分析の進歩36 別刷

20 Method for Recognizing Expression Considering Fuzzy Based on Optical Flow

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

untitled

Donald Carl J. Choi, β ( )


レーザ誘起蛍光法( LIF法) によるピストンの油膜挙動の解析

Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science,

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.

(43) Vol.33, No.6(1977) T-239 MUTUAL DIFFUSION AND CHANGE OF THE FINE STRUCTURE OF WET SPUN ANTI-PILLING ACRYLIC FIBER DURING COAGULATION, DRAWING AND

MKS-05 "TERRA-Pプラス 日本語訳取扱説明書

untitled

1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru

¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤®

液晶の物理1:連続体理論(弾性,粘性)

Analysis of Hypoxia Dynamics Using Pelagic and Benthic Biogeochemical Model: Focus on the Formation and Release of Hydrogen Sulfide Masayasu IRIE, Shu

From Evans Application Notes

技術研究所 研究所報 No.80

untitled

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

CHEMOTHERAPY FEB Table 1. Activity of cefpirome and others against clinical isolates


数学の基礎訓練I

Transcription:

Matsuura Laboratory SiC SiC 13 2004 10 21 22

H-SiC ( C-SiC HOY

Matsuura Laboratory

n E C E D ( E F E T Matsuura Laboratory

Matsuura Laboratory DLTS

Osaka Electro-Communication University Unoped n 3C-SiC Electron concentration (cm -3 ) 10 17 10 16 0 5 10 1000/T (K -1 ) Matsuura Laboratory

Osaka Electro-Communication University Matsuura Laboratory ln n ( T ) 1/ T Hoffmann H ( T, E ref ) n( T ) ( kt ) 2 5 / 2 exp E ref kt

Osaka Electro-Communication University ln n ( T ) 1/ T 1 E D =124 mev N D =1x10 16 cm -3 ) 1 0 1 6 N D =1x10 16 cm -3 n ( T ) [ c m - 3 ] 1 0 1 5 1 0 1 4 E D =127 mev 1 0 1 3 E n( T ) exp D 2kT 1 0 1 2 0 5 1 0 1 5 1 0 0 0 / T [ K - 1 ] Matsuura Laboratory

E D1 =124 mev N D1 =1x10 16 cm -3. ( E D2 =64 mev N D2 =5x10 15 cm -3 ) B. (N =1x10 15 cm -3 ) n(t) [cm -3 ] 10 16 10 15 10 14 10 13 E D =54 mev N D =1.48x10 16 cm -3 E D =251 mev N D =8.9x10 15 cm -3 10 12 0 5 10 15 1000/T [K -1 ] B

Osaka Electro-Communication University n( T ) n = N C ( T ) exp E kt F n ( T ) = ND i[ 1 fd( EDi )] N i= 1 n N Di E Di N (2n+1) Matsuura Laboratory

Matsuura Laboratory Osaka Electro-Communication University Electron concentration (cm -3 ) 10 17 10 16 n 3C-SiC 0 5 10 1000/T (K -1 )

Osaka Electro-Communication University kt dn( T ) de F Hoffmann EF?? Spline

Osaka Electro-Communication University Free Carrier Concentration Spectroscopy (FCCS) n(t) H ( T, E ) ref T peaki n ( T ) ( kt ) E Di E k peak i, Eref ) 2 5 / H1( T ref 2 N kt exp Di peaki E ref kt Matsuura Laboratory

Matsuura Laboratory FCCS Windows http://www.osakac.ac.jp/labs/matsuura/

Osaka Electro-Communication University Undoped 3C-SiC (100) n Si Si 2 (CH 3 ) 6 1350 3C-SiC 32 m Si 5x5 mm 2 5 kg 1 m 85 K~500 K Matsuura Laboratory

Matsuura Laboratory Osaka Electro-Communication University Spline

Matsuura Laboratory Osaka Electro-Communication University FCCS H ( T, Eref ) n( T ) ( kt ) 2 5 / 2 exp E ref kt 51 mev 7.1x10 16 cm -3

Theoretical expression of FCCS signal is H ( T, E ref ) = i N N kt C0 kt Di N exp E exp E ref Di kt E kt E ref F I D ( E ) Di FCCS signal, in which the influence of the previously determined donor species ( E D2, N D2 ) is removed, is 2 n( T ) E N E E H 2 ref E 5 / 2 D ( kt) kt kt kt ref D2 D2 ref ( T, E ) = exp exp I ( ) D2

H2 Osaka Electro-Communication University 2 n( T ) E N E E H 2 ref E 5 / 2 ( kt) kt kt kt ref D2 D2 ref ( T, E ) exp exp I( ) D2 1 18 mev 3.8x10 16 cm -3 Matsuura Laboratory

H3 Osaka Electro-Communication University Matsuura Laboratory 114 mev 1.1x10 17 cm -3

Osaka Electro-Communication University

Matsuura Laboratory Osaka Electro-Communication University Undoped 3C-SiC FCCS 3 18 mev 51 mev 114 mev? FCCS H.Matsuura et al. Jpn. J. ppl. Phys. 39(2000)5069.

.Matsuura et al. J. ppl. Phys. 96(2004)7346. Donor Level [mev] 200 180 160 140 120 100 80 60 40 20 n 3C-SiC 3 2 1 0 10 15 10 16 10 17 Total Donor Density [cm -3 ] 10 18 E E E D3 D2 D1 180 9.8 10 5 3 = 71.8 3.38 10 = 51.9 5.97 10 N 5 3 5 3 D N N D D

Osaka Electro-Communication University n 4H-SiC H.Matsuura et al. J. ppl. Phys. 96(2004)5601. 150 n-type 4H-SiC epilayer N D [cm -3 ] Donor Level [mev] 100 50 E 5 D2 =.7 4.65 10 123 N 3 D Simulation using E D1 (N D ) = 70.9-3.38x10-5 1/3 N D E D2 (N D ) = 123.7-4.65x10-5 1/3 N D 0 10 14 10 15 10 16 10 17 10 18 Doping Donor Density [cm -3 ] E 5 D1 =.9 3.38 10 70 N 3 D

Problem in heavily doped p-type wide bandgap semiconductors The acceptor density, which is determined by the curve-fitting method using the temperature dependence of the hole concentration, is always much higher than the doping density.

Hole Concentration [cm -3 ] 10 18 10 17 10 16 10 15 10 14 10 13 10 12 10 11 Heavily l-doped 6H-SiC Heavily l-doped 6H-SiC : Experimental p(t) 2 3 4 5 6 7 8 9 10 1000/T [K -1 ] 2. C-V characteristics f 1. Hall-effect measurement Fermi-Dirac (FD) distribution function FD N ( E ) N = = 1 = E 1+ 4exp 2.5 10 4 10 mev 19 18 E kt Results determined by curve-fitting E = 180 cm cm FD F 3 3

E r 1 m 1 = 13.6 h ε m r 2 2 s * 0 [ev] p-type wide bandgap semiconductors (GaN, SiC, diamond) 1. Si 2. Semiconductor cceptor level (r=1) 1 st excited state level (r=2) SiC 146 mev 37 mev GaN 101 mev 25 mev Si B (45 mev)

E F (T) [mev] 400 300 200 100 0 Position of Fermi level in 6H-SiC : Heavily l-doped 6H-SiC : Lightly l-doped 6H-SiC E cceptor levels E F (T) E E F (T) E V 100 200 300 400 Temperature [K] Heavily doped case 1 st 2 nd

1. f FD ( E ) = 1+ g exp 2. f ( E ) = 1+ g ( T )exp 1 E E kt kt E E 2 g g (T) 1 F F

cceptor degeneracy factor In f FD ( E ) g = 4 In f ( E ) g E E E T T = g + g r ( ) ( ) 1 r exp exp ex r= kt kt 2 Degeneracy factors of excited states Excited state levels verage energy of acceptor level and excited state levels E ( ) Er E Er g r exp r= 2 = kt E ex ( T ) E + Er 1 g r exp r= 2 kt H. Matsuura New J. Phys. 4(2002)12.1.

Heavily l-doped 6H-SiC Hole Concentration [cm -3 ] 10 18 10 17 10 16 10 15 10 14 10 13 10 12 10 11 Heavily l-doped 6H-SiC : Experimental p(t) 2 3 4 5 6 7 8 9 10 1000/T [K -1 ] H ( T, E ) H(T,0.248) [x10 42 cm -6 ev -2.5 ] 4 3 2 1 p( T ) ( kt ) exp Heavily l-doped 6H-SiC Peak 0 100 200 300 400 Temperature [K] From the peak, N =2.5 10 19 cm -3 and E =180 mev for f FD ( E ) N =3.2 10 18 cm -3 and E =180 mev for f ( E ) Since the l-doping density is 4 10 18 cm -3, the influence of excited states on p(t) should be considered. ref 2 5/ 2 E kt ref

FCCS H(T,0.248) [x10 42 cm -6 ev -2.5 ] 4 3 2 1 Heavily l-doped 6H-SiC Experimental H(T,E ref ) Simulated H(T,E ref ) : f FD ( E ) : f( E ) H ( T, E ref ) = N N 1 kt V0 E exp kt N D 1 E exp kt ref E E kt ref I F ( E ) 1 0 100 200 300 400 Temperature [K] The H(T,E ref ) simulation for f( E ) is in better agreement with the experimental H(T,E ref ) than that for f FD ( E ).

Heavily doped 6H-SiC Lightly doped 6H-SiC f( E ) f FD ( E ) f( E ) f FD ( E ) N [cm -3 ] 3.2x10 18 2.5x10 19 4.1x10 15 4.9x10 15 E [mev] 180 180 212 199 Doping density [cm -3 ] 4.2x10 18 ~6x10 15 Only in heavily doped samples, f FD ( E ) cannot be used to analyze p(t). H. Matsuura J. ppl. Phys. 95(2004)4213.

Matsuura Laboratory

cceptor degeneracy factor In f FD ( E ) g = 4 + = = kt T E kt E E g g T g r r r ) ( exp exp 1 ) ( ex 2 Degeneracy factors of excited states In f ( E ) ( ) = = + = 2 2 ex exp 1 exp ) ( r r r r r r r kt E E g kt E E g E E T E verage energy of acceptor level and excited state levels Excited state levels

f ( E ) = 1+ g ( T 1 )exp E kt E F 4 p-type 6H-SiC 3 g (T) 2 1 Simulations : g (T) : g 0 100 200 300 400 Temperature [K] g (T) 4

Ionized cceptor Density [cm -3 ] 10 18 10 17 Heavily l-doped 6H-SiC Simulations N = 3.2x10 18 cm -3 E = 180 mev N D = 9.0x10 16 cm -3 : f FD ( E ) : f( E ) 100 200 300 400 Temperature [K]

Ionized cceptor Density [cm -3 ] Lightly l-doped 6H-SiC 10 16 10 15 10 14 Lightly l-doped 6H-SiC N - (T) simulations N = 4.1x10 15 cm -3 E = 212 mev N D = 1.0x10 14 cm -3 : f FD ( E ) : f( E ) 100 200 300 400 Temperature [K] Lightly doped

Osaka Electro-Communication University cceptor Level [mev] p 4H-SiC 500 450 400 350 300 250 200 150 100 50 l l-doped 4H-SiC epilayers 0 10 14 10 15 10 16 10 17 10 18 10 19 10 20 cceptor Density [cm -3 ]. Matsuura et al. J. ppl. Phys. 96(2004)2708.

Matsuura Laboratory

2 MOS d Ψ q = D 2 dx ε Poisson equation ( + ) N N + p n S ε 0 SiO 2 n + p p n + n - n + resistivity ρ = 1 qµ n n 1 σ = Matsuura Laboratory

Matsuura Laboratory

Osaka Electro-Communication University Electron Mobility [cm 2 V -1 s -1 ] 10 4 10 3 n-type 4H-SiC Epilayers Doping density [cm -3 ] : 8.8x10 14 : 2.2x10 15 : 2.4x10 15 : 3.5x10 16 : 6.8x10 16 : 9.4x10 17 10 2 100 1000 Temperature [K] β( N T D ) µ n( T, ND ) = µ n( 300, ND ) 300

Osaka Electro-Communication University β β(n D ) 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2 1.9 1.8 1.7 1.6 ( N ) D = 1.54 + 1. 35 1+ 1.08 N D 1.14 10 : Experimental : Simuration n-type 4H-SiC 1.5 10 14 10 15 10 16 10 17 10 18 10 19 Doping Donor Density [cm -3 ] 17 S. Kagamihara et al. J. ppl. Phys. 96(2004)5601.

Osaka Electro-Communication University Electron Mobility [cm 2 /(V-s)] 1000 800 600 400 200 300 K Our results W.J.Schaffer et al H.Matsunami et al J.Pernot et al W.Gotz et al.schoner et al C.H.Carter Jr. et al S.Nakashima et al Simulation results 0 10 14 10 15 10 16 10 17 10 18 10 19 10 20 Doping Donor Density [cm -3 ] S. Kagamihara et al. J. ppl. Phys. 96(2004)5601. µ n ( 300, N ) D = 1+ 977 N D 1.17 10 17 0.49

H. Matsuura et al. J. ppl. Phys. 96(2004)2708. p 4H-SiC µ p ( T N ) = µ ( 300, N ), p T 300 β ( N ) β 0.53 ( N ) = 2.51+ 0. 456 N 1+ 8.64 10 17 µ p ( 300, N ) = 37.6 + 0. 356 1+ 68.4 N 2.97 10 18

H. Matsuura et al. Jpn. J. ppl. Phys. 37(1998)6034. H. Matsuura et al. ppl. Phys. Lett. 79(2000)2092. H. Matsuura et al. Jpn. J. ppl. Phys. 42(2003)5187. p Si Divacancy Donor-like

Osaka Electro-Communication University p 4H-SiC 4.6 MeV 10 16 4H-SiC epilayer 2.6x10 14 cm -2 Hole Concentration [cm -3 ] 10 15 10 14 10 13 10 12 : Before irradiation : fter irradiation 1 2 3 4 5 6 7 8 1000/ T [K -1 ] Before irradiation fter irradiation E 1 [mev] 203 206 N 1 [cm -3 ] 6.2 10 15 8.2 10 14 E 2 [mev] 365 383 N 2 [cm -3 ] 4.2 10 15 3.4 10 15 N D [cm -3 ] 3.4 10 13 7.4 10 14 l H. Matsuura et al. ppl. Phys. Lett. 83(2003)4981.

Matsuura Laboratory FCCS