マイクロ波領域の誘電緩和で何がわかるか

Size: px
Start display at page:

Download "マイクロ波領域の誘電緩和で何がわかるか"

Transcription

1

2 TDR(time domain reflectometry) Cole-Cole plot Debye Cole-Cole Davidson-Cole Havriliak-Negami KWW

3 Rocard Equation itinerant oscillator model A KWW 42 42

4 /τ ω ω 1.1: Böttcher[1] 3

5 1.1 4 (2.17) 10 1/τ ω 0 ω e τ GHz MHz (H 2 0 MW=18) 25GHz CH 3 OH MW=32 3GHz (C 2 H 5 OH MW=46) 1GHz 0 2.4GHz GHz (CCl 4 ) 1.1

6 1.1 5

7 2 2.1 p 0 (a) ( E = 0) < p 0 >=0 (b) ( E 0) 2.1: 2.1(a) p 0 0 P 2.1(b) P 0 2.1(a) P 2.2 P 6

8 2.2 7 V Q C C = Q V (2.1) C C = εk (2.2) ε ε 0 K C = εk C 0 ε 0 K = ε (2.3) ε 0 ε r = ε ε 0 (2.4) E 1 P P o : 1 (rise transient) (decay transient) [2]

9 2.2 8 P o P 0 P o P o P s P o P o P s dp o = P s P P o (2.5) dt τ 1/τ d(p s P P o ) P s P P o = dt τ (2.6) ln(p s P P o )= t τ + C (2.7) C t =0 P o =0 C = ln(p s P ) { ( P o (t) =(P s P ) 1 exp t )} (2.8) τ P o P s t =0 P P s dp s dt = P s τ ln P o = C t τ (2.9) (2.10) t =0 P o = P s P P o (t) =(P P ) exp ( t ) τ (2.11) dp o (t) = 1 dt τ P o(t) (2.12) ( P o (t) =P o (0) exp t ) τ (2.13) step response function ( Φ or P (t) =exp t ) τ (2.14)

10 2.2 9 τ pulse response function ( φ or P (t) = Φ or P (t) =1 τ exp t ) τ (2.15) ε (ω) =ε +(ε S ε ) 1 τ 0 e iωt φ or P (t)dt (2.16) ε (ω) =ε + ε S ε 1+iωτ (2.17) ε ε S (ω 0) ε = ε S ε (2.17) Debye Debye 4.1 6

11 3 3.1 Hz electric wave microwave Brillouin light visible light Raman scattering IR absorption radiation neutron(inelastic incoherent) NMR TDR LCR meter impedance material analyzer network analyzer photon correlation Fabry-Perot interferometry grating cable waveguide 3.1: LCR TDR 10

12 3.2 TDR(time domain reflectometry) GHz TDR 10 GHz THz THz TDR(time domain reflectometry) TDR (a) Z Z = 3.2(b) Z V 0 Z 0 Time Domain Reflectometry(TDR) TDR ISBN

13 3.2 TDR(time domain reflectometry) 12 (a) S V i Z V r (b) voltage V0 reference plane time (c) 0.45 Voltage (V) R s R x Time (sec.) 40 50x : Time Domain Reflectometry 3.2(b) TDR 3.2(c) TDR ε x (ω) ε s(ω) ε x(ω) = 1+{(cf s)/[jω(γd)ε s(ω)]}ρ f x (3.1) 1+{[jω(γd)ε s(ω)]/(cf s )}ρ f s ρ = V s(ω) V x (ω) V s (ω)+v x (ω) (3.2) f i (z) =z i cot(z i ) z i =(ωd/c)ε(ω) 1/2 d γd V s (ω) R s (t) V x (ω) R x (t) ω c

14 3.2 TDR(time domain reflectometry) 13 R s (t) R x (t) ε s(ω) 3.1 ε x (ω) ε x(ω) γd HP54121T,Hewlett- Packard (HP54120B) (HP54121A) Power Macintosh8100, Apple Computer) GPIB SCSI (MacAdios488s, GW Instruments, Inc.) TDR 200 mv [3][4][5] Hz d=1.0 mm d=2.0 mm Hz d=0.01 mm d

15 (a) (b) 3.3: 3.3 SMAjack-jack 50 Ω mv 200 mv NaCl [6] R s Voltage (V) R s2 R X Time (sec.) x :

16 R S1 R x R S2 NaCl R S2 R x 3.5 3x Voltage (V) x10-9 Time (sec.) 3.5: σ/(iω) (3.2) 3.5 NaCl (3.2) NaCl NaCl TDR TDR TDR

17 3.3 16

18 4 4.1 (2.17) Debye Debye Debye (2.14) Φ or P (t) = ( g k exp t ) (4.1) τ k k (2.15) ( φ or P (t) = g k exp t ) τ k τ k k (4.2) ε (ω) =ε +(ε S ε ) k g k 1+iωτ k (4.3) τ k Debye Debye (4.3) τ k (g k,τ k ) 4.3 τ k Debye 17

19 4.2 Cole-Cole plot Cole-Cole plot Debye Debye ε (ω) =ε + ε S ε 1+iωτ (4.4) 4.1(a) τ ω ε s ε =1 ε =0.1 ωτ = τ ε', ε'' ε" log(f) Hz ε' (a) Debye (b) Debye Cole-Cole plot 4.1: Debye Cole-Cole plot Debye ε (ω) ε (ω) Cole-Cole plot Debye 4.1(b)

20 4.2 Cole-Cole plot Cole-Cole Cole Cole Debye ε Debye [7] ε (ω) =ε + ε S ε 1+(iωτ) β (4.5) β 0 <β 1 β =1 β (4.5) Cole-Cole ε', ε'' β=0.8 β=0.6 β=0.4 β=0.2 β=1.0 ε" β=1.0 β=0.8 β=0.6 β=0.4 β= log(f) Hz ε' (a) Cole-Cole (b) Cole-Cole Cole-Cole plot 4.2: Cole-Cole Debye Cole-Cole Cole-Cole plot Cole-Cole τ Davidson-Cole Davidson Cole [8, 9] ε (ω) =ε + ε S ε (1 + iωτ) α (4.6) α 0 <α 1 α =1 α (4.6) Davidson-Cole

21 4.2 Cole-Cole plot ε', ε'' α=1.0 α=0.8 α=0.6 α=0.4 ε" α=1.0 α=0.8 α=0.6 α= α= α= log(f) Hz ε' (a) Davidson-Cole (b) Davidson-Cole Cole-Cole plot 4.3: Davidson-Cole Havriliak-Negami Havriliak Negami Cole-Cole Davidson-Cole ε (ω) =ε + ε S ε (4.7) (1 + (iωτ) β ) α [10, 11] α 0 <α 1 β 0 <β 1 Havriliak-Negami α β [12] Cole-Cole Davidson-Cole Havriliak-Negami Debye Havriliak-Negami ( ) β(1 α) τ sin βθ G(ln τ) = 1 π { ( τ τ 0 ) 2(1 α) ( τ +2 ) (1 α) cos π(1 α)+1} β 2 (4.8) τ 0 sin π(1 α) θ = arctan τ (4.9) + cos π(1 α) τ 0 [1] α =1 β =1 Cole-Cole Davidson-Cole τ 0

22 4.2 Cole-Cole plot 21 (4.8) α β (4.7) Debye ε S ε τ α β ε', ε'' α,β=1.0 α,β=0.8 α,β=0.6 α,β=0.4 α,β=0.2 ε" α,β=1.0 α,β=0.8 α,β=0.6 α,β=0.4 α,β= log(f) Hz ε' (a) Havriliak-Negami (b) Havriliak-Negami Cole-Cole plot 4.4: Havriliak-Negami ωτ =1 (4.6) (4.8) ω ωτ =1 τ KWW ( ) βkww t Φ or P (t) =exp, 0 <β KWW 1 (4.10) τ 0 (4.10) Kohraush function stretched exponential

23 A KWW ε', ε'' β KWW =1.0 β KWW =0.8 β KWW =0.6 β KWW =0.4 β KWW =0.2 ε" β KWW =1.0 β KWW =0.8 β KWW =0.6 β KWW =0.4 β KWW = log(f) Hz ε' (a) KWW (b) KWW Cole-Cole plot 4.5: KWW β KWW Debye KWW β KWW Ngai 4.10 [13] Cole-Cole Davidson-Cole Havriliak-Negami KWW 4.3 Debye Cole-Cole Davidson-Cole KWW Havriliak-Negami Debye Debye [14] Debye Debye

24 Debye 500kHz 10GHz [15, 16] KHz MHz MHz GHz Debye Cole-Cole Davidson-Cole Havriliak-Negami KWW [17] 4.4 Havriliak Havriliak-Negami α β [12] 4.6

25 HN(α=2.5,β=1) Debye DHO ε', ε'' log(f) Hz 4.6: HN α>1 4.6 Debye Havriliak- Negami α =2.5,β =1 Havriliak-Negami β α β Havriliak-Negami 6 Havriliak-Negami α β Havriliak-Negami Debye Havriliak-Negami 4.6

26 GHz ps ps [18] 4.7

27 : [19] Mashimo TDR [20] Mashimo TDR Havriliak-Negami log(τ) 0.8 α 0.8 Eyring τ τ = h kt exp ( G RT ) (4.11)

28 h k T R G G mix = x G 1 +(1 x) G 2 (4.12) G mix G 1 G 2 x 1 τ mix = h ( ) kt exp Gmix = τ1 x τ (1 x) 2 (4.13) RT log τ mix = x log τ 1 +(1 x) log τ 2 (4.14) Mashimo x =0.83 m m 1 x w G =[x w (m 1)(1 x w )] G w +(1 x w ) G c = m[x w (m 1)/m] G w +(1 x w ) G c (4.15) G G w G c log τ = m[x w (m 1)/m] log τ w +(1 x w ) log τ c (4.16) m =5.9 ± 0.3 (4.16) Sato TDR 300MHz 25GHz 20 C 22.5 C 25 C [21] Davidson-Cole Havriliak-Negami X X >0.4 Cole-Cole Debye 0 <X 4 Cole-Cole

29 Eyring τ τ = h ( ) G kt exp = h RT kt exp ( H RT ) exp ( ) S R (4.17) H S G = H TδS [ ( )] h G = RT ln τ 1 ln (4.18) kt H = ( G/T ) (1/T ) [ ] ln τ1 = R RT (4.19) (1/T ) T S = H G (4.20) G H S X =0.18 H S H S Cole-Cole β X 0.42

30 5 5.1 C 0 ω =2Πf V (t) =V 0 e iωt 90 I(t)=iωC 0 V (t) ω δ δ (a) (b) 5.1: I c = iωcv I l = GV R =1/G I =(iωc + G)V (5.1) ε C = ε C 0 δ tan δ = I l I C = G ωc (5.2) I I =(iωε C 0 + ωε tan δ) V (5.3) 29

31 ε = ε iε tan δ ε ε (5.4) 1 I =(iωε + ωε ) C 0 V = iωε C 0 V (5.5) W W (ω) = 1 2 R(IV )=1 2 ωε (ω)c 0 V 2 0 (5.6) 5.2 (5.6) ωε (ω) ε χ 2 ε ω ω

32 ωε"(ω) ε"(ω) plateau ωε"(ω) ε"(ω) log(f) Hz 5.2: Debye GHz 25GHz 25GHz 5.3 [14, 22] GHz THz

33 Dielectric loss ε" GHz loss peak Barthel Hasted water at room temperature far infrared intermolecular vibration 300 µm 30 µm Absorption coefficient α" (arb. units) water at room temperature micreowave oven far infrared Barthel Hasted Frequency (Hz) Frequency (Hz) (a) (b) 5.3: [14, 22] 5.2 plateau Debye plateau (2.17) ω 1 ωε (ω) 6 ωε (ω) ε (ω)

34 5.3 33

35 Debye [23, 24] dipole moment µ µ u = µ(t)/ µ u d u dt = ω(t) u(t) (6.1) ω(t) ω(t) I d u(t) dt + ζ ω(t) =λ(t)+ µ(t) E(t) (6.2) I zeta ω(t) λ(t) (6.2) λ(t) =0 (6.3) λ i (t)λ j (t ) =2kT ij δ(t t ) (6.4) δ i, j x, y, z I 0 ζ

36 ω(t) = λ(t) ζ + µ(t) E(t) ζ (6.5) (6.5) (6.4) narrowing limit (6.2) (6.5) overdamped limit (THz) (6.5) (6.1) d µ(t) dt = λ(t) ζ + µ(t)+ µ2 E(t) ζ µ[ µ E(t)] ζ (6.6) J d J d = W v (6.7) v = u W (θ, φ, t) dipole moment u u x = sin θ cos φ, u y = sin θ sin φ, u z = cos φ E drift current (6.6) (6.7) E(t) = gradv = V θ e θ 1 V sin θ φ e φ (6.8) = E θ e θ + E φ e φ (6.9) J d = 1 ζ [ V θ e θ + 1 ] V sin θ φ e φ J d J diff W (θ, φ) (6.10) J = J d + J diff J diff = DgradW (6.11)

37 [ W J θ = ζ J φ = ] V θ + D W θ V φ + D sin θ [ W ζ sin θ ] W φ (6.12) (6.13) W t + div J =0 (6.14) divj = 1 [ sin θ θ (J θ sin θ)+ J ] φ φ (6.15) (6.12) (6.15) Fokker-Plank W t [ ( 1 = D sin θw sin θ θ + 1 [ 1 ζ sin θ θ W theta + 1 ( sin θw V θ + 1 sin 2 θ )] 2 W sin 2 θ φ ( 2 W V ))] φ φ (6.16) W t =0 W Maxwell-Boltzmann W 0 = Ae V (θ,φ) k B T (6.17) (6.16) D = k BT ζ Debye relaxation time τ D τ D (6.16) 2τ D W t = + 1 sin θ θ 1 k B T τ D = ( sin θ W θ [ 1 sin θ θ ζ 2k B T ) + 1 sin 2 θ ) ( sin θw V θ 2 W φ sin 2 θ ( W V )] φ φ (6.18) (6.19) (6.20) z V (θ, φ) =V (θ) = µe cos θ (6.20) W(θ, t) = 1 [ ( kb T W(θ, t) sin θ + µe )] t sin θ θ ζ θ ζ sin θw(θ, t) (6.21)

38 6.2 Rocard Equation 37 (6.21) W (θ, t) = a n (t)p n (cos θ), n =1, 2, (6.22) n=0 P n (cos θ) E = E 0 t =0 (after effect solution) W (θ, t) =A(1 + µe 0 g(t) cos θ) (6.23) k B T (6.23) (6.21) ( W (θ, t) =A 1+ µe ) 0 k B T e (2k Bt/ζ)t cos θ dipole moment 2π π 0 0 2π π 0 0 2k B T t ζ µ cos θ = µw cos θ sin θdθdφ W sin θdθdφ = µ2 E 0 e 3k B T (6.24) (6.25) GHz Debye ω 1 ω 3 THz (6.2) 6.2 Rocard Equation t =0 t =0 f(θ, 0) Maxwell-Boltzmann I θ(t)+ζ θ(t)+µe sin θ(t) = λ(t) (t<0) (6.26) I θ(t)+ζ θ(t) = λ(t) (t>0) (6.27)

39 6.2 Rocard Equation 38 λ(t) λ(t)λ(t ) =2kTζδ(t t ) θ(t) Gaussian random variable cos θ(0) cos θ(t) cos 2 θ(0) cos θ(t 1 ) cos θ(t 2 ) = cos θ(t 1 ) cos[θ(t 1 )+ θ] (6.28) θ = θ(t 2 ) θ(t 1 ) cos θ(t 1 ) cos θ(t 2 ) = 1 2 { cos θ + cos [ θ +2θ(t 1)] } = 1 2 R{ exp i θ + exp [i θ +2θ(t 1)] } (6.29) R θ(t 1 ),θ(t 2 ) Gaussian random variable θ Gaussian random variable X { exp ix = exp i X 1 [ X 2 X 2]} (6.30) 2 (6.29) cos θ(t 1 ) cos θ(t 2 ) = 1 { (exp 2 R i θ 1 [ ( θ) 2 θ 2]} 2 { + exp i θ +2θ(t 1 ) 1 }) 2 [ θ +2θ(t 1)] 2 [ θ +2θ(t 1 )] (6.31) θ (6.31) t 2 t 1 cos θ(t 1 ) cos θ(t 2 ) = 1 [ {exp 2 R i θ 1 ( ( θ) 2 θ 2)]} (6.32) 2 θ =0 (6.32) cos θ(t 1 ) cos θ(t 2 ) = 1 2 [ 1 ] 2 ( θ)2 (6.33) mẍ(t) = ζẋ(t)+λ(t) ( x) 2 = 2k ( ) BTm ζ ζ ζ 2 m t 1+e m t ([23], pp ) { [ ( )]} cos θ(0) cos θ(t) kb TI ζt R(t) = = exp cos 2 θ(0) ζ 2 I ζ 1+e I t (6.34) ε[s] ε [0] =1 s 0 e st R(t)dt, s = iω (6.35)

40 6.3 itinerant oscillator model 39 ε[s] ε [0] = 1 s s + γβ [ 1+ γ = k BT Iβ 2,βγ = 1 τ D γ (s/β)+γ +1 + ε [s] ε [0] =1 s β β s + (6.37) ] γ [(s/β)+γ + 1][(s/β)+γ +2] + (6.36) 1 γ 1+ β s + 2γ 2+ β s + 3γ ε[s] ε[0] = 1 1+sτ 3+ β s... ε[s] ε[0] = γβ 2 (s + γβ)(s + β) 1 1+sτ + s 2 τ/β (6.37) (6.38) (6.39) Rocard equation Rocard equation (6.39) CH 3 Cl THz ([25] p.247, [2] p.382) 6.3 itinerant oscillator model itinerant oscillator(io) model dipole µ 1 I 1 dipole µ 2 I 2 cage φ 1,φ 2 cage V (φ 1 φ 2 ) [23] ( I 1 φ1 (t)+ζ 1 φ1 (t) φ ) 1 (t) + V (φ 1 (t) φ 2 (t)) = λ 1 (t) (6.40) ( I 2 φ2 (t)+ζ 1 φ2 (t) φ ) 1 (t) ζ 2 φ2 (t) V (φ 1 (t) φ 2 (t)) = λ 1 (t)+λ 2 (t) (6.41)

41 6.3 itinerant oscillator model 40 1 V (φ 1 φ 2 )=2V 0 sin(φ 1 φ 2 ) (6.42) λ 1 (t),λ 2 (t) λ i (t)λ i (t ) =2k B Tζ i δ ij δ(t t ) (6.43) α [ ] µ 1 (ω) α µ 1 (0) = ωβ2 x y(2ˆαˆγi 1 ˆα2 r ω 2 ) imaginary part x 2 + y 2 α [ ] µ 1 (ω) x(2ˆαˆγi 1 α µ 1 (0) =ˆα2 r ω 2 (6.44) )+ωβ 1 y real part x 2 + y 2 ˆα = ( kt I 1 ) 1 2 (6.45) ˆγ = V 0 I 1 ˆα (6.46) β 1 = ζ 1 /I 1 (6.47) β 2 = ζ 2 /I 2 (6.48) Ω 2 0 = I 1 ω0 2 i 2 (6.49) I r = I 2 /I 1 (6.50) b = β 1 /β 2 (6.51) x 1 = ˆα 2 Ir 1 β 2 (1 + bir 1 ) = K 2 (6.52) x 2 = β 2 (1 + b) (6.53) x 3 = 2ˆαˆγ(1 + Ir 1 )+β2 2 b (6.54) x 4 = 2β 2 ˆαˆγ(1 + bir 1 ) (6.55) x = ω 2 (ω 2 x 3 )+x 1 (x 4 x 2 ω 2 ) (6.56) y = ω [ x 4 + x 1 (x 3 ω 2 ) x 2 ω 2] (6.57) ε (ω) = ε +(ε S ε ) α µ 1 (ω) α µ 1 (0), ε (ω) = (ε S ε ) α µ 1 (ω) α µ 1 (0) (6.58) 1 dipole moment single friction model itinerant oscillator model ([23]pp )

42 6.3 itinerant oscillator model 41 (6.44) I r,b,ˆα, ˆβ, ˆγ [26, 23]

43 A KWW [27] 1 ε = ε (ω) iε (ω) ε (ε) ε ε 0 ε = 0 [ ] dφ (t) exp ( iωt) dt (1.1) dt λ = τ β 0 s = λ 0 + iω λ 0 0 ε (ε) ε ε 0 ε = βλ 0 [exp ( st)] [ exp ( λt β)] t β 1 dt (1.2) ε (ε) ε ε 0 ε = n=1 ( 1) n 1 1 Γ(nβ +1) [ cos nβ π (ωτ) nβ Γ(n +1) 2 i sin nβ π ] 2 (1.3) 0 <β log ωτ <β<1.0 1 log ωτ 0 4 ε (ε) ε = ( 1) n 1 (ωτ 0 ) n 1 ( ) n + β 1 [ Γ cos (n 1) π ε 0 ε Γ(n) β 2 + i sin (n 1) π ] 2 n=1 (1.4) 1.4 t 0 t β 1, (0 <β<1) singularity x = λt β ε (ε) ε ε 0 ε = 0 [exp ( x)] [ exp ( iωτ 0 x 1/β)] (1.5) Macintosh Igor Pro 1 (?) [1] KWW 42

44 [1] C. J. F. Böttcher and P. Bordewijk, Theory of electric polarization, vol. II. Elsevier, second ed., , 20, 42 [2] M. W. Evans, Simulation and symmetry in molecular diffusion and spectroscopy, Adv. Chem. Phys., vol. 81, pp , , 39 [3] Y.-Z. Wei and S. Sridhar, Radiation-corrected open-ended coax line technique for dielectric measurements of liquids up to 20 ghz, IEEE Trans. Microwave Theor. Tech.s, vol. 39, no. 3, pp , [4] T. W. Athey, M. A. Stuchly, and S. S. Stuchly, Measurement of radio frequency permittivity of biological tissues with an open-ended coaxial line: Part i, IEEE Trans. Microwave Theor. Tech.s, vol. MTT-30, no. 1, pp , [5] M. A. Stuchly, T. W. Athey, G. M. Samaras, and G. E. Taylor, Measurement of radio frequency permittivity of biological tissues with an open-ended coaxial line: Part ii-experimental results, IEEE Trans. Microwave Theor. Tech.s, vol. MTT-30, no. 1, pp , [6] S. Mashimo, T. Umehara, S. Kuwabara, and S. Yagihara, Dielectric study on dynamics and structure of water bound to dna using a frequency range hz, J. Phys. Chem., vol. 93, no. 12, pp , [7] K. S. Cole and R. H. Cole, Dispersion and absorption in dielectrics, J. Chem. Phys., vol. 9, pp , [8] D. W. Davidson and R. H. Cole J. Chem. Phys., vol. 18, p. 1417, [9] D. W. Davidson and R. H. Cole J. Chem. Phys., vol. 19, p. 1484, [10] S. Havriliak and S. Negami J. Polymer Sci., vol. C14, p. 99, [11] S. Havriliak and S. Negami Polymer, vol. 8, p. 161, [12] J. Havriliak, Stephen and S. J. Havriliak, Dielectric and mechanical relaxation in materials : analysis, interpretation, and application to polymers. Hanser Publishers, , 23 43

45 44 [13] R. Richert and A. Blumen, Disorder Effects on Relaxational Processes Glasses, Polymers, Proteins. New York: Springer-Verlag, [14] J. BARTHEL, K. BACHHUBER, R. BUCHNER, and H. HETZENAUER, Dielectric spectra of some common solvents in the microwave region. water and lower alcohols, Chem. Phys. Lett., vol. 165, no. 4, pp , , 31, 32 [15] S. Bone and B. Zaba, Bioelectronics. Wiley, [16] N. Miura, N. Asaka, N. Shinyashiki, and S. Mashimo, Microwave dielectric study on bound water of globule proteins in aqueous solution, Biopolymers,vol. 34, pp , [17] N. Shinyashiki, S. Sudo, W. Abe, and S. Yagihara, Shape of dielectric relaxation curve of ethylene glycol oligomer-water mixtures, J. Phys. Chem., vol. 109, no. 22, pp , [18] I. Ohmine, Liquid water dynamics: Collective motions, fluctuation, and relaxation, J. Phys. Chem., vol. 99, pp , [19],., :, [20] S. Mashimo, T. Umehara, and H. Redlin, Structures of water and primary alcohol studied by microwave dielectric analyses, J. Chem. Phys., vol. 95, no. 9, pp , [21] T. Sato, A. Chiba, and R. Nozaki, Dynamical aspects of mixing schemesin ethanolwater mixtures in terms of the excess partial molar activation free energy, enthalpy, and entropy of the dielectric relaxation process, J. Chem. Phys., vol. 110, no. 5, pp , [22] J. B. Hasted, S. K. Husain, F. A. M. Frescura, and J. R. Birch, Far-infrared absorption in liquid water, Chem. Phys. Lett., vol. 118, no. 6, pp , , 32 [23] W. T. Coffey, Y. P. Kalmykov, and J. T. Waldron, The Langevin Equation With Applications in Physics, Chemistry and Electrical Engineering, vol. 10 of World Scientific Seriesin Contemporary Chemical Physics. Singapore: World Scientific, , 38, 39, 40, 41 [24] V. I. Gaiduk, DIELECTRIC RELAXATION AND DYNAMICS OF POLAR MOLECULES, vol. 8 of World Scientific Series in Contemporary Chemical Physics. Singapole: World Scientific,

46 45 [25] J. McConnell, Rotational Brownian Motion and Dielectric Theory. London: Academic Press, [26] M. Evans, G. H. Evans, W. T. Coffey, and P. Grigolini, Molecular Dynamics and Theory of Broad Band Spectroscopy. New York: Wiley, [27] G. Williams and D. C. Watts, Further cosiderations of non symmetrical dielectric relaxation behabiour arising from a simple empirical decay function, Trans. Faraday Soc., vol. 67, pp ,

1 2 2 (Dielecrics) Maxwell ( ) D H

1 2 2 (Dielecrics) Maxwell ( ) D H 2003.02.13 1 2 2 (Dielecrics) 4 2.1... 4 2.2... 5 2.3... 6 2.4... 6 3 Maxwell ( ) 9 3.1... 9 3.2 D H... 11 3.3... 13 4 14 4.1... 14 4.2... 14 4.3... 17 4.4... 19 5 22 6 THz 24 6.1... 24 6.2... 25 7 26

More information

01-C08244-食品の物性 indd

01-C08244-食品の物性 indd , Vol. 9, No. 3, pp. 123-134, Sep. 2008 Physical Properties of Foods and the Effect of Water on Them II Electrical Properties and Dielectric Relaxation Hitoshi KUMAGAI Department of Food Science and Nutrition,

More information

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論 email: takahash@sci.u-hyogo.ac.jp May 14, 2009 Outline 1. 2. 3. 4. 5. 6. 2 / 262 Today s Lecture: Mode-mode Coupling Theory 100 / 262 Part I Effects of Non-linear Mode-Mode Coupling Effects of Non-linear

More information

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf SFG 1 SFG SFG I SFG (ω) χ SFG (ω). SFG χ χ SFG (ω) = χ NR e iϕ +. ω ω + iγ SFG φ = ±π/, χ φ = ±π 3 χ SFG χ SFG = χ NR + χ (ω ω ) + Γ + χ NR χ (ω ω ) (ω ω ) + Γ cosϕ χ NR χ Γ (ω ω ) + Γ sinϕ. 3 (θ) 180

More information

ver.1 / c /(13)

ver.1 / c /(13) 1 -- 11 1 c 2010 1/(13) 1 -- 11 -- 1 1--1 1--1--1 2009 3 t R x R n 1 ẋ = f(t, x) f = ( f 1,, f n ) f x(t) = ϕ(x 0, t) x(0) = x 0 n f f t 1--1--2 2009 3 q = (q 1,..., q m ), p = (p 1,..., p m ) x = (q,

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t) 338 7 7.3 LCR 2.4.3 e ix LC AM 7.3.1 7.3.1.1 m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x k > 0 k 5.3.1.1 x = xt 7.3 339 m 2 x t 2 = k x 2 x t 2 = ω 2 0 x ω0 = k m ω 0 1.4.4.3 2 +α 14.9.3.1 5.3.2.1 2 x

More information

Nosé Hoover 1.2 ( 1) (a) (b) 1:

Nosé Hoover 1.2 ( 1) (a) (b) 1: 1 watanabe@cc.u-tokyo.ac.jp 1 1.1 Nosé Hoover 1. ( 1) (a) (b) 1: T ( f(p x, p y, p z ) exp p x + p y + p ) z (1) mk B T p x p y p = = z = 1 m m m k BT () k B T = 1.3 0.04 0.03 0.0 0.01 0-5 -4-3 - -1 0

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

JIS Z803: (substitution method) 3 LCR LCR GPIB

JIS Z803: (substitution method) 3 LCR LCR GPIB LCR NMIJ 003 Agilent 8A 500 ppm JIS Z803:000 50 (substitution method) 3 LCR LCR GPIB Taylor 5 LCR LCR meter (Agilent 8A: Basic accuracy 500 ppm) V D z o I V DUT Z 3 V 3 I A Z V = I V = 0 3 6 V, A LCR meter

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論 email: takahash@sci.u-hyogo.ac.jp April 30, 2009 Outline 1. 2. 3. 4. 5. 6. 2 / 260 Today s Lecture: Itinerant Magnetism 60 / 260 Multiplets of Single Atom System HC HSO : L = i l i, S = i s i, J = L +

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

LLG-R8.Nisus.pdf

LLG-R8.Nisus.pdf d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =

More information

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0 5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â = Tr Âe βĥ Tr e βĥ = dγ e βh (p,q) A(p, q) dγ e βh (p,q) (5.2) e βĥ A(p, q) p q Â(t) = Tr Â(t)e βĥ Tr e βĥ = dγ() e βĥ(p(),q())

More information

OHO.dvi

OHO.dvi 1 Coil D-shaped electrodes ( [1] ) Vacuum chamber Ion source Oscillator 1.1 m e v B F = evb (1) r m v2 = evb r v = erb (2) m r T = 2πr v = 2πm (3) eb v

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

From Evans Application Notes

From Evans Application Notes 3 From Evans Application Notes http://www.eaglabs.com From Evans Application Notes http://www.eaglabs.com XPS AES ISS SSIMS ATR-IR 1-10keV µ 1 V() r = kx 2 = 2π µν x mm 1 2 µ= m + m 1 2 1 k ν = OSC 2

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

Mott散乱によるParity対称性の破れを検証

Mott散乱によるParity対称性の破れを検証 Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

2007 5 iii 1 1 1.1.................... 1 2 5 2.1 (shear stress) (shear strain)...... 5 2.1.1...................... 6 2.1.2.................... 6 2.2....................... 7 2.2.1........................

More information

K E N Z U 01 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.................................... 4 1..1..................................... 4 1...................................... 5................................

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( ) 81 4 2 4.1, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. 82 4.2. ζ t + V (ζ + βy) = 0 (4.2.1), V = 0 (4.2.2). (4.2.1), (3.3.66) R 1 Φ / Z, Γ., F 1 ( 3.2 ). 7,., ( )., (4.2.1) 500 hpa., 500 hpa (4.2.1) 1949,.,

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

吸収分光.PDF

吸収分光.PDF 3 Rb 1 1 4 1.1 4 1. 4 5.1 5. 5 3 8 3.1 8 4 1 4.1 External Cavity Laser Diode: ECLD 1 4. 1 4.3 Polarization Beam Splitter: PBS 13 4.4 Photo Diode: PD 13 4.5 13 4.6 13 5 Rb 14 6 15 6.1 ECLD 15 6. 15 6.3

More information

B 1 B.1.......................... 1 B.1.1................. 1 B.1.2................. 2 B.2........................... 5 B.2.1.......................... 5 B.2.2.................. 6 B.2.3..................

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> マイクロメカトロニクス サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/077331 このサンプルページの内容は, 初版 1 刷発行当時のものです. 1984.10 1986.7 1995 60 1991 Piezoelectric Actuators and Ultrasonic Motors

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

δf = δn I [ ( FI (N I ) N I ) T,V δn I [ ( FI N I ( ) F N T,V ( ) FII (N N I ) + N I ) ( ) FII T,V N II T,V T,V ] ] = 0 = 0 (8.2) = µ (8.3) G

δf = δn I [ ( FI (N I ) N I ) T,V δn I [ ( FI N I ( ) F N T,V ( ) FII (N N I ) + N I ) ( ) FII T,V N II T,V T,V ] ] = 0 = 0 (8.2) = µ (8.3) G 8 ( ) 8. 1 ( ) F F = F I (N I, T, V I ) + F II (N II, T, V II ) (8.1) F δf = δn I [ ( FI (N I ) N I 8. 1 111 ) T,V δn I [ ( FI N I ( ) F N T,V ( ) FII (N N I ) + N I ) ( ) FII T,V N II T,V T,V ] ] = 0

More information

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d m v = mg + kv m v = mg k v v m v = mg + kv α = mg k v = α e rt + e rt m v = mg + kv v mg + kv = m v α + v = k m v (v α (v + α = k m ˆ ( v α ˆ αk v = m v + α ln v α v + α = αk m t + C v α v + α = e αk m

More information

1).1-5) - 9 -

1).1-5) - 9 - - 8 - 1).1-5) - 9 - ε = ε xx 0 0 0 ε xx 0 0 0 ε xx (.1 ) z z 1 z ε = ε xx ε x y 0 - ε x y ε xx 0 0 0 ε zz (. ) 3 xy ) ε xx, ε zz» ε x y (.3 ) ε ij = ε ij ^ (.4 ) 6) xx, xy ε xx = ε xx + i ε xx ε xy = ε

More information

1. ( ) 1.1 t + t [m]{ü(t + t)} + [c]{ u(t + t)} + [k]{u(t + t)} = {f(t + t)} (1) m ü f c u k u 1.2 Newmark β (1) (2) ( [m] + t ) 2 [c] + β( t)2

1. ( ) 1.1 t + t [m]{ü(t + t)} + [c]{ u(t + t)} + [k]{u(t + t)} = {f(t + t)} (1) m ü f c u k u 1.2 Newmark β (1) (2) ( [m] + t ) 2 [c] + β( t)2 212 1 6 1. (212.8.14) 1 1.1............................................. 1 1.2 Newmark β....................... 1 1.3.................................... 2 1.4 (212.8.19)..................................

More information

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W 003 7 14 Black-Scholes [1] Nelson [] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-Wu Nelson e-mail: takatoshi-tasaki@nifty.com kabutaro@mocha.freemail.ne.jp

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

MUFFIN3

MUFFIN3 MUFFIN - MUltiFarious FIeld simulator for Non-equilibrium system - ( ) MUFFIN WG3 - - JCII, - ( ) - ( ) - ( ) - (JSR) - - MUFFIN sec -3 msec -6 sec GOURMET SUSHI MUFFIN -9 nsec PASTA -1 psec -15 fsec COGNAC

More information

遍歴電子磁性とスピン揺らぎ理論 - 京都大学大学院理学研究科 集中講義

遍歴電子磁性とスピン揺らぎ理論 - 京都大学大学院理学研究科 集中講義 email: takahash@sci.u-hyogo.ac.jp August 3, 2009 Title of Lecture: SCR Spin Fluctuation Theory 2 / 179 Part I Introduction Introduction Stoner-Wohlfarth Theory Stoner-Wohlfarth Theory Hatree Fock Approximation

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

MS#sugaku(ver.2).dvi

MS#sugaku(ver.2).dvi 1 1,,,.,,,,,.,.,,,.,, Computer-Aided Design).,,, Boltzmann,, [1]., Anderson, []., Anderson, Schrödinger [3],[4]., nm,,.,,,.,, Schrödinger.,, [5],[6].,,.,,, 1 .,, -. -, -., -,,,. Wigner-Boltzmann Schrödinger,

More information

Venkatram and Wyngaard, Lectures on Air Pollution Modeling, m km 6.2 Stull, An Introduction to Boundary Layer Meteorology,

Venkatram and Wyngaard, Lectures on Air Pollution Modeling, m km 6.2 Stull, An Introduction to Boundary Layer Meteorology, 65 6 6.1 No.4 1982 1 1981 J. C. Kaimal 1993 1994 Turbulence and Diffusion in the Atmosphere : Lectures in Environmental Sciences, by A. K. Blackadar, Springer, 1998 An Introduction to Boundary Layer Meteorology,

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

LD

LD 989935 1 1 3 3 4 4 LD 6 7 10 1 3 13 13 16 0 4 5 30 31 33 33 35 35 37 38 5 40 FFT 40 40 4 4 4 44 47 48 49 51 51 5 53 54 55 56 Abstract [1] HDD (LaserDopplerVibrometer; LDV) [] HDD IC 1 4 LDV LDV He-Ne Acousto-optic

More information

( ) 1 1.1? ( ) ( ) ( ) 1.1(a) T m ( ) 1.1(a) T g ( ) T g T g 500 74% ( ) T K ( 1.1(b) 15 T g T g 10 13 T g T g T g [ ] A ( ) exp (1.1) T T 0 Vogel-Fulcher T 0 T 0 T K T K Ortho-Terphenil (OTP) SiO 2 (1.1)

More information

master.dvi

master.dvi 4 Maxwell- Boltzmann N 1 4.1 T R R 5 R (Heat Reservor) S E R 20 E 4.2 E E R E t = E + E R E R Ω R (E R ) S R (E R ) Ω R (E R ) = exp[s R (E R )/k] E, E E, E E t E E t E exps R (E t E) exp S R (E t E )

More information

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional 19 σ = P/A o σ B Maximum tensile strength σ 0. 0.% 0.% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional limit ε p = 0.% ε e = σ 0. /E plastic strain ε = ε e

More information

L L L L C C C C (a) (b) (c) 4.4 (a) (b) (a) RG59/U 6.2mm ( ) 73Ω web page (c) 4 4 dx 4 J V dx dj Ydx Zdx dv Z,Y dv = JZdx, dj = VYdx (4.8) d 2 J dx 2

L L L L C C C C (a) (b) (c) 4.4 (a) (b) (a) RG59/U 6.2mm ( ) 73Ω web page (c) 4 4 dx 4 J V dx dj Ydx Zdx dv Z,Y dv = JZdx, dj = VYdx (4.8) d 2 J dx 2 8 ( ) 2014 11 23 OP h g m r d 4 ( ) 4.2 + (lumped constant circuit) 4.2.1 3 (Poynting ) (strip line) (waveguide) (coaxial cable) GHz 4.4(a) dj dx dv Zdx Ydx ( ) (distributed constatn circuit) *1 4.4(c)

More information

untitled

untitled MRR Physical Basis( 1.8.4) METEK MRR 1 MRR 1.1 MRR 24GHz FM-CW(frequency module continuous wave) 30 r+ r f+ f 1.2 1 4 MRR 24GHz 1.3 50mW 1 rf- (waveguide) (horn) 60cm ( monostatic radar) (continuous wave)

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

untitled

untitled 1 Physical Chemistry I (Basic Chemical Thermodynamics) [I] [II] [III] [IV] Introduction Energy(The First Law of Thermodynamics) Work Heat Capacity C p and C v Adiabatic Change Exact(=Perfect) Differential

More information

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e ( ) Note 3 19 12 13 8 8.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R, µ R, τ R (1a) L ( ) ) * 3) W Z 1/2 ( - )

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

(Blackbody Radiation) (Stefan-Boltzmann s Law) (Wien s Displacement Law)

(Blackbody Radiation) (Stefan-Boltzmann s Law) (Wien s Displacement Law) ( ) ( ) 2002.11 1 1 1.1 (Blackbody Radiation).............................. 1 1.2 (Stefan-Boltzmann s Law)................ 1 1.3 (Wien s Displacement Law)....................... 2 1.4 (Kirchhoff s Law)...........................

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

Microsoft Word - 学士論文(表紙).doc

Microsoft Word - 学士論文(表紙).doc GHz 18 2 1 1 3 1.1....................................... 3 1.2....................................... 3 1.3................................... 3 2 (LDV) 5 2.1................................ 5 2.2.......................

More information

Keysight Technologies 誘電体測定の基礎

Keysight Technologies 誘電体測定の基礎 Keysight Technologies Application Note LCR1.1 THz (MUT) 1. PCB PCB SAR RAM IC 3 Keysight - Application Note... 2... 4... 4... 7... 8... 1... 11... 11... 12 Debye... 12 Cole-Cole... 13... 13... 14... 15...

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0 9 O y O ( O ) O (O ) 3 y O O v t = t = 0 ( ) O t = 0 t r = t P (, y, ) r = + y + (t,, y, ) (t) y = 0 () ( )O O t (t ) y = 0 () (t) y = (t ) y = 0 (3) O O v O O v O O O y y O O v P(, y,, t) t (, y,, t )

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) * * 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *1 2004 1 1 ( ) ( ) 1.1 140 MeV 1.2 ( ) ( ) 1.3 2.6 10 8 s 7.6 10 17 s? Λ 2.5 10 10 s 6 10 24 s 1.4 ( m

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

4.6 (E i = ε, ε + ) T Z F Z = e βε + e β(ε+ ) = e βε (1 + e β ) F = kt log Z = kt log[e βε (1 + e β )] = ε kt ln(1 + e β ) (4.18) F (T ) S = T = k = k

4.6 (E i = ε, ε + ) T Z F Z = e βε + e β(ε+ ) = e βε (1 + e β ) F = kt log Z = kt log[e βε (1 + e β )] = ε kt ln(1 + e β ) (4.18) F (T ) S = T = k = k 4.6 (E i = ε, ε + ) T Z F Z = e ε + e (ε+ ) = e ε ( + e ) F = kt log Z = kt loge ε ( + e ) = ε kt ln( + e ) (4.8) F (T ) S = T = k = k ln( + e ) + kt e + e kt 2 + e ln( + e ) + kt (4.20) /kt T 0 = /k (4.20)

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

pp * Yw; Mq 1. 1L 20 cc [1] Sonoluminescence: Light emission from acoustic cavitation bubble. Pak-Kon Choi (Departm

pp * Yw; Mq 1. 1L 20 cc [1] Sonoluminescence: Light emission from acoustic cavitation bubble. Pak-Kon Choi (Departm 73 7 2017 pp. 447 454 447 * 43.25.Yw; 78.60.Mq 1. 1L 20 cc [1] Sonoluminescence: Light emission from acoustic cavitation bubble. Pak-Kon Choi (Department of Physics, Meiji University, Kawasaki, 214 8571)

More information

Anderson ( ) Anderson / 14

Anderson ( ) Anderson / 14 Anderson 2008 12 ( ) Anderson 2008 12 1 / 14 Anderson ( ) Anderson 2008 12 2 / 14 Anderson P.W.Anderson 1958 ( ) Anderson 2008 12 3 / 14 Anderson tight binding Anderson tight binding Z d u (x) = V i u

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2 (2018 ) ( -1) TA Email : ohki@i.kyoto-u.ac.jp, ske.ta@bode.amp.i.kyoto-u.ac.jp : 411 : 10 308 1 1 2 2 2.1............................................ 2 2.2..................................................

More information

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ SO(3) 71 5.7 5.7.1 1 ħ L k l k l k = iϵ kij x i j (5.117) l k SO(3) l z l ± = l 1 ± il = i(y z z y ) ± (z x x z ) = ( x iy) z ± z( x ± i y ) = X ± z ± z (5.118) l z = i(x y y x ) = 1 [(x + iy)( x i y )

More information

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) 1 9 v..1 c (216/1/7) Minoru Suzuki 1 1 9.1 9.1.1 T µ 1 (7.18) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) E E µ = E f(e ) E µ (9.1) µ (9.2) µ 1 e β(e µ) 1 f(e )

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

03.Œk’ì

03.Œk’ì HRS KG NG-HRS NG-KG AIC Fama 1965 Mandelbrot Blattberg Gonedes t t Kariya, et. al. Nagahara ARCH EngleGARCH Bollerslev EGARCH Nelson GARCH Heynen, et. al. r n r n =σ n w n logσ n =α +βlogσ n 1 + v n w

More information

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat / Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiation and the Continuing Failure of the Bilinear Formalism,

More information

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100 positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc

More information

3 3.1 R r r + R R r Rr [ ] ˆn(r) = ˆn(r + R) (3.1) R R = r ˆn(r) = ˆn(0) r 0 R = r C nn (r, r ) = C nn (r + R, r + R) = C nn (r r, 0) (3.2) ( 2.2 ) C

3 3.1 R r r + R R r Rr [ ] ˆn(r) = ˆn(r + R) (3.1) R R = r ˆn(r) = ˆn(0) r 0 R = r C nn (r, r ) = C nn (r + R, r + R) = C nn (r r, 0) (3.2) ( 2.2 ) C 3 3.1 R r r + R R r Rr [ ] ˆn(r) = ˆn(r + R) (3.1) R R = r ˆn(r) = ˆn(0) r 0 R = r C nn (r, r ) = C nn (r + R, r + R) = C nn (r r, 0) (3.2) ( 2.2 ) C nn (r r ) = C nn (R(r r )) [2 ] 2 g(r, r ) ˆn(r) ˆn(r

More information

Microsoft PowerPoint - 山形大高野send ppt [互換モード]

Microsoft PowerPoint - 山形大高野send ppt [互換モード] , 2012 10 SCOPE, 2012 10 2 CDMA OFDMA OFDM SCOPE, 2012 10 OFDM 0-20 Relative Optical Power [db] -40-60 10 Gbps NRZ BPSK-SSB 36dB -80-20 -10 0 10 20 Relative Frequency [GHz] SSB SSB OFDM SSB SSB OFDM OFDM

More information

untitled

untitled D nucleation 3 3D nucleation Glucose isomerase 10 V / nm s -1 5 0 0 5 10 C - C e / mg ml -1 kinetics µ R K kt kinetics kinetics kinetics r β π µ π r a r s + a s : β: µ πβ µ β s c s c a a r, & exp exp

More information

iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi

iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi 4 4 9............................................... 3.3......................... 4.4................. 5.5............................ 7 9..................... 9.............................3................................4..........................5.............................6...........................

More information

q π =0 Ez,t =ε σ {e ikz ωt e ikz ωt } i/ = ε σ sinkz ωt 5.6 x σ σ *105 q π =1 Ez,t = 1 ε σ + ε π {e ikz ωt e ikz ωt } i/ = 1 ε σ + ε π sinkz ωt 5.7 σ

q π =0 Ez,t =ε σ {e ikz ωt e ikz ωt } i/ = ε σ sinkz ωt 5.6 x σ σ *105 q π =1 Ez,t = 1 ε σ + ε π {e ikz ωt e ikz ωt } i/ = 1 ε σ + ε π sinkz ωt 5.7 σ H k r,t= η 5 Stokes X k, k, ε, ε σ π X Stokes 5.1 5.1.1 Maxwell H = A A *10 A = 1 c A t 5.1 A kη r,t=ε η e ik r ωt 5. k ω ε η k η = σ, π ε σ, ε π σ π A k r,t= q η A kη r,t+qηa kηr,t 5.3 η q η E = 1 c A

More information

( ) ) AGD 2) 7) 1

( ) ) AGD 2) 7) 1 ( 9 5 6 ) ) AGD ) 7) S. ψ (r, t) ψ(r, t) (r, t) Ĥ ψ(r, t) = e iĥt/ħ ψ(r, )e iĥt/ħ ˆn(r, t) = ψ (r, t)ψ(r, t) () : ψ(r, t)ψ (r, t) ψ (r, t)ψ(r, t) = δ(r r ) () ψ(r, t)ψ(r, t) ψ(r, t)ψ(r, t) = (3) ψ (r,

More information