global b local b (D[s] D alg [s] ) local b f f local b s + 1 ( ) b ( [19]) b global b ( [2], [11], [12]) Kan/sm1 ([21]) bfunction.sm1 global b ( [10])

Size: px
Start display at page:

Download "global b local b (D[s] D alg [s] ) local b f f local b s + 1 ( ) b ( [19]) b global b ( [2], [11], [12]) Kan/sm1 ([21]) bfunction.sm1 global b ( [10])"

Transcription

1 Mora local b Risa/Asir Introduction x = (x 1,, x n ), = ( 1,, n ), s = (s) D[s] = a k,β (x)s k β a k,β (x) C[x] k N,β N { n } f(x) C[x] x = f(x), g(x) C[x], g(0) 0 g(x) D alg [s] = a k,β (x)s k β a k,β (x) C[x] x k N,β N n D[s] = a k,β (x)s k β a k,β (x) C[[x]] k N,β N n f C[x] f global b f local b f global b P f s+1 = b(s)f s P D[s] monic s b(s) C[s] f local b P f s+1 = b(s)f s P D alg [s] monic s b(s) C[s] Example 1.1. (f = x 1 (x 1 + x 2 + 1) b ) global b b(s) = (s + 1) 2 ( )f s+1 = (s + 1) 2 f s local b b(s) = s x 1 + x 2 1 f s+1 = (s + 1)f s b Bernstein global b ([17], [18]) 1

2 global b local b (D[s] D alg [s] ) local b f f local b s + 1 ( ) b ( [19]) b global b ( [2], [11], [12]) Kan/sm1 ([21]) bfunction.sm1 global b ( [10]) Risa/Asir ([22]) bfct local b ([2], [11], [12], [13]) D Mora ([5], [6]) D alg local b Risa/Asir [9] 2 b 2.1 Global b global b ([2], [11], [12]) Algorithm 2.1. ( f global b ) 1. f s D[s] Ann D[s] f s G ( P f s = 0 P D[s] ) 2. J G {f} D[s] J C[s] f global b (1.) Ann D[s] f s D n+1 ([2], [11], [12]) (2.) J C[s] 2a. J s < ( x i, i > s ) 2b. J < G NF(s i, G, <) (s i G ) a l NF(s l, G, <) + + a 0 NF(1, G, <) = 0 l a l,, a 0 C a l s l + + a 0 J C[s] ([10]) D[s] global b Example 2.2. (global b ) f = x 2 + y 2 global b Ann D[s] f s {x x + y y 2s, y x x y } 2

3 f D[s] I I C[s] ( (2a.)) x, y, x, y I G { s 2 2s 1, ( s 1)y, ( s 1)x, y x x y, x x + y y 2s, x 2 + y 2, y x 2 y y 2 } + 2s y I C[s] G C[s] = { s 2 2s 1 } global b (s + 1) 2 f = n i=1 x2 i global b (s + 1)(s + n 2 ) P = n i=1 2 i 2.2 Local b local b ([11], [12]) K[x, s] D[s], D n+1 [y] Algorithm 2.3. (local b 1 [11], [12]) y { } 1. I = D n+1 [y] t yf, i + y f x i t (i = 1,, n) I y w G w x 1 x n t y ξ 1 ξ n t ψ(g) = {ψ(p (1)) P (y) G} P D n+1, ord w (P ) = m (ord w (P ) P w P w ) ψ(p ) in w (t m P ) (m 0) ψ(p )(s) = ψ(p )(t t ) = in w ( t m P ) (m < 0) ( in w (P ) P w P w ) 3. D[s] ψ(g) i G 1 J = K[x, s] (G 1 K[x, s]) 4. local b b( s 1) K[[x]][s]J K[s] monic global b b( s 1) J K[s] monic K[[x]][s]J K[s] 5. K[[x]][s]J K[s] J {f 1 (x, s),, f k (x, s)} (a) J(0) = K[s] {f 1 (0, s),, f k (0, s)} f 0 (s) (b) f 0 (s) Q f 0 (s) = g 1 (s) l1 g d (s) l d (c) i = 1,, d J : g i (s) l (l = l i, l i + 1, ) g i (s) a i (x, s) J : g i (s) l l l i (d) b(s) = g 1 (s) l 1 gd (s) l d 3

4 Ann D[s] f s Algorithm 2.4. (local b 2 [12]) 1. Ann D[s] f s D[s] f D[s] J 2. J i G J = K[x, s] (G K[x, s]) local b b(s) K[[x]][s]J K[s] monic 2.3 Risa/Asir 3 Local b D[y] Mora (Algorithm 3.5) local b (Algorithm 3.13) 3.1 D[y] Mora D[s] s y D[y] s [5],[6] Mora ( Mora Mora y ) D[y] Mora D alg [y] D[y] D alg [y] D[y] < 1 x 1 x n y ξ 1 ξ n ( < ) < 1 x 1,, x n Mora s ( 1, 1)- < 1 D[y][s] < s 1 s 1 < 1 ( 1, 1)- x i 1 y ξ i 1 1 s Definition 3.1. (( 1, 1)- ) P D[y] P = a αβγ x α β y γ (α (Z 0 ) n, β (Z 0 ) n, γ Z 0 ) m = min { β α + γ a αβγ 0} ( v v ) 4

5 P ( 1, 1) - P (s) P (s) = a αβγ x α β y γ s α + β + γ m P D[y][s] P = a αβγν x α β y γ s ν a αβγν 0 (α, β, γ, ν) d = α + β + γ ν P d ( 1, 1)- < 1 D[y][s] < s 1 Definition 3.2. (< 1 ) D[y][s] < s 1 x 1 x n y s ξ 1 ξ n ( < ) x s < 1 x s ( 1, 1)- < 1 leading monomial < s 1 leading monomial Lemma 3.3. (< 1 < s 1 LM) P D[y][s] P ( 1, 1)- LM <1 (P s=1 ) = (LM < s 1 (P )) s=1 P, Q D[y][s] P, Q ( 1, 1)- LM < s 1 (P ) < s 1 LM < s 1 (Q) LM <1 (P s=1 ) < 1 LM <1 (Q s=1 ) P, Q D[y][s] ( 1, 1)- P Q LM < s 1 (P ) LM < s 1 (Q) R P ( 1, 1)- LM < s 1 (R) < s 1 LM < s 1 (P ) LM <1 (R s=1 ) < 1 LM <1 (P s=1 ) D[y] Mora Theorem 3.4. (D[y] Mora, [5] [6]) P, P 1,, P m D[y] a(x) C[x], Q 1,, Q m D[y], R D[y] a(x)p = Q 1 P Q m P m + R a(0) 0 ( a(x) ) Q i 0 LM <1 (Q i P i ) 1 LM <1 (P ) R 0 LM <1 (R) LM <1 (P i ) a(x), Q 1,, Q m, R 5

6 Algorithm 3.5. (Mora, [5],[6]) MoraDivision(P, {P 1,, P m }, < 1 ) input P, P 1,, P m D[y] output a(x) C[x], Q 1,, Q m, R D[y] 3.4 G [P (s) 1,, P (s) m ] R P (s) A 1 Q [0,, 0] (Q m ) if (R 0) F { P G l Z 0 s.t. LM < s 1 (P ) LM < s 1 (s l R) } else H [] F φ while (F = φ){ } P (F l (G i )) if (l > 0){ } G append (G, [R]) H append (H, [[A, Q]]) R (s l R P ) U ( P ) if (i m) { Q[i] Q[i] + U } else if (i > m) { } [A, Q ] H[i m] A A UA for (j 1; j m; j j + 1) if (s R) { } Q[j] Q[j] UQ [j] ν (s k R k) R R/s ν F { P G l Z 0 s.t. LM < s 1 (P ) LM < s 1 (s l R) } for (j 1; j m; j j + 1) Q[j] Q[j] s=1 R R s=1 a A s=1 return [a, Q, R] { } G reducer set G = P (s) 1,, P m (s) s l reduce G 6

7 Example 3.6. (Mora ) x 1 + x Mora 1 + x D alg [y] x = 1 (1 + x) + 0 ( (1 + x) x = (1 + x) + 0) 1 + x Mora 1 + x ( 1, 1) s + x Mora x s,x x 2 x 0 s+x x reducer s reducer reducer set G s x = x (s + x) x 2 x 2 = x x + 0 (s + x) x = x (s + x) + 0 (1 + x) x = x (1 + x) + 0 D[y] Mora C[x] Mora D[y] Mora C[x] Mora Example 3.7. (Mora ) 1 + x 1 + x D alg [y] 0 Mora 1 + x ( 1, 1) s + x s, x 1 x s+x 1 s, 1 s+x x x 1 0 s = (s + x) x 1 x 1 = x 1 s ( 1) = ( 1) (s + x) + x x = ( x) ( 1) + 0 (s + x) 2 = (s + x 1) (s + x) + 0 7

8 (1 + x) 2 = ( + x 1) (1 + x) + 0 Mora Example 3.8. (Mora ) P = x 1 x P 1 = x x 1 x 2 2, P 2 = x x 1 x 2 1 ([5], [6] ) Mora P (s) = x 1 x 2 1 2, P (s) 1 = sx x 1 x 2 2, P (s) 2 = sx x 1 x 2 1 s,x 2 2 P 3 = x 1 x P (s) 1 P 5 = x 2 s, x 1 x 2 1x 2 1 P (s) 1 P 4 = x 1 x s, x 1 x 2 2 x 1 x 2 2 P (s) 2 P 6 = x 2 1x 2 s,x x 2 2 P (s) 2 x 3 1x 2 x 1 x P5 x 2 1x x 2 x 1x 2 1 x 2 1 P (s) (1 x 1 x 2 ) 2 P = (x 2 2 x 1 x x 1 x 2 )P 1 + ( x 1 x x 2 1x x 2 1x 2 )P P P 1, P 2 (1 + x 1 ) n P P 1, P 2 n n ( ) D[y] Mora 2( ) section < 1 < 1 Mora Mora < 2 x 1 x n y ξ 1 ξ n ( < ) 8

9 < 1 y < 2 ξ 1, ξ n > y ξ 1,, ξ n ( 1, 1)- < 1 < 1 v 1 s x 1 x n y s ξ 1 ξ n < 2 v 2 s x 1 x n y s ξ 1 ξ n < 2 D[y][s] < s 2 x 1 x n y s ξ 1 ξ n ( < ) < 2 < < 3 x 1 x n y ξ 1 ξ n ( < ) ( 1, 1)- v 3 < 3 < s 3 x 1 x n y s ξ 1 ξ n x 1 x n y s ξ 1 ξ n ( < ) < 3 Mora 3.3 D[y] Mora 9

10 reducer 3.5 G reducer P Example 3.9. reducer ) reducer sugar degree (min sugar) (max sugar) sugar degree Buchberger algorithm sugar S ([20]) P = (1 + x 1 ) 50 x 1 x P 1 = x x 1 x 2 2, P 2 = x x 1 x 2 1 < 1 Mora reducer ( ) G min sugar max sugar min sugar (P A Q) max sugar modular < 1 < 1 < 2, < D alg [y] D[y] D alg [y], D[y] I 1. D[y] Mora Buchberger 2. ( 1, 1) < s 1 Example (Mora ) I I = { P 1 =, P 2 = 1 + x 3} P 1 = 1 + x 3 D alg [y] I = D alg [y] Mora sp <1 (P 1, P 2 ) {P 1, P 2 } < 1 0 {P 1, P 2 } 10

11 { } I (s) = P (s) 1 =, P (s) 2 = s 3 + x 3 < s 1 { } P (s) 1 =, P (s) 2 = s 3 + x 3, 3x 2, 6x, 6 {1} local b Section Local b I Ann D[s] f s f D alg [s] I C[s] local b D alg [s] local x 1,, x n (< 1) global s(> 1) x 1,, x n < 1 < s section I D alg [s] G G D alg [s] 0 I local b b(s) global b b(s) b(s) I local b b(s) Algorithm (local b )) Input : f C[x] Output : f local b H Ann Dn[s]f s I (H {f} D alg [s] ) G I BF f global b L BF LF L G Mora 0 return LF Example ( f = x 2 1(x 1 + 1) 3 local b ) f = x 2 1(x 1 + 1) 3 global b b(s) = 1 18 (s + 1)(2s + 1)(3s + 1)(3s + 2) Ann D[s]f s { g 1 = 2s + 5sx 1 x 1 1 x } J Dalg [s] {f, g 1 } J G {f, g 1 } b(s) G Mora (s + 1)(2s + 1)(3s + 1)(3s + 2) 1 6 (s + 1)(2s + 1)(3s + 1) 1 6 (s + 1)(2s + 1)(3s + 2) 1 2 (s + 1)(2s + 1) 11

12 1 2 (s+1)(2s+1) f local b 1 2 (s+1)(2s+1) G 1 2 (s + 1)(2s + 1)f s = (x 1 + 1) 2 (5x 1 + 2) 3 ( x x x 1 ) 1 f s+1 global b g(s) I C[s] (g(s) ) I C[s] g(s) / I g(s) global b b(s) = b1 (s) e 1 b 2 (s) e2 b l (s) e l (b i (s) = s + a i a i Q >0 ) f i = b(s)/b i (s) J G Mora f i1 (s),, f im (s) I f j1,, f jl m / I f i I I C[s] b(s) m > 0 g(s) = gcd(f i1 (s),, f im (s)) g(s) I b(s) g(s) Algorithm (local-b ( )) localb-rr(f) input f C[x] output f local b H Ann Dn [s]f s I (H {f} D alg [s] ) G I BF f global b LF BF while (true) { LF = b 1 (s) e1 b l (s) e l (b i (s) = s + a i, a i Q >0 ) (LF ) f i LF/b i (s) (1 i l, b i (s) LF i ) f i I (f i G Mora 0 ) if (f i / I(1 i l)) return LF f i1,, f im I LF gcd(f i1,, f im ) 12

13 } Example (f = (x 1) 3 + (y + 1) 2 local b ) f = (x 1) 3 + (y + 1) 2 global b b(s) = (s + 1)(s )(s ) f local b s + 1 Ann D[s] f s { g 1 = 6s 2 x + 3 y + 2x x + 3y y, g 2 = 2 x 3 y + 2y x + 6x y 3x 2 y } I D alg [s] {f, g 1, g 2 } I G {f, g 1, g 2 } f G g f G Mora g b(s) (s + 1) = gcd(f 1, f 2 ) b(s) = (s + 1)(s )(s ) G 0 f 1 = (s + 1)(s ) G 0 f 2 = (s + 1)(s ) G 0 f 3 = (s )(s ) G non-zero s + 1 G 0 local b b(s) = s Local b 2 D[s] (Theorem 4.5) (Algorithm 4.6) local b (Algorithm 4.10) [9] Section LE < (f) f Exps(f) f Mono(A) (A = {α 1,, α n α i (Z 0 ) n }) A Mono(A) = n i=1 (α i + (Z 0 ) n ) P e ord e (P ) P e P e in e (P ) P e P e 4.1 C[[x]] D C[[x]] Weierstrass- Hironaka (WH ) C[[x]] [15] ( M-reduction, M-Gröbner basis ) {x α } (α (Z 0 ) n ) < r 13

14 x 1 x n 1 1 ( < ) < r C[x] < r f C[[x]] < r Lemma 4.1. ( ) { x α(1),, x α(s)} (α(i) (Z 0 ) n ) f C[[x]] q 1,, q s, r C[[x]] f = q 1 x α(1) + + q s x α(s) + r q i 0 LM <r (q i x α(i) ) r LM <r (f) r 0 Exps(r) Mono({α(1),, α(s)}) = φ Theorem 4.2. (Weierstrass-Hironaka,[3]) f C[[x]], f 0 G = {g 1,, g s } C[[x]] q 1,, q s, r C[[x]] f = q 1 g q s g s + r q i 0 LM <r (q i g i ) r LM <r (f) Exps(r) Mono({LE <r (g 1 ),, LE <r (g s )}) = φ Mora r reducer Mora WH Algorithm 4.3. (WH ) Input f C[x], G = {g 1,, g s } C[x], N Z >0 Output Q 1,, Q s, R, F C[x] f = Q 1 g Q sg s + R + F Q i 0 LM < r (Q i g i) r LM <r (f) Exps(R ) Mono({LE <r (g 1 ),, LE <r (g s )}) = φ Q i N LE < r (g i ) 1 R N 1 WH-approximate-division(f, G) F f, Q i 0, R 0, β 0 while (F 0 and β < N) { [Q, R] mono-div(f, G) (Lemma 4.1 ) β max <r ({LE <r (Q 1 g 1 ),, LE <r (Q s g s ), LE <r (R)}) 14

15 } Q i Q i + Q i R R + R F s i=1 Q irest <r (g i ) return [Q, R, F ] D (Algorithm 4.6) Example 4.4. (WH ) f = x, G = 1 + x, N = 5 (WH-approximate-division(x, {1 + x}, 5)) mono-div Q R Q R F β 0 0 x 0 x = x x 0 x 0 x x LE(x) x 2 = x x 2 0 x x 2 0 ( x 2 ) x LE( x 2 ) x 3 = x x 3 0 x x 2 + x 3 0 x 3 x LE(x 3 ) x 4 = x x 4 0 x x 2 + x 3 x 4 0 ( x 4 ) x LE( x 4 ) x 5 = x x 5 0 x x 2 + x 3 x 4 + x 5 0 x 5 x LE(x 5 ) x = (x x 2 + x 3 x 4 + x 5 ) (1 + x) x 6 WH x = x (1 + x) x = (x x 2 + x 3 x 4 + x 5 ) (1 + x) D[y] Castro [4] D WH y = (y) < 1 section 3.1 { x α ξ β y γ} { x α ξ β y γ} < r < r e x 1 x n y ξ 1 ξ n ( < 1 < ) x 1 x n y ξ 1 ξ n

16 < r β + γ = β + γ ( e ), x α ξ β y γ < 1 x α ξ β y γ x α ξ β y γ < r x α ξ β y γ LM <1 (P ) = LM <r (in e (P )) D[y] D[y] D[y] D[y] < 1 Theorem 4.5. ( D[y],[4]) P, P 1,, P s D[y] Q 1,, Q s, R D[y] P = Q 1 P Q s P s + R (1) Exps(R) Mono({LE <1 (P 1 ),, LE <1 (P s )}) = φ (2) Q k 0 LM <1 (Q k P k ) LM <1 (P ) (3) D[y] WH (Algorithm 4.3) Algorithm 4.6. ( D[y], [9]) input P, P 1,, P s D[y], N Z >0 output Q 1,, Q s, R D[y] s.t. P = Q 1 P Q s P s + R Q i 0 LM <1 (Q i P i ) LM <1 (P ) { α α Exps(R), α < N } Mono({LE<1 (P 1 ),, LE <1 (P s )}) = φ Q i N LE <1 (P i ) R N D-approximate-division(P, {P 1,, P s }, N) Q 1 0,, Q s 0, R P m 0 ord e (R) for (k 0; k m 0 ; k k + 1) M k max({ LE <1 (P i ) + 2(max(k ord e (P i ), 0) 1 i s}) Bound N + m 0 i=0 M i for (k m 0 ; k 0; k k 1) { } r (R k Bound ) [q i, r ] WH-approximate-division(r, {in e (P 1 ),, in e (P s )}, < r, Bound) Q i (q i ξ ) R R Q i P i Q i Q i + Q i Bound Bound M k return [Q, R] Example 4.7. (D-approximate-division ) P = 2, P 1 = (1 + x) + x D-approximate-division(P, {P 1 }, 5) 16

17 2 1 = ( 1 + x 1 x 1 )((1 + x) + x) x 1 + x x x = (1 x + x2 x 3 + x 4 )( 1) x x = 1 + 2x 2x2 + 2x 3 2x 4 + 2x 5 D-approximate-division(P, {P 1 }, 5) R P, m 0 ord e (R) = 2 M 0 1, M 1 1, M 2 3 Bound 5 + ( ) = 10 r (R 2 Bound ) = ξ 2 [q 1, r ] WH-approximate-division( r, in e (P 1 ) = (1 + x)ξ, < r,bound) (ξ 2 = (1 x + x 2 + x 8 )ξ (1 + x)ξ + x 9 ξ 2 q 1 = (1 x + x2 + x 8 )ξ, r = x 9 ξ 2 ) Q 1 (1 x + x2 + x 8 ) R R Q 1 P 1 = x 9 2 x x x x 7 x 8 Bound 10 3 = 7 r (R 1 Bound ) = ξ [q 1, r ] WH-approximate-division( r, in e (P 1 ) = (1 + x)ξ, < r, Bound) ( ξ = (1 x+x 2 x 3 + +x 6 ) (1+x)ξ +x 7 ξ q 1 = (1 x+x2 x 3 + +x 6 ), r = x 7 ξ ) Q 1 (1 x + x2 x x 6 ) R R Q 1 P 1 = x 9 ξ + x 7 ξ x 9 ξ 1 + 2x 2x 2 + 2x 3 + 2x 7 x 8 Bound 7 1 = 6 r (R 0 Bound ) = 1 + 2x 2x 2 + 2x 3 2x 4 + 2x 5 [q 1, r ] WH-approximate-division( r, in e (P 1 ) = (1 + x)ξ, < r, Bound) (r = 0 (1 + x)ξ + r q 1 = 0, r = r ) Q 1 0 R R = x 9 2 x x x x 7 x 8 2 = { (1 x + x x 8 ) (1 x + x 2 + x 6 ) } ((1 + x) + x)+ x 9 2 x 9 + x x 2x 2 + 2x 3 2x x 7 x x 2x 2 + 2x 3 2x 4 17

18 4.3 I C[s] D[s] I I C[s] P G (Theorem 4.5) NF(P, G, < 1 ) g(s) = a l s l + a l 1 s l a 0 I G I global b (Algorithm 2.1(2a.)) g(s) I NF(g(s), G, < 1 ) = 0 a l NF(s l, G, < 1 ) + a l 1 NF(s l 1, G, < 1 ) + + a 0 NF(1, G, < 1 ) = 0 NF(s i, G, < 1 ) a l NF(s l, G, < 1 ) + a l 1 NF(s l 1, G, < 1 ) + + a 0 NF(1, G, < 1 ) = 0 l a l,, a 0 C I C[s] a l s l + + a 0 D[s] NF(s i, G, < 1 ) Definition 4.8. ( ) P D[s] D[s] I G 4.6 P G N 1 R P G < 1 N 1 NF(P, G, < 1, N) NF(P, G, < 1 ) NF(P, G, < 1, N) N 1 I C[s] a l NF(s l, G, < 1, N) + a l 1 NF(s l 1, G, < 1, N) + + a 0 NF(1, G, < 1, N) = 0 a l s l + a l 1 s l a 0 I D[s] P I Mora (3.4) 0 P I P / I I C[s] L d,n = { (a 0,, a d ) C d+1 a d NF(s d, G, < 1, N) + + a 0 NF(1, G, < 1, N) = 0 } L d = { (a 0,, a d ) C d+1 a d NF(s d, G, < 1 ) + + a 0 NF(1, G, < 1 ) = 0 } I < 1 G d (d I C[s] ) ) N L d,n L d,n+1 L d,n+2 L d L d 1,N L d 1,N+1 L d 1,N+2 L d

19 I C[s] L i {0}, L i 1 = {0} i L i (a 0,, a i ) a i s i + + a 0 Algorithm 4.9. (I C[s], [9]) 1. L d,n, L d 1,N, L i,n {0}, L i 1,N = {0} i ( L i 1 = L i 2 = = {0} ) 2. (a i,, a 0 ) L i,n g(s) = a i s i + + a 0 3. g(s) G < 1 Mora R R = 0 g(s) I (a 0,, a i ) L i g(s) I C[s] R 0 N 1 1. N N = d + 1 N 0 N, n N 0 s.t. L j,n = L j (j = 0,, d) ( N N 0 ) 4.4 local b Algorithm ( local b, [9]) f C[x] local b 1. Ann bd[s] f s H 2. H f D[s] I I C[s] local b b(s) 1. Ann bd[s] f s Ann D[s] f s local b global b global b I C[s] Example (f = x 2 (y + 1) 2 z 2 local b ) global b (s + 1) 3 (s + 1/2) 3 local b (s + 1) 2 (s + 1/2) 2 Ann bd[s] f s H {P 1 = 2s + z z, P 2 = x x z z, P 3 = y y y + z z } J = D[s] (H {f}) < 1 G {f, P 1, P 2, P 3, P 4 = z 4 z 2 2yz 4 z 2 y 2 z 4 z 2 4z 3 z 8yz 3 z 4y 2 z 3 z 2z 2 4yz 2 2y 2 z 2, P 5 = xz 3 z + 2xyz 3 z + xy 2 z 3 z + 2xz 2 + 4xyz 2 + 2xy 2 z 2 } 19

20 d = 6, N = 7 NF(s i, G, < 1, N) (i = 0,, d) NF(1, G, < 1, 7) = 1 NF(s, G, < 1, 7) = 1/2z z NF(s 2, G, < 1, 7) = 1/4z 2 z 2 + 1/4z z NF(s 3, G, < 1, 7) = 1/8z 3 z 3 + 3/8z 2 z 2 + 1/8z z NF(s 4, G, < 1, 7) = 3/8z 3 z 3 31/16z 2 z 2 31/16z z 1/4 NF(s 5, G, < 1, 7) = 23/32z 3 z /32z 2 z /32z z + 3/4 NF(s 6, G, < 1, 7) = 9/8z 3 z 3 447/64z 2 z 2 555/64z z 23/16 L d,n = { (a 0,, a d ) C d a d NF(s d, G, < 1, N) + + a 0 NF(1, G, < 1, N) = 0 } L d = { (a 0,, a d ) C d a d NF(s d, G, < 1 ) + + a 0 NF(1, G, < 1 ) = 0 } L 6,7, L 5,7, L 6,7 ={c 0 (1/4, 3/2, 13/4, 3, 1, 0, 0) + c 1 ( 3/4, 17/4, 33/4, 23/4, 0, 1, 0) + c 2 (23/16, 63/8, 231/16, 9, 0, 0, 1) c i C} L 5,7 = {c 0 (1/4, 3/2, 13/4, 3, 1, 0, 0) + c 1 ( 3/4, 17/4, 33/4, 23/4, 0, 1, 0) c i C} L 4,7 = {c 0 (1/4, 3/2, 13/4, 3, 1, 0, 0) c i C} L 3,7 = {0} L 3 = L 2 = = L 0 = {0} local b 3 (1/4, 3/2, 13/4, 3, 1, 0, 0) L 4,7 g(s) = s 4 + 3s /4s 2 + 3/2s + 1/4 local b g(s) G < 1 Mora 0 g(s) J g(s) J s g(s) local b 5 Timing data(local b ) f local b 1. Ann bd[s] f s Ann D[s] f s 2. I = Ann bd[s] f s + D[s]f 3. I C[s] 1. Ann D[s] f s ([12], [2] ) I 3. 3a. (Algorithm 3.13 ) 3b. (Algorithm 4.9) 20

21 (3a),(3b) localb-rr (round-robin), localb-nf (normal form) 2. (Section 3.4) 2a. D[s] Mora Buchberger 2b. GB (2a.) (Mora GB ) machine CPU : Athlon MP (1533MHz) 2, Memory : 3GB, OS : FreeBSD 4.8 f I GB GB localb-rr localb-nf deg locdeg x + y 2 + z x 2 + y 2 + z x 3 + y 2 + z x 4 + y 2 + z x 5 + y 2 + z x 6 + y 2 + z x 7 + y 2 + z x 3 + xy 2 + z x 4 + xy 2 + z x 5 + xy 2 + z x 3 + y 4 + z x 3 + xy 3 + z x 3 + y 5 + z GB (2b.) ( GB ) f I GB GB localb-rr localb-nf deg locdeg x + y 2 + z x 2 + y 2 + z x 3 + y 2 + z x 4 + y 2 + z x 5 + y 2 + z x 6 + y 2 + z x 7 + y 2 + z x 3 + xy 2 + z x 4 + xy 2 + z x 5 + xy 2 + z x 3 + y 4 + z x 3 + xy 3 + z x 3 + y 5 + z

22 Mora GB GB local b GB [12] (2a.)(Mora GB ) f I GB GB localb-rr localb-nf deg locdeg x 5 + x 3 y 3 + y x 4 + x 2 y 2 + y x 3 + x 2 y 2 + y x 3 + y 3 + z x 6 + y 4 + z x 3 + y 2 z (x 3 y 2 z 2 ) x 5 y 2 z x 5 y 2 z x 3 + y 3 3xyz x 3 + y 3 + z 3 3xyz y(x 5 y 2 z 2 ) y(x 3 y 2 z 2 ) y((y + 1)x 3 y 2 z 2 ) (2b.)( GB ) f I GB GB localb-rr localb-nf deg locdeg x 5 + x 3 y 3 + y x 4 + x 2 y 2 + y x 3 + x 2 y 2 + y x 3 + y 3 + z x 6 + y 4 + z x 3 + y 2 z (x 3 y 2 z 2 ) x 5 y 2 z x 5 y 2 z x 3 + y 3 3xyz x 3 + y 3 + z 3 3xyz y(x 5 y 2 z 2 ) y(x 3 y 2 z 2 ) y((y + 1)x 3 y 2 z 2 ) (2a.) (2b.) (2b.) (2b.) 22

23 local b (Algorithm 2.3) localb quo localb rr, localb nf f localb quo localb rr localb nf locdeg x + y 2 + z x 2 + y 2 + z x 3 + y 2 + z x 4 + y 2 + z x 5 + y 2 + z x 6 + y 2 + z x 7 + y 2 + z x 3 + xy 2 + z x 4 + xy 2 + z x 5 + xy 2 + z x 3 + y 4 + z x 3 + xy 3 + z x 3 + y 5 + z x 5 + x 3 y 3 + y x 4 + x 2 y 2 + y x 3 + x 2 y 2 + y x 3 + y 3 + z x 6 + y 4 + z x 3 + y 2 z (x 3 y 2 z 2 ) x 5 y 2 z x 5 y 2 z x 3 + y 3 3xyz x 3 + y 3 + z 3 3xyz y(x 5 y 2 z 2 ) y(x 3 y 2 z 2 ) y((y + 1)x 3 y 2 z 2 ) localb quo C[x, s] localb rr, localb nf D[s] Mora D[s] 23

24 6 localb.rr 6.1 localb.rr Asir localb.rr localb.rr ord -norc ord ( Asir ) VL3 A3 < 1 nakayama@orange2(91)=> asir -norc This is Risa/Asir, Version (Kobe Distribution). Copyright (C) , all rights reserved, FUJITSU LABORATORIES LIMITED. Copyright , Risa/Asir committers, GC 6.5 copyright , H-J. Boehm, A. J. Demers, Xerox, SGI, HP. PARI , copyright , C. Batut, K. Belabas, D. Bernardi, H. Cohen and M. Olivier. [0] load("localb.rr"); 1 [679] VL3; [x,y,z,ss,s,dx,dy,dz,dss,ds] [680] A3; [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [681] Mora (Algorithm 3.5) weyl mora Mora [2018] weyl_mora(x*y*dx*dy,[x*dx+x*y*dy,y*dy+x*y*dx],vl2,a2s,v2); [0,x^2*y^2-2*x*y+1,[(-x*y^2+y)*dy+x*y,(x^2*y^2-x*y)*dy-x^2*y]] xy x y {x x + xy y, y + y + xy x } VL2 < s 1 A2S (-1,1)- V2 x, y VL2, A2S, V2 0 24

25 1 2xy + x 2 y 2 (1 2xy + x 2 y 2 )xy x y = {( xy 2 + y) y + xy}(x x + xy y ) + {(x 2 y 2 xy) y x 2 y}(y y + xy x )

26 D alg [s] mora gr Mora [2075] J; [x*y,-y*dy+x*dx,x*dx-ss] [2076] mora_gr(j,vl2,a2,a2s,v2); Count : crib:0 crif:1 crim:0 --> criterion [x*y,-y*dy+x*dx,x*dx-ss,y^2*dy+y] {xy, y y + x x, x x s} D alg [s] { xy, y y + x y, x x s, y 2 y + y } tangentcone gr mora gr tangentcone gr [2026] J=jf(x^3+x*y+y^3); [y^3+x*y+x^3,(y+3*x^2)*dy+(-3*y^2-x)*dx,(-y^3-x*y-x^3)*dx+(y+3*x^2)*ss, (-9*x*y^2+2*y)*dy+(-3*y^2-9*x^2*y+x)*dx+(27*x*y-3)*ss, (-3*y^3-2*x*y)*dy+(-3*x*y^2-x^2)*dx+(9*y^2+3*x)*ss] 0.01sec( sec) [2027] tangentcone_gr(j, VL2, A2S, V2); [y^3+x*y+x^3,(y+3*x^2)*dy+(-3*y^2-x)*dx,(-y^3-x*y-x^3)*dx+(y+3*x^2)*ss, (-9*x*y^2+2*y)*dy+(-3*y^2-9*x^2*y+x)*dx+(27*x*y-3)*ss, (-3*y^3-2*x*y)*dy+(-3*x*y^2-x^2)*dx+(9*y^2+3*x)*ss, (-y^2-3*x^2*y)*dy+(2*y^3-x^3)*dx-y-3*x^2, (-y^4+2*x^3*y)*dy+(-2*x*y^3+x^4)*dx-3*y^3+3*x^3, (-6*y^3+3*x^3)*ss-6*y^3+3*x^3,-9*y^3*ss-9*y^3, (27*x^2*y^2*ss-9*y^3)*dy+(-18*y^4+9*x^3*y)*ss*dx+(-18*y^2+27*x^2*y)*ss-27*y^2, (9*x*y^3-18*x^4)*ss*dy+(27*x^2*y^2*ss-9*x^3)*dx+(27*x*y^2-18*x^2)*ss-27*x^2, (-9*y^5-9*x^3*y^2)*ss+9*x*y^3,(-9*x^2*y^3-9*x^5)*ss+9*x^3*y, (27*x*y^4+27*x^4*y)*ss-27*x^2*y^2, (27*x^2*y^3*ss-9*y^4)*dy+(-27*y^5*ss+9*x*y^3)*dx, (81*y^5*ss-54*x*y^3)*dy+(81*x*y^4*ss-27*x^2*y^2)*dx+ (378*y^4+135*x^3*y)*ss-216*x*y^2] 0.01sec( sec) [2028] mora_gr(j, VL2, A2, A2S, V2); -----> mora gr Mora tangentcone gr 26

27 local b (Algorithm 3.13) localb rr [2011] localb_rr(x*(x+1)*(y+1),vl2, A2, A2S, V2); J : +x+x^2+x*y+x^2*y -ss+dy+y*dy +dy-x*dx+2*x*dy+y*dy-x^2*dx+2*x*y*dy Gr(J) : +x -ss+dy+y*dy +dy+y*dy+1 --> J (tangentcone_gr2 ) +y*dy^2+y^2*dy^2+2*y*dy +y^2*ss*dy^2-dy^2+2*y*ss*dy-2*y*dy^2-2*dy compute global-b. --> global b (bfct ) ok : the remainder of global-b is 0. 0th challenge Pick :ss^2+2*ss+1 length(genl):1 ss+1-->zero --> ss+1 Mora InL :1,NotInL :0 1th challenge Pick :ss+1 length(genl):1 1-->non-zero --> 1 Mora InL :0,NotInL :1 ss+1 [2012] x(x+1)(y +1) local b s+1 D alg [s] Mora global b 27

28 (Algorithm 4.10) localb nf [2470] localb_nf(x*(x+1)*(y+1), VL2, A2, A2S, V2, W2, 3, 10); J : +x+x^2+x*y+x^2*y -ss+dy+y*dy +dy-x*dx+2*x*dy+y*dy-x^2*dx+2*x*y*dy Gr(J) : +x -ss+dy+y*dy +dy+y*dy+1 <-- J +y*dy^2+y^2*dy^2+2*y*dy +y^2*ss*dy^2-dy^2+2*y*ss*dy-2*y*dy^2-2*dy NF : +1 <-- 1 Gr(J) 10-1 <-- ss Gr(J) <-- ss^2 Gr(J) 10-1 <-- ss^3 Gr(J) 10 sol_space(4) <-- L_{4,10} [ ] [ ] [ ] [ ] sol_space(3) <-- L_{3,10} [ ] [ ] [ ] sol_space(2) <-- L_{2,10} [ 0 0 ] [ 1 1 ] sol_space(1) <-- L_{1,10} [ 0 ] BSum: <-- local b ss+1 weyl_mora(bsum, G) <-- Mora 0 ss+1 [2471] x(x + 1)(y + 1) local b s + 1 localb nf s 28

29 local b (Algorithm 2.3) [1549] lb2(x*(x+1)*(y+1)); comp psi(i): <-- psi(i) 0sec( sec) comp local intersection 0.01sec( sec) -s-1 [1550] <-- K[[x]][s] J \cap K[s] s + 1 local b x(x + 1)(y + 1) local b lb2 29

30 6.2 ( order matrix localb.rr (VL) ss s ( 1, 1) dss, ds 1 VL1 = [x,ss,s,dx,dss,ds] 2 VL2 = [x,y,ss,s,dx,dy,dss,ds] 3 VL3 = [x,y,z,ss,s,dx,dy,dz,dss,ds] order matrix(a, B, C) D alg [s], D[s] < 1 (Section 3.1) < 2, < 3 (Section 3.2) < s 1 (3.2) < s 2, < s 3 (Section 3.2) A* < 1 B* < 2 C* < 3 A1 1 A2 2 A3 3 B1 B2 B3 C1 C2 C3 A*S < s 1 B*S <s 2 C*S <s 3 A1S 1 A2S 2 A3S 3 B1S B2S B3S C1S C2S C3S A1, A1S localb.rr VL1 = [ x,ss, s,dx,dss,ds]$ A1=newmat(5, 6, [ [ 0, 1, 0, 1, 0, 0], [-1, 0, 0, 0, 0, 0], [ 0, 1, 0, 0, 0, 0], [ 0, 0, 0, 1, 0, 0], [ 1, 0, 0, 0, 0, 0] ])$ A1S=newmat(6, 6, [ [ 1, 0, 1, 0, 0, 0], [ 0, 1, 0, 1, 0, 0], [-1, 0, 0, 0, 0, 0], [ 0, 1, 0, 0, 0, 0], [ 0, 0, 0, 1, 0, 0], [ 1, 0, 0, 0, 0, 0] ])$ < 1, < s 1 lex order 30

31 ( 1, 1) V* v 1 (Section 3.2) v 1 ( 1, 1) x 1 x n y s ξ 1 ξ n V1 1 V2 2 V3 3 VV* v 2 (Section 3.2) v 2 ( 1, 1) x 1 x n y s ξ 1 ξ n VV1 1 VV2 2 VV3 3 V* A*,A*S VV* B*, C*, B*S, C*S e W* e (Section 4.5) e D[s] x 1 x n y ξ 1 ξ n W1 1 W2 2 W Mora weyl mora(p, PL, VL, Ord, Vect) : P, PL, VL, Ord s order (< s 1, < s 2, < s 3 order), Vect ( 1, 1) : Q, A, R AP = Q[0]P L[0] + + Q[N 1]P L[N 1] + R Q[i] 0 LM < (Q[i]P L[i]) LM < (P ) R 0 LM < (R) LM < (P L[i]) < Ord s order Ord < s 1 < 1 < s 2 < 2 < s 3 < 3 N P L : Mora Algorithm 3.4) Ord < s 1, < s 2, < s 3 < 1, < 2, < 3 Mora : P = x 2 + x + 1 P L = [ x + x x + x] < 1 Mora [381] weyl_mora(dx^2+dx+1, [dx+x*dx+x], VL1, A1S, V1); [<0>3<[0,1,3]>+(2)2<1>3] [x,x+1,[dx]] 31

32 P = xy x y P L = [x + y + x, y + y 2 + y 3 ] < 1 Mora x, y x 1, x 2 y [392] weyl_mora(x*y*dx*dy, [x+y+dx, y+y^2+y^3], VL2, A2S, V2); [<[0,2,3]>+(3)1<[1,2,3]>+(4)3<1>9<3>13<3>10] [(3*y^2+2*y+1)*x^2+(2*y^3+y^2)*x,y^2+y+1,[(dy*y^3+dy*y^2+dy*y)*x,-dy*x^2-dy*y*x]] dp weyl mora(p, PL, VL, Ord, Vect) : P, PL, VL, Ord s order (< s 1, < s 2, < s 3 order), Vect ( 1, 1) : R AP = Q[0]P L[0] + + Q[N 1]P L[N 1] + R Q[i] 0 LM < (Q[i]P L[i]) LM < (P ) R 0 LM < (R) LM < (P L[i]) < Ord s order N P L : Mora Algorithm 3.4) weyl mora D alg [y] mora gr Mora weyl mora mod(p, PL, VL, Ord, VL, Prime) : P,PL,VL,Ord,VL weyl mora Prime GF ( Prime ) : weyl mora : weyl mora modular dp weyl mora mod(p, PL, VL, Ord, VL, Prime) : P,PL,VL,Ord,VL dp weyl mora Prime GF ( Prime ) : dp weyl mora : dp weyl mora modular mora gr mod 6.4 D alg mora gr(i, VL, Ord1, Ord2, Vect) : I, VL, Ord1 order, Ord2 Ord1 s order, Vect ( 1, 1) : I order Ord1 32

33 : Buchberger Mora D alg : D alg [ss] (ss ) J = D alg [ss] {x 2, x x 2ss } < 2 [395] J=jf(x^2); [x^2,dx*x-2*ss] [396] mora_gr(j, VL1, B1, B1S, VV1); [0,1]:Rest 0 index N:2,bits of Nf:4 S non-zero Rest:2 LM:(1)*<<1,1,0,0,0,0>>,2 Leading monomial [1,2]:Rest 1 N:3,bits of Nf:9 Rest:2 LM:(1)*<<0,2,0,0,0,0>>,2 [2,3]:Rest 1 [0,2]:Rest 0 Count : crib:0 crif:0 crim:2 criterion [x^2,dx*x-2*ss,(2*ss+2)*x,-2*dx*x-4*ss^2-2*ss-2] mora gr mod(i, VL, Ord1, Ord2, Vect, Prime) : I, VL, Ord1 order, Ord2 Ord1 s order, Vect ( 1, 1), Prime GF ( Prime ) : I order Ord1 : mora gr modular Mora modular tangentcone gr(i, VL, Ord, Vect) : I, VL, Ord s order (< s 1, < s 2, < s 3 order), Vect ( 1, 1) : I Ord order(< 1, < 2, < 3 ) : ( 1, 1) < s < ( ) : {x x + xy y, y y + xy x } < 1 33

34 [2599] I=[x*dx+x*y*dy,y*dy+x*y*dx]; [x*y*dy+x*dx,y*dy+x*y*dx] [2600] tangentcone_gr(i, VL2, A2S, V2); [0,1]: index N:2,bits of Nf:4 S non-zero Rest:1 [0,2]: N:3,bits of Nf:2 Rest:2 [2,3]: N:4,bits of Nf:5 Rest:3 [0,3]: N:5,bits of Nf:2 Rest:4 [3,5]: N:6,bits of Nf:3 Rest:4 [1,5]: [4,6]: N:7,bits of Nf:6 Rest:5 [3,6]: N:8,bits of Nf:1 Rest:8 [0,6]:... Count : crib:10 crif:73 crim:33 criterion +x*s*dx+x*y*dy +y*s*dy+x*y*dx -x^2*y*dx^2+x*y^2*dy^2-x*y*dx+x*y*dy +x^2*y*dx-x*y^2*dy -x*y^2*dx*dy+x*y^2*dy^2+x*y*dx+x*y*dy-y^2*dy +x^2*y^2*dy-x*y^3*dy... 34

35 [x*y*dy+x*dx,y*dy+x*y*dx,x*y^2*dy^2+x*y*dy-x^2*y*dx^2-x*y*dx,-x*y^2*dy+x^2*y*dx,... ] 6.5 D[y] whdiv(f, G, VL, Ord, N) : F, G, VL, Ord order < r, N : Q, R P = Q[0]G[0] + + Q[M 1]G[M 1] + R Q[i] 0 LM <r (Q[i]G[i]) LM <r (P ) Q[i] N LE <r (G[i]) 1 R N 1 M G : Weierstrass-Hironaka 4.3 d app div : x 1 + x WH N = 5 [377] whdiv(x, [1+x], VL1, A1, 5); [[ x^5-x^4+x^3-x^2+x ],-x^6,0] x = (x x 2 + x 3 x 4 + x 5 )(1 + x) x 6 (4 ) x x 2 + x 3 x 4 (4 ) 0 d app div(p, G, VL, W, Ord, N) : P, G, VL, W e Ord order < 1 N : Q, R P = Q[0]G[0] + + Q[M 1]G[M 1] + R Q[i] 0 LM <1 (Q[i]G[i]) LM <1 (P ) Q[i] N LE <1 (G[i]) 1 R N 1 M G : D[y] 4.6 local b localb nf : x 2 (1 + x) x + x N = 5 4.7) [2607] d_app_div(dx^2,[(1+x)*dx+x],vl1,w1,a1,5); M0 :2 M[0] :1 M[1] :1 35

36 M[2] :3 Bound :10 [2,3,4,5,6,7,8,9,10,][1,2,3,4,5,6,7,][0,] check Sum :+dx^2 P :+dx^2 Monos : ( ) [[ (x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1)*dx-x^6+x^5-x^4+x^3-x^2+x-1 ], -x^9*dx^2+(-x^9+x^7)*dx-x^8+2*x^7-2*x^6+2*x^5-2*x^4+2*x^3-2*x^2+2*x-1] 2 =((1 x + x x 8 ) (1 x + x 2 + x 6 )) ((1 + x) + x)+ x 9 2 x 9 + x x 2x 2 + 2x 3 2x x 7 x 8 ( 4 ) 1 + 2x 2x 2 + 2x 3 2x local b localb rr(f, VL, Ord1, Ord2, Vect) : F, VL, Ord1 order < 1 or < 2 or < 3, Ord2 Ord1 s order, Vect s, : F local b : global b local b 3.13 : x 2 (x + 1) 3 local b ( 3.12) [2598] localb_rr(x^2*(x+1)^3, VL2, A2, A2S, V2); J : +x^2+3*x^3+3*x^4+x^5 +2*ss+5*x*ss-x*dx-x^2*dx +2*ss*s^2+5*x*ss*s-x*s*dx-x^2*dx +x^2*s^3+3*x^3*s^2+3*x^4*s+x^5... J Gr(J) : +2*ss+5*x*ss-x*dx-x^2*dx +x^2+3*x^3+3*x^4+x^5 +2*x^3*dx+7*x^4*ss+3*x^4*dx+4*x^5*ss+x^5*dx 36

37 ... J compute global-b. global-b ok : the remainder of global-b is 0. global-b Gr(J) 0th challenge Pick :18*ss^4+45*ss^3+40*ss^2+15*ss+2 global-b length(genl):4 6*ss^3+11*ss^2+6*ss+1-->zero Gr(J) 0 6*ss^3+13*ss^2+9*ss+2-->zero 9*ss^3+18*ss^2+11*ss+2-->non-zero 18*ss^3+27*ss^2+13*ss+2-->non-zero InL :2,NotInL :2 1th challenge Pick :2*ss^2+3*ss+1 length(genl):2 ss+1-->non-zero 2*ss+1-->non-zero InL :0,NotInL :2 gcd(6*ss^3+11*ss^2+6*ss+1,6*ss^3+13*ss^2+9*ss+2) local-b 2*ss^2+3*ss+1 x 2 (x + 1) 3 local b s s localb nf(f, VL, Ord1, Ord2, Vect, W, Deg, N) : F, VL, Ord1 order < 1 or < 2 or < 3, Ord2 Ord1 s order, Vect s, W e, Deg (global b ), N ( Deg + 1) : F local b : local b 4.10 : x 2 (y + 1) 2 z 2 local b ( 4.11) [1991] localb_nf(x^2*(y+1)^2*z^2, VL3, A3, A3S, V3, W3, 6, 7); 0.02sec( sec) J : +x^2*z^2+2*x^2*y*z^2+x^2*y^2*z^2 -dy+x*dx-y*dy -x*dx+z*dz -2*ss+x*dx -x*dx+z*dz 37

38 +s*dy+y*dy-z*dz +2*ss*s-z*dz... J Gr(J) : -x*dx+z*dz +dy+y*dy-z*dz +2*ss-z*dz -2*y*ss*dy+2*z*ss*dz-z*dy*dz +x^2*z^2+2*x^2*y*z^2+x^2*y^2*z^2... J NF : s Gr(J) +1 +1/2*z*dz +1/4*z^2*dz^2+1/4*z*dz +1/8*z^3*dz^3+3/8*z^2*dz^2+1/8*z*dz -3/8*z^3*dz^3-31/16*z^2*dz^2-31/16*z*dz-1/4 +23/32*z^3*dz^3+135/32*z^2*dz^2+157/32*z*dz+3/4-9/8*z^3*dz^3-447/64*z^2*dz^2-555/64*z*dz-23/16 sol_space(7) L_{6,7} [ ] [ 1/4 3/2 13/ ] [ -3/4-17/4-33/4-23/ ] [ 23/16 63/8 231/ ] sol_space(6) L_{5,7} [ ] [ 1/4 3/2 13/ ] [ -3/4-17/4-33/4-23/4 0 1 ] sol_space(5) L_{4,7} [ ] [ 1/4 3/2 13/4 3 1 ] sol_space(4) [ ] L_{3,7} BSum: local-b ss^4+3*ss^3+13/4*ss^2+3/2*ss+1/4 [<2>18<2>20<2>25<2>30<[12,2,8]>+(20)38<19>90<19>103<2>118<2>118<2>117<2>122<2> 122<2>127<2>107<2>112<2>94<2>74<2>65<2>56<2>48<2>39<2>32<2>24<2>15<2>9] weyl_mora(bsum, G) 38

39 0 local-b ss^4+3*ss^3+13/4*ss^2+3/2*ss+1/4 x 2 (y + 1) 2 z 2 local b s 4 + 3s s s lb1(f), lb2(f), lb3(f) : F, : F local b : local b (Algorithm 2.3) local b lb : x 3 + y 3 + xyz local b [1549] lb3(x^3+y^3+x*y*z); comp psi(i): 0.09sec + gc : 0.03sec(0.1837sec) comp local intersection 0.05sec( sec) -9*s^5-54*s^4-128*s^3-150*s^2-87*s-20 [1550] 6.7 utility print poly(p, VL, Ord) : P, VL, Ord order : P Ord : [400] print_poly(1+x^2+(x+1)^3*dx, VL1, A1); +dx+3*dx*x+3*dx*x^2+dx*x^3+1+x^2 39

40 [1] : ( ),,No. 38, (1994) [2] : D,, (2002) [3], :,, (1981) [4] Castro,F.: Calculs effectifs pour les idéaux d opérateurs différentiels, Travaux en Cours 24, (1987), 1-19 [5] Granger,M.,Oaku,T.: Mimimal filtered free resolutions and division algorithms for analytic D-modules,Prépublications du départment de matheématiques, Univ.Angers, No.170 (2003) [6] Granger,M.,Oaku,T.,Takayama,N.:Tangent cone algorithm for homogenized differential operators, Journal of Symbolic Computation, 39, (2005) [7] Greuel,G.-M., Pfister,G.: Advances and improvements in the theory of standard bases and syzygies, Arch.Math., 66, (1995) [8] Mora,T.:An algorithm to compute the equations of tangent cones, EUROCAM 82, Springer Lecture Notes in Computer Science, (1982) [9] Nakayama,H.: Algorithms of computing local b-function by an approximate division algorithm, preprint [10] Noro,M.: An Efficient Modular Algorithm for Computing the Global b- function, Mathematical Software, (2002), [11] Oaku,T.: An algorithm of computing b-function, Duke Math. J., 87, (1997), no [12] Oaku,T.: Algorithm for the b-function and D-modules asscociated with a polynomial, J.Pure.Appl.Algebra 117/118, (1997), [13] Oaku,T., Takayama,N.:Algorithms for D-modules - restriction, tensor product, localization, and local cohomology groups, J.Pure.Appl.Algebra 156, (2001), [14] Saito, M., Sturmfels, B., Takayama,N.: Groebner Deformations of Hypergeometric Differential Equations, Springer, (2000) [15] Kobayashi,H., Furukawa,A., Sasaki,T.: POWER SERIES, RIMS, 581, (1986) GRÖBNER BASIS OF IDEAL OF CONVERGENT [16] Oaku,T., Shimoyama,T. : A Gröbner basis Method for Modules over Rings of Differential Operators, J.Symbolic Computation 18, , (1994) [17] Bernstein,I.N. : Modules over a ring of differential operators, Functional Anal. Appl., 5 (1971), [18] Bernstein,I.N. : The analytic continuation of generalized functions with respect to a parameter, Functional Anal. Appl., 6 (1972),

41 [19] Kashiwara,M. : B-functions and holonomic systems: rationality of roots of b-functions, Invent. Math. 38 ( ), [20] Giovini,A., Mora,T., Nielsi,G., Robbiano,L., Traverso,C.: one sugar cube, please OR Selection strategies in the Buchberger algorithm, Proc. Issac 91, [21] Takayama,N. : Kan A system for doing algebraic analysis by computer, [22] Noro,M. et al: Risa/Asir, 41

2 2 ( M2) ( )

2 2 ( M2) ( ) 2 2 ( M2) ( ) 2007 3 3 1 2 P. Gaudry and R. Harley, 2000 Schoof 63bit 2 8 P. Gaudry and É. Schost, 2004 80bit 1 / 2 16 2 10 2 p: F p 2 C : Y 2 =F (X), F F p [X] : monic, deg F = 5, J C (F p ) F F p p Frobenius

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

0. Introduction (Computer Algebra) Z, Q ( ), 1960, LISP, ( ) ( ) 2

0. Introduction (Computer Algebra) Z, Q ( ), 1960, LISP, ( ) ( ) 2 ( ) 1 0. Introduction (Computer Algebra) Z, Q ( ), 1960, LISP, ( ) ( ) 2 ,, 32bit ( 0 n 2 32 1 2 31 n 2 31 1, mod2 32 ) 64 bit Z (bignum; GNU gmp ) n Z n = ±(b l 1 B l 1 + + b 0 B 0 ) (B = 2 32, 0 b i

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

, 1993.,,., implement, ( )., 1970,,, I.N. Bernstein, ( D- ),., D-,., D-, ( ), ( ) (singular locus),, 3,. (Gröbner basis), 1960 B. Buchberger,.,,, impl

, 1993.,,., implement, ( )., 1970,,, I.N. Bernstein, ( D- ),., D-,., D-, ( ), ( ) (singular locus),, 3,. (Gröbner basis), 1960 B. Buchberger,.,,, impl No. 38 1994 11 WEB 2014 9 i , 1993.,,., implement, ( )., 1970,,, I.N. Bernstein, ( D- ),., D-,., D-, ( ), ( ) (singular locus),, 3,. (Gröbner basis), 1960 B. Buchberger,.,,, implement,.,, (standard base).,,,..,.

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

., White-Box, White-Box. White-Box.,, White-Box., Maple [11], 2. 1, QE, QE, 1 Redlog [7], QEPCAD [9], SyNRAC [8] 3 QE., 2 Brown White-Box. 3 White-Box

., White-Box, White-Box. White-Box.,, White-Box., Maple [11], 2. 1, QE, QE, 1 Redlog [7], QEPCAD [9], SyNRAC [8] 3 QE., 2 Brown White-Box. 3 White-Box White-Box Takayuki Kunihiro Graduate School of Pure and Applied Sciences, University of Tsukuba Hidenao Iwane ( ) / Fujitsu Laboratories Ltd. / National Institute of Informatics. Yumi Wada Graduate School

More information

index calculus

index calculus index calculus 2008 3 8 1 generalized Weil descent p :, E/F p 3 : Y 2 = f(x), where f(x) = X 3 + AX + B, A F p, B F p 3 E(F p 3) 3 : Generalized Weil descent E(F p 4) 2 Index calculus Plain version Double-large-prime

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2007.11.5 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

takei.dvi

takei.dvi 0 Newton Leibniz ( ) α1 ( ) αn (1) a α1,...,α n (x) u(x) = f(x) x 1 x n α 1 + +α n m 1957 Hans Lewy Lewy 1970 1 1.1 Example 1.1. (2) d 2 u dx 2 Q(x)u = f(x), u(0) = a, 1 du (0) = b. dx Q(x), f(x) x = 0

More information

Fermat s Last Theorem Hajime Mashima November 19, 2018 Abstract About 380 years ago, Pierre de Fermat wrote the following idea to Diophantus s Arithme

Fermat s Last Theorem Hajime Mashima November 19, 2018 Abstract About 380 years ago, Pierre de Fermat wrote the following idea to Diophantus s Arithme Fermat s Last Theorem Hajime Mashima November 19, 2018 Abstract About 380 years ago, Pierre de Fermat wrote the following idea to Diophantus s Arithmetica. Cubum autem in duos cubos, aut quadratoquadratum

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4 20 20.0 ( ) 8 y = ax 2 + bx + c 443 ax 2 + bx + c = 0 20.1 20.1.1 n 8 (n ) a n x n + a n 1 x n 1 + + a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 444 ( a, b, c, d

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

Perturbation method for determining the group of invariance of hierarchical models

Perturbation method for determining the group of invariance of hierarchical models Perturbation method for determining the group of invariance of hierarchical models 1 2 1 1 2 2009/11/27 ( ) 2009/11/27 1 / 31 2 3 p 11 p 12 p 13 p 21 p 22 p 23 (p ij 0, i;j p ij = 1). p ij = a i b j log

More information

Gauss Fuchs rigid rigid rigid Nicholas Katz Rigid local systems [6] Fuchs Katz Crawley- Boevey[1] [7] Katz rigid rigid Katz middle convolu

Gauss Fuchs rigid rigid rigid Nicholas Katz Rigid local systems [6] Fuchs Katz Crawley- Boevey[1] [7] Katz rigid rigid Katz middle convolu rigidity 2014.9.1-2014.9.2 Fuchs 1 Introduction y + p(x)y + q(x)y = 0, y 2 p(x), q(x) p(x) q(x) Fuchs 19 Fuchs 83 Gauss Fuchs rigid rigid rigid 7 1970 1996 Nicholas Katz Rigid local systems [6] Fuchs Katz

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

Bulletin of JSSAC(2014) Vol. 20, No. 2, pp (Received 2013/11/27 Revised 2014/3/27 Accepted 2014/5/26) It is known that some of number puzzles ca

Bulletin of JSSAC(2014) Vol. 20, No. 2, pp (Received 2013/11/27 Revised 2014/3/27 Accepted 2014/5/26) It is known that some of number puzzles ca Bulletin of JSSAC(2014) Vol. 20, No. 2, pp. 3-22 (Received 2013/11/27 Revised 2014/3/27 Accepted 2014/5/26) It is known that some of number puzzles can be solved by using Gröbner bases. In this paper,

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

mugensho.dvi

mugensho.dvi 1 1 f (t) lim t a f (t) = 0 f (t) t a 1.1 (1) lim(t 1) 2 = 0 t 1 (t 1) 2 t 1 (2) lim(t 1) 3 = 0 t 1 (t 1) 3 t 1 2 f (t), g(t) t a lim t a f (t) g(t) g(t) f (t) = o(g(t)) (t a) = 0 f (t) (t 1) 3 1.2 lim

More information

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S Riemnn-Stieltjes Polnd S. Lojsiewicz [1] An introduction to the theory of rel functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,, Riemnn-Stieltjes 1 2 2 5 3 6 4 Jordn 13 5 Riemnn-Stieltjes 15 6 Riemnn-Stieltjes

More information

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25 .. IV 2012 10 4 ( ) 2012 10 4 1 / 25 1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) 2012 10 4 2 / 25 1. Ω ε B ε t

More information

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha 63 KdV KP Lax pair L, B L L L / W LW / x W t, t, t 3, ψ t n / B nψ KdV B n L n/ KP B n L n KdV KP Lax W Lax τ KP L ψ τ τ Chapter 7 An Introduction to the Sato Theory Masayui OIKAWA, Faculty of Engneering,

More information

ohpmain.dvi

ohpmain.dvi fujisawa@ism.ac.jp 1 Contents 1. 2. 3. 4. γ- 2 1. 3 10 5.6, 5.7, 5.4, 5.5, 5.8, 5.5, 5.3, 5.6, 5.4, 5.2. 5.5 5.6 +5.7 +5.4 +5.5 +5.8 +5.5 +5.3 +5.6 +5.4 +5.2 =5.5. 10 outlier 5 5.6, 5.7, 5.4, 5.5, 5.8,

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2 1 1.1 R(x) = 0 y + P (x)y + Q(x)y = R(x)...(1) y + P (x)y + Q(x)y = 0...(2) 1 2 u(x) v(x) c 1 u(x)+ c 2 v(x) = 0 c 1 = c 2 = 0 c 1 = c 2 = 0 2 0 2 u(x) v(x) u(x) u (x) W (u, v)(x) = v(x) v (x) 0 1 1.2

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { ( 5 5.1 [ ] ) d f(t) + a d f(t) + bf(t) : f(t) 1 dt dt ) u(x, t) c u(x, t) : u(x, t) t x : ( ) ) 1 : y + ay, : y + ay + by : ( ) 1 ) : y + ay, : yy + ay 3 ( ): ( ) ) : y + ay, : y + ay b [],,, [ ] au xx

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V I (..2) (0 < d < + r < u) X 0, X X = 0 S + ( + r)(x 0 0 S 0 ) () X 0 = 0, P (X 0) =, P (X > 0) > 0 0 H, T () X 0 = 0, X (H) = 0 us 0 ( + r) 0 S 0 = 0 S 0 (u r) X (T ) = 0 ds 0 ( + r) 0 S 0 = 0 S 0 (d r)

More information

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

1. A0 A B A0 A : A1,...,A5 B : B1,...,B 1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 3. 4. 5. A0 A, B Z Z m, n Z m n m, n A m, n B m=n (1) A, B (2) A B = A B = Z/ π : Z Z/ (3) A B Z/ (4) Z/ A, B (5) f : Z Z f(n) = n f = g π g : Z/ Z A, B (6)

More information

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a 9 203 6 7 WWW http://www.math.meiji.ac.jp/~mk/lectue/tahensuu-203/ 2 8 8 7. 7 7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa,

More information

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 Akito Tsuboi June 22, 2006 1 T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 1. X, Y, Z,... 2. A, B (A), (A) (B), (A) (B), (A) (B) Exercise 2 1. (X) (Y ) 2. ((X) (Y )) (Z) 3. (((X) (Y )) (Z)) Exercise

More information

(check matrices and minimum distances) H : a check matrix of C the minimum distance d = (the minimum # of column vectors of H which are linearly depen

(check matrices and minimum distances) H : a check matrix of C the minimum distance d = (the minimum # of column vectors of H which are linearly depen Hamming (Hamming codes) c 1 # of the lines in F q c through the origin n = qc 1 q 1 Choose a direction vector h i for each line. No two vectors are colinear. A linearly dependent system of h i s consists

More information

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac +

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac + ALGEBRA II Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 7.1....................... 7 1 7.2........................... 7 4 8

More information

#2 (IISEC)

#2 (IISEC) #2 (IISEC) 2007 10 6 E Y 2 = F (X) E(F p ) E : Y 2 = F (X) = X 3 + AX + B, A, B F p E(F p ) = {(x, y) F 2 p y2 = F (x)} {P } P : E(F p ) E F p - Given: E/F p : EC, P E(F p ), Q P Find: x Z/NZ s.t. Q =

More information

1 Groebner hara/

1 Groebner hara/ 1 Groebner 2005 1 sinara@blade.nagaokaut.ac.jp http://blade.nagaokaut.ac.jp/ hara/ 2005 7 19 3 1 1 1.................................................. 1 2 1..............................................

More information

2

2 p1 i 2 = 1 i 2 x, y x + iy 2 (x + iy) + (γ + iδ) = (x + γ) + i(y + δ) (x + iy)(γ + iδ) = (xγ yδ) + i(xδ + yγ) i 2 = 1 γ + iδ 0 x + iy γ + iδ xγ + yδ xδ = γ 2 + iyγ + δ2 γ 2 + δ 2 p7 = x 2 +y 2 z z p13

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10 1 2007.4.13. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 0. 1. 1. 2. 3. 2. ɛ-δ 1. ɛ-n

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

2014 x n 1 : : :

2014 x n 1 : : : 2014 x n 1 : : 2015 1 30 : 5510113 1 x n 1 n x 2 1 = (x 1)(x+1) x 3 1 = (x 1)(x 2 +x+1) x 4 1 = (x 1)(x + 1)(x 2 + 1) x 5 1 = (x 1)(x 4 + x 3 + x 2 + x + 1) 1, 1,0 n = 105 2 1 n x n 1 Maple 1, 1,0 n 2

More information

SQUFOF NTT Shanks SQUFOF SQUFOF Pentium III Pentium 4 SQUFOF 2.03 (Pentium 4 2.0GHz Willamette) N UBASIC 50 / 200 [

SQUFOF NTT Shanks SQUFOF SQUFOF Pentium III Pentium 4 SQUFOF 2.03 (Pentium 4 2.0GHz Willamette) N UBASIC 50 / 200 [ SQUFOF SQUFOF NTT 2003 2 17 16 60 Shanks SQUFOF SQUFOF Pentium III Pentium 4 SQUFOF 2.03 (Pentium 4 2.0GHz Willamette) 60 1 1.1 N 62 16 24 UBASIC 50 / 200 [ 01] 4 large prime 943 2 1 (%) 57 146 146 15

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

,2,4

,2,4 2005 12 2006 1,2,4 iii 1 Hilbert 14 1 1.............................................. 1 2............................................... 2 3............................................... 3 4.............................................

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, PC ( 4 5 )., 5, Milnor Milnor., ( 6 )., (I) Z modulo

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,, 15, pp.1-13 1 1.1,. 1.1. C ( ) f = u + iv, (, u, v f ). 1 1. f f x = i f x u x = v y, u y = v x.., u, v u = v = 0 (, f = 2 f x + 2 f )., 2 y2 u = 0. u, u. 1,. 1.2. S, A S. (i) A φ S U φ C. (ii) φ A U φ

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N. Basic Mathematics 16 4 16 3-4 (10:40-12:10) 0 1 1 2 2 2 3 (mapping) 5 4 ε-δ (ε-δ Logic) 6 5 (Potency) 9 6 (Equivalence Relation and Order) 13 7 Zorn (Axiom of Choice, Zorn s Lemma) 14 8 (Set and Topology)

More information

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y 5 5. 2 D xy D (x, y z = f(x, y f D (2 (x, y, z f R 2 5.. z = x 2 y 2 {(x, y; x 2 +y 2 } x 2 +y 2 +z 2 = z 5.2. (x, y R 2 z = x 2 y + 3 (2,,, (, 3,, 3 (,, 5.3 (. (3 ( (a, b, c A : (x, y, z P : (x, y, x

More information

/ 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point R n set space R n R n x = x 1 x n y = y 1 y n distance dx,

/ 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point R n set space R n R n x = x 1 x n y = y 1 y n distance dx, 1 1.1 R n 1.1.1 3 xyz xyz 3 x, y, z R 3 := x y : x, y, z R z 1 3. n n x 1,..., x n x 1. x n x 1 x n 1 / 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point 1.1.2 R n set

More information

2012専門分科会_new_4.pptx

2012専門分科会_new_4.pptx d dt L L = 0 q i q i d dt L L = 0 r i i r i r r + Δr Δr δl = 0 dl dt = d dt i L L q i q i + q i i q i = q d L L i + q i i dt q i i q i = i L L q i L = 0, H = q q i L = E i q i i d dt L q q i i L = L(q

More information

J.JSSAC (2005) Vol. 12, No. 1, pp Risa/Asir (Received 2005/07/31 Revised 2005/08/23) 1 The palindrome name Risa/Asir comes from an abbreviation

J.JSSAC (2005) Vol. 12, No. 1, pp Risa/Asir (Received 2005/07/31 Revised 2005/08/23) 1 The palindrome name Risa/Asir comes from an abbreviation J.JSSAC (2005) Vol. 12, No. 1, pp. 9-22 Risa/Asir (Received 2005/07/31 Revised 2005/08/23) 1 The palindrome name Risa/Asir comes from an abbreviation of Research Instrument for Symbolic Algebra, a computer

More information

st.dvi

st.dvi 9 3 5................................... 5............................. 5....................................... 5.................................. 7.........................................................................

More information

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b 1 Introduction 2 2.1 2.2 2.3 3 3.1 3.2 σ- 4 4.1 4.2 5 5.1 5.2 5.3 6 7 8. Fubini,,. 1 1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)?

More information

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n = JKR 17 9 15 1 Point loading of an elastic half-space Pressure applied to a circular region 4.1 Boussinesq, n = 1.............................. 4. Hertz, n = 1.................................. 6 4 Hertz

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. R-space ( ) Version 1.1 (2012/02/29) i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. ii 1 Lie 1 1.1 Killing................................

More information

21(2009) I ( ) 21(2009) / 42

21(2009) I ( ) 21(2009) / 42 21(2009) 10 24 21(2009) 10 24 1 / 21(2009) 10 24 1. 2. 3.... 4. 5. 6. 7.... 8.... 2009 8 1 1 (1.1) z = x + iy x, y i R C i 2 = 1, i 2 + 1 = 0. 21(2009) 10 24 3 / 1 B.C. (N) 1, 2, 3,...; +,, (Z) 0, ±1,

More information

kokyuroku.dvi

kokyuroku.dvi On Applications of Rigorous Computing to Dynamical Systems (Zin ARAI) Department of Mathematics, Kyoto University email: arai@math.kyoto-u.ac.jp 1 [12, 13] Lorenz 2 Lorenz 3 4 2 Lorenz 2.1 Lorenz E. Lorenz

More information

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m 2009 10 6 23 7.5 7.5.1 7.2.5 φ s i m j1 x j ξ j s i (1)? φ i φ s i f j x j x ji ξ j s i (1) φ 1 φ 2. φ n m j1 f jx j1 m j1 f jx j2. m j1 f jx jn x 11 x 21 x m1 x 12 x 22 x m2...... m j1 x j1f j m j1 x

More information

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2. A A 1 A 5 A 6 1 2 3 4 5 6 7 1 1.1 1.1 (). Hausdorff M R m M M {U α } U α R m E α ϕ α : U α E α U α U β = ϕ α (ϕ β ϕβ (U α U β )) 1 : ϕ β (U α U β ) ϕ α (U α U β ) C M a m dim M a U α ϕ α {x i, 1 i m} {U,

More information

2001 Mg-Zn-Y LPSO(Long Period Stacking Order) Mg,,,. LPSO ( ), Mg, Zn,Y. Mg Zn, Y fcc( ) L1 2. LPSO Mg,., Mg L1 2, Zn,Y,, Y.,, Zn, Y Mg. Zn,Y., 926, 1

2001 Mg-Zn-Y LPSO(Long Period Stacking Order) Mg,,,. LPSO ( ), Mg, Zn,Y. Mg Zn, Y fcc( ) L1 2. LPSO Mg,., Mg L1 2, Zn,Y,, Y.,, Zn, Y Mg. Zn,Y., 926, 1 Mg-LPSO 2566 2016 3 2001 Mg-Zn-Y LPSO(Long Period Stacking Order) Mg,,,. LPSO ( ), Mg, Zn,Y. Mg Zn, Y fcc( ) L1 2. LPSO Mg,., Mg L1 2, Zn,Y,, Y.,, Zn, Y Mg. Zn,Y., 926, 1 1,.,,., 1 C 8, 2 A 9.., Zn,Y,.

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

add1 2 β β - conversion (λx.x + 1(2 β x + 1 x λ f(x, y = 2 x + y 2 λ(x, y.2 x + y 1 λy.2 x + y λx.(λy.2 x + y x λy.2 x + y EXAMPLE (λ(x, y.2

add1 2 β β - conversion (λx.x + 1(2 β x + 1 x λ f(x, y = 2 x + y 2 λ(x, y.2 x + y 1 λy.2 x + y λx.(λy.2 x + y x λy.2 x + y EXAMPLE (λ(x, y.2 output: 2011,11,10 2.1 λ λ β λ λ - abstraction λ λ - binding 1 add1 + add1(x = x + 1 add1 λx.x + 1 x + 1 add1 function application 2 add1 add1(2 g.yamadatakahiro@gmail.com 1 add1 2 β β - conversion (λx.x

More information

one way two way (talk back) (... ) C.E.Shannon 1948 A Mathematical theory of communication. 1 ( ) 0 ( ) 1

one way two way (talk back) (... ) C.E.Shannon 1948 A Mathematical theory of communication. 1 ( ) 0 ( ) 1 1 1.1 1.2 one way two way (talk back) (... ) 1.3 0 C.E.Shannon 1948 A Mathematical theory of communication. 1 ( ) 0 ( ) 1 ( (coding theory)) 2 2.1 (convolution code) (block code), 3 3.1 Q q Q n Q n 1 Q

More information

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

1   nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC 1 http://www.gem.aoyama.ac.jp/ nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC r 1 A B B C C A (1),(2),, (8) A, B, C A,B,C 2 1 ABC

More information

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+ 1 SL 2 (R) γ(z) = az + b cz + d ( ) a b z h, γ = SL c d 2 (R) h 4 N Γ 0 (N) {( ) } a b Γ 0 (N) = SL c d 2 (Z) c 0 mod N θ(z) θ(z) = q n2 q = e 2π 1z, z h n Z Γ 0 (4) j(γ, z) ( ) a b θ(γ(z)) = j(γ, z)θ(z)

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2 On the action of the Weil group on the l-adic cohomology of rigid spaces over local fields (Yoichi Mieda) Graduate School of Mathematical Sciences, The University of Tokyo 0 l Galois K F F q l q K, F K,

More information

untitled

untitled 20010916 22;1017;23;20020108;15;20; 1 N = {1, 2, } Z + = {0, 1, 2, } Z = {0, ±1, ±2, } Q = { p p Z, q N} R = { lim a q n n a n Q, n N; sup a n < } R + = {x R x 0} n = {a + b 1 a, b R} u, v 1 R 2 2 R 3

More information

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

2014 S hara/lectures/lectures-j.html r 1 S phone: , 14 S1-1+13 http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r 1 S1-1+13 14.4.11. 19 phone: 9-8-4441, e-mail: hara@math.kyushu-u.ac.jp Office hours: 1 4/11 web download. I. 1. ϵ-δ 1. 3.1, 3..

More information

四変数基本対称式の解放

四変数基本対称式の解放 Solving the simultaneous equation of the symmetric tetravariate polynomials and The roots of a quartic equation Oomori, Yasuhiro in Himeji City, Japan Dec.1, 2011 Abstract 1. S 4 2. 1. {α, β, γ, δ} (1)

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

Int Int 29 print Int fmt tostring 2 2 [19] ML ML [19] ML Emacs Standard ML M M ::= x c λx.m M M let x = M in M end (M) x c λx.

Int Int 29 print Int fmt tostring 2 2 [19] ML ML [19] ML Emacs Standard ML M M ::= x c λx.m M M let x = M in M end (M) x c λx. 1, 2 1 m110057@shibaura-it.ac.jp 2 sasano@sic.shibaura-it.ac.jp Eclipse Visual Studio ML Standard ML Emacs 1 ( IDE ) IDE C C++ Java IDE IDE IDE IDE Eclipse Java IDE Java Standard ML 1 print (Int. 1 Int

More information

2018/10/04 IV/ IV 2/12. A, f, g A. (1) D(0 A ) =, D(1 A ) = Spec(A), D(f) D(g) = D(fg). (2) {f l A l Λ} A I D(I) = l Λ D(f l ). (3) I, J A D(I) D(J) =

2018/10/04 IV/ IV 2/12. A, f, g A. (1) D(0 A ) =, D(1 A ) = Spec(A), D(f) D(g) = D(fg). (2) {f l A l Λ} A I D(I) = l Λ D(f l ). (3) I, J A D(I) D(J) = 2018/10/04 IV/ IV 1/12 2018 IV/ IV 10 04 * 1 : ( A 441 ) yanagida[at]math.nagoya-u.ac.jp https://www.math.nagoya-u.ac.jp/~yanagida 1 I: (ring)., A 0 A, 1 A. (ring homomorphism).. 1.1 A (ideal) I, ( ) I

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 計算代数幾何学入門 - グレブナー基底とその応用 - 工藤桃成 * * 九州大学大学院数理学府数理学専攻九大整数論セミナー 2017/6/8( 木 ) 6/5/2017 1 目次 : 1. Introduction 2. Gröbner bases 3. Applications 4. How do we study Computational Algebraic Geometry? 6/5/2017

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information