B.2 EXCEL B.3 tara B.4 CSV

Size: px
Start display at page:

Download "B.2 EXCEL B.3 tara B.4 CSV"

Transcription

1 Numeric Recipes for Econometrics(0) SHIMURA Masato AR A 38 B EXCEL 39 B

2 B.2 EXCEL B.3 tara B.4 CSV (AR) y X X X X 1 X 2 X 3 X n,.y (y Example (i js) DN11 * Stich(,.) (,) 6 33 EX0=: 1 2 3,4 5 6,: ijs =: EXCEL CSV *2 EXCEL CSV APPENDIX ( ) (GDP) () () () *1 = (equal) *2 Camma Separared Value 2

3 *3 ( ) CSV *4 require files csv plot ] DN10=. ".@> readcsv /data/excel/stat_j/csv/ban_1.csv /data/excel/stat_j/csv/ EXCEL CSV =. (L:0) DN10 = ;( 1) ( ;( 2)) = ".@>. J 1 2 (J J, 0 ( 1) *3 numeric recipe data.ijs *4 CSV Camma Separated Value () EXCEL DB CSV 3

4 ( Take { Take f irst {. 0{ 1 DN11 Tale last {: {: 1 DN11 Drop f irst }. }. 1 DN11 Drop last }: } : 1 DN11 J n * 5 f unction name U sage 0 puc pickup column rec remove column puc set pickup with set 1 puc1 pickup column rec1 remove column puc set1 pickup with set puc=:pick_column=: [ {"1 ] puc1=:pick_column=: (>:@[) {"1 ] rec=:remove_column=: 4 : (I.-.(i.{:@$ y ) e. x ) puc y NB. remove_raw rer=: remove_raw=: 4 : (I.-.(i. # y ) e. x ) { y Example ] a=.?. 7 4 $ puc a rec a *5 0, 1, 2, 3 0 1, 2,

5 y X y 2 2 1,.X 0,.X 1,.X 2,.X n ( 1 ) y %. 1,.X 1,.X,.y y reg_ols=: %. 1&,.@] y, X J x y type 1 type 2 y is 0, x is 1 (0 puc a) reg_ols 1 puc a f = x y is 0, x is ( ) (0 puc a) reg_ols 0 rec a _ _ y = x x x 2 y is 0 x is 3 (0;3) puc_set a x y 3 0 puc a 8 6 x y regx (0;3) puc_set a _ y = x y is 0 x is 1 3 (0; 1 3) puc_set a x0 x1 y 5

6 regx (0;1 3) puc_set a _ f = x x *6 EPS EMF J sin title sin plot _5 5 ; 1&o. NB. sin from _5 to 5 pd eps /temp/sin0.eps NB. save by eps 5 5 plot (/temp ) J Grammar *6 J 6

7 ". format ": >open Box < Box require readcsv csv require files csv plot pd plot driver eps 7

8 Matrix divide (AR) 3 %. matrix Divide K.E.Iverson *7, Ordinaly Least regx=: 3 : ({:"1 y ) %. 1,.}:"1 y Square OLS Polynomial poly1=:4 : y %. (>:i. # y )ˆ/i. >: x Auto Regression AR ar0=:4 : (x }.tmp) %..("1)}: >x <\ tmp=:y -(+/%#)y OLS y 1 1 x 11 y 1 1 x 11 x 21 x k1 y = y 2 y 3 y n, 1 x 12 1 x x 1n y = y 2 y 3 y n, 1 x 12 x 22 x k2 1 x 13 x 23 x k x 1n x 2n x kn (X X)ˆβ = X y *7 APL /. 8

9 ˆβ = (X X) 1 X y (X X) 1 X y = X y X X = y X X 1 Working Example DN11 X cm Y (%) y 1,.X DN11 K.E.Iverson matrix divide (%.) 9

10 1.2.3 X,.Y X 1 y X Y 1,.X %. DN11 X Y ,.0 puc DN y %. 1,.X (1 puc DN11) %. 1,. 0 puc DN11 _ reg0 DN11 _ y = x *8 Script reg0 reg0=:3 : 0 NB. select trend d ata or multi data if. 1= +/ * $ y do. reg_t y elseif. do. regx y end. ) reg_t=:3 : y %. 1,. >: i. # y regx=:3 : ({:"1 y ) %. 1,.}:"1 y *8 X Y reg_t reg0 DN11 regx 10

11 X 1 (X X) 1 X y = X y X X = y X %. ({:"1 DN11) %. {."1 DN (1 puc DN11) %. 0 puc DN y = x reg exam ad reg0 reg_exam_ad *9 reg0 reg_exam_ad DN f= _ *9 ( ) J 11

12 corr=: AIC: AIC DW= / t=: _ t line f it reg0 linefit_reg0 DN11 pd eps /temp/reg_0.eps NB. Save J 1 : 0 i. i i: 3 _3 _2 _ >: 1. <: 1 %. matrix divide = 12

13 +/ +/

14 1.3 y t k y = C 00 + C 01 t + + c 0k t k + ɛ S 0 S 1 S k S 1 S 2 S k+1 S 2 S 3 S k S K S K+1 S 2k c 0 c 1 c 2 c K T 1 T 2 T 3 T k * 10 Example 2 y = x x x 3 3 poly0 DN _ ( ) ( )4 4 linefit_poly0 DN12 *10 14

15 10 3 poly0 10?. 20 _ _ f x = x x x 3 X,.a = 10?. 20 X X 1 (>:i. # a),.a (1 (>:i. # a)ˆ/ i. >:

16 AIC AIC k AIC J ˆ?,?. # n $ 1.4 AR AR (AR Auto Regressive Model) M AR Autoregressive Model S 11 S 12 S 1k S 12 S 22 S 2k S 13 S 23 S 3k S 1K S 2K S kk b 1 b 2 b 3 b K = T 1 T 2 T 3 T k Yull Walker Burk Householder *11 (DN12) 3 *11 3 Burk Yull Walker householder 16

17 1. x t 1, x t 2, x t 3,, x t n (X) 2. (y) y 3. X X NR, y 3 y, x t 0, x t 1, x t 2, x t (3}.DN12),.}:."1 >3<\DN12 Y x t 1 x t 2 x t cut cut cut cut ini f ix(\) X Box( ) in f ix(\) Open( ) x t 1, x t 2, x t 3 Rotate(. 1) Y 3 1. "1>3<\ >:i (%.) 17

18 1.4.2 AIC Mll = n k n (logq k/(n k)) AIC = 2 MLL + 2 k = (n k) (logq k /(n k)) + 2 k AR AIC k 4 exam_ar0 DN mean=6.904 corr= AIC= exam_ar0 DN mean=6.904 corr= AIC= exam_ar0 DN mean=6.904 corr= AIC= ar0 DN _ t t t t 4 4 linefit_ar DN12 pd eps \temp\ar_0.eps 18

19 12 native estim reg0 reg exam ad reg0 reg exam ad n estim reg0 line f it reg0 estim reg0 n linefit reg0 n poly0 poly exam linefit poly0 ar0 exam ar0 4 poly exam n 4 linefit poly0 n m ar0 n m exam ar0 n 19

20 ]a=: >: i Script Example 1 n n X i am=: +/ % # i=1 am2=: # % +/ 5.5 am a n Π n i=1 X i gm=: # %: */ n ni=1 1 X i hm=: am &.(%"_) gm a */ 0 hm a

21 common mean m x m x m n n cm=:[: {.(am,gm)ˆ:_ cm a ( ) 1 f 1 ni=1 f x i n km km km km km km km hm % +/ 1r30 1r40 1r = (( y t y t 1 ) 4 1) qtr_grow NB % Script qtr_grow=: 3 : 100 * <: ˆ&4 %/. y NB. e.g. u NB. exchange rate of growth from quarter to year 21

22 (rotate.) %/ ˆ4 1 (<: 1 ) <: ˆ&4 %/ ( times) 100 * <: ˆ&4 %/ % n xt+n x t Script grow_ave=: 4 : 100 * <: (x %: %/. y) %/ NB. GDP 1995/ %: %/ NB. GDP 1995/

23 * 5 %: %/ NB. GDP 1995/ Working Example 5 grow_ave NB. GDP 1995/ % 10 grow_ave NB. GDP 1990/ (1.39%) DN gm DN Working Example DN year % gm DN NB. 8.67% per year J 23

24 i. 0 >: 1 * % *: square 2 %: square root n {. From _ in f inity child "1 Rank 1 ˆ: power &. under y. Rotate / Insert ( ) <: Decriment 1 & ( ) r 1r

25 = y t y 00 3 Laspiress pt q 0 p0 q 0 Parshe pt q t p0 q t Fischer pt q 0 p0 q 0 pt q t p0 q 0 DN22 A B NB NB NB NB DN22=:( , ) ; , ( ) lsp_chain0 DN NB par_chain0 DN22 25

26 fis_chain0 DN Working Example 1 DN23=: , , , , ,: DN23=: ( ; )<;.1 DN23 DN NB. Cabbages NB. Spinachs NB. Napa NB. Leek NB. Lettuce NB. Broccoli lsp DN23 Las: Par: Fis: Script lsp=: 3 : 0 NB. Calc Laspi Parshe Fischer P0 Q0 P1 Q1 =: {;("2),. : L:0 y las=.(+/ P1 * Q0)% +/ P0 * Q0 par=.(+/p1 * Q1)% +/ P0 * Q1 fis=.%:(las * par) Las: Par: Fis:,: 9j3 ":100 *(las, par,fis ) 26

27 ) Laspeyres Étinne Laspeyres( ) Lass-pey-ress Wikipedia J n { take Las character 12j5 ": f ormat (12 5 ) 2.4 x x 1 (x x) 2 n x cm y (%) DN stand DN24 _ _ _ _ _ _ _

28 1 0 key fruits water plot : stand DN24 pd eps \temp\kanaya_02.eps ( ) Script stand=: dev % "1 sd dev=: -"1(+/ % #) sd=. %:@var var=: # % ([:+/[: *: dev) J *: square 2 (ˆ2 ) %: square root 2 ( ) -"1(+/%#) x x [: Cap 28

29 2.4.2 x x -(+/%#) ( ) 2.5 e log ln J ˆ. ˆ.100 ˆ ˆ e y = x logx = y 1x J 1x1 e ˆ. DN

30 J ˆ. naturel log 10 ˆ. 100 is 2 ˆ e n ˆ is 100 1x1 e e 2x1 1x2 2.6 x = x x = x1 2 + x x2 n ( ) 2 1 (Euclid) norm=: [: %: [: +/ *: The length(or norm)of v is the nonnegative scalar v x = v v = x1 2 + x x2 n v 2 = v v x y = (x 1 y 1 ) 2 + (x 2 y 2 ) 2 (x n y n ) 2 PQ Example euc_norm 1 _ _ v = v = ( ) = 9u = 1 v v Script norm=: [: %: [: +/ *: euc_norm=: 3 : y. % norm y. Coffee Brake John Napier( ) 1614 e 30

31 x = 1 n n i=1 X i (x x) 2 ss=: [: +/ (*:@dev) mean=: +/ % # NB. am dev=: - mean var=:ss%# Variance (x x) 2 n Standard deviation (x x) 2 sd x n sd=: %:&(ss%#) vr=: sd % mean cov=: # % ([: +/ [: */"1 dev) 1 (x x)(y ȳ) N dev=: -"1(+/ % #) cov=:# % ([: +/ [:*/ "1 (-"1(+/ % #))) ( ) 31

32 2.7.2 V(X 1 + X X n ) = V = n V(X i + Cov(X i, X j ) i=1 S xx S xy S xz S yx S yy S yz S zx S zy S zz i j x y x1 y1 x2 y2 x3 y3 x4 C = y4 t XX N x 1 x y 1 ȳ = 1 x 1 x x 2 x... x n x x 2 x y 2 ȳ N y 1 ȳ y 2 ȳ... y n ȳ x 3 x y 3 ȳ x n x y n ȳ ( ) ( 1 (xn x)(x n x) (x n x)(y n ȳ) x = N (y n ȳ)(x n x) (y n ȳ)(y n ȳ) ) 32

33 2.7.3 Worked Example DN25 NB. (1) dev2 DN25 NB. (2) _10 _10 _10 _10 _10 _5 0 _5 _5 _5 _5 0 _5 0 0 _ _ _

34 ( : dev2 DN25) +/. * (dev2 DN25) NB. (3) n n = 10 (( : dev2 DN25) +/. * (dev2 DN25)) % # DN25 NB. (4) vartable DN Script vartable=:# % :@dev2 +/.* dev2 J +/. * : Transpose 2.8 R = 1 r xy r xz r yx 1 r yz r zx r zy 1 X, Y ρ XY = Cov(X, Y) V(X) V(Y) ρ xy = (x, y) x y Working Example cortable DN25 34

35 Script cortable=: 3 : 0 ss=. [: +/ [: *: dev2 sd=. %:&(ss%#) stand=. dev2@] %"1 sd@] cortable=. #@] % ( :@stand@] +/. * stand@]) cortable y ) Atop -"1(+/%#) -"1 is hook 2.9,,,, r i j R = [ r i j ] R R 1 r i j r i j.o = ri j r ii r j j X 1 X 2 R = [ r i j ] R R 1 r i j r i j.o = ri j r ii r j j 35

36 5 DN cortable DN pcor_table cortable DN26 1 _ _ stand stand n mean dev var sd cov 36

37 vartable vartable n cortable cortable n pcor table pcor table cortable n am am2 gm hm am i.10 gm i.10 hm i.10 qtr grow grow ave qtr grow grow ave lsp lsp n lsp chain0 par chain0 fis chain0 norm norm n 37

38 A ] a=. i from ( _1 { a _1 {a NB. rank is default from ( 0 2 _1 {"1 a ( 1) 0 2 _1 {"1 a take ({.) 2{."1 a

39 B EXCEL EXCEL Libre CALC biff-8 EXCEL2003 EXCEL2007 biff-12 biff XML ) EXCEL2003 (2007 OK,2010?) tara Libre-Office () B.1 tara Net J Run/Package Manager tables/excel,tables/tara DL Net J CDROM,Net J602 copy B.2 EXCEL ( B.3 tara require files B.3.1 tara.ijs tara.ijs j602/addons/tables/tara/tara.ijs tutorial (tara.ijt) addons/tables/tara/tara.ijt. dir =. /data/sna/esri/principal/2010/ a=.readexcel dir, shouhi_test.xls tara Open BOX ;("1) 9}. 2 4 {"1 a Sheet. 39

40 Sheet1 readexcel dir, test_calc.xls B.3.2 *12 EXCEL bi=. conew biffbook writenumber bi 0 0 ;i writenumber bi 0 0 ;a1 NB. (example) a1=.? $ 100 save bi /temp/testtara.xls underbar 2 ) a1=. i a1 writexlsheets /temp/tararest.xls *12 tara jmacros.xls J602 csv 40

41 B.4 CSV B.4.1 CSV save CSV Comma Separated Values EXCEL ( copy EXCEL csv Example CSV index shouhi test.csv save B.4.2 CSV J require files csv dir=: c:/data/sna/esri/principal/2010/ ] a=. readcsv dir, shouhi_test.csv ] a=. ".@> readcsv dir, shouhi_test.csv ] a=. ;("1) ".(L:0) a 41

42 References 2000 J 1996 [] 1985 Miscellance J602 is download available (No charge) Scripts are accessible 42

R/S.5.72 (LongTerm Strage 1965) NASA (?. 2? (-:2)> 2?.2 NB. -: is half

R/S.5.72 (LongTerm Strage 1965) NASA (?. 2? (-:2)> 2?.2 NB. -: is half SHIMURA Masato JCD2773@nifty.ne.jp 29 6 19 1 R/S 1 2 9 3 References 22 C.Reiter 5 1 R/S 1.1 Harold Edwin Hurst 188-1978 England) Leicester, Oxford 3 196 Sir Henry Lyons ( 1915 1946 Hurst Black Simaika

More information

0 2 SHIMURA Masato

0 2 SHIMURA Masato 0 2 SHIMURA Masato jcd02773@nifty.com 2009 12 8 1 1 1.1................................... 2 1.2.......................................... 3 2 2 3 2.1............................... 3 2.2.......................................

More information

1 SHIMURA Masato polynomial irr.xirr EXCEL irr

1 SHIMURA Masato polynomial irr.xirr EXCEL irr 1 SHIMURA Masato 2009 12 8 1 2 1.1................................... 2 1.2 polynomial......................... 4 2 irr.xirr EXCEL 5 2.1 irr............................................. 5 2.2 d f, pv...........................................

More information

ATM M.Shimura JCD02773@nifty.ne.jp 2003 12 13 JAPLA2003 1 queue ATM ATM queue 1.1 ATM No (Sec (Sec 1 13 37 60 26 28 99 1 25 40 39 143 202 14 88 190 27 1 184 2 170 37 40 130 317 15 121 72 28 48 115 3 101

More information

1 1.1 p(x n+1 x n, x n 1, x n 2, ) = p(x n+1 x n ) (x n ) (x n+1 ) * (I Q) 1 ( 1 Q 1 Q n 0(n ) I + Q + Q 2 + = (I Q) ] q q +/. * q

1 1.1 p(x n+1 x n, x n 1, x n 2, ) = p(x n+1 x n ) (x n ) (x n+1 ) * (I Q) 1 ( 1 Q 1 Q n 0(n ) I + Q + Q 2 + = (I Q) ] q q +/. * q Masato Shimura JCD02773@nifty.ne.jp 2008 7 23 1 2 1.1....................................... 2 1.2..................................... 2 2 3 2.1 Example...................................... 3 2.2 Script...........................................

More information

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x 80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = n λ x i e λ x i! = λ n x i e nλ n x i! n n log l(λ) = log(λ) x i nλ log( x i!) log l(λ) λ = 1 λ n x i n =

More information

I L01( Wed) : Time-stamp: Wed 07:38 JST hig e, ( ) L01 I(2017) 1 / 19

I L01( Wed) : Time-stamp: Wed 07:38 JST hig e,   ( ) L01 I(2017) 1 / 19 I L01(2017-09-20 Wed) : Time-stamp: 2017-09-20 Wed 07:38 JST hig e, http://hig3.net ( ) L01 I(2017) 1 / 19 ? 1? 2? ( ) L01 I(2017) 2 / 19 ?,,.,., 1..,. 1,2,.,.,. ( ) L01 I(2017) 3 / 19 ? I. M (3 ) II,

More information

a b GE(General Erectrics) 9 4 irr (JAPLA 2009/12) Example1 120 P = C r + C 2 (1 + r) C t 1 (1 + r) t 1 + C t + F (1 + r) t 10

a b GE(General Erectrics) 9 4 irr (JAPLA 2009/12) Example1 120 P = C r + C 2 (1 + r) C t 1 (1 + r) t 1 + C t + F (1 + r) t 10 1 SHIMURA Masato 2010 9 27 1 1 2 CF 6 3 10 *1 irr irr irr(inner rate of return)function is able to written only few lines,and it is very powerful and useful for simulate unprofitable business model. 1

More information

6.1 OOP Multi Sub a

6.1 OOP Multi Sub a / WIN [ ] Masato SHIMURA JCD2773@nifty.ne.jp Last update 25 4 23 1 J 2 1.1....................................... 2 2 D 2 2.1 numeric trig................................... 6 3 6 3.1 X;Y....................................

More information

第11回:線形回帰モデルのOLS推定

第11回:線形回帰モデルのOLS推定 11 OLS 2018 7 13 1 / 45 1. 2. 3. 2 / 45 n 2 ((y 1, x 1 ), (y 2, x 2 ),, (y n, x n )) linear regression model y i = β 0 + β 1 x i + u i, E(u i x i ) = 0, E(u i u j x i ) = 0 (i j), V(u i x i ) = σ 2, i

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t

AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t 87 6.1 AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t 2, V(y t y t 1, y t 2, ) = σ 2 3. Thus, y t y t 1,

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

renshumondai-kaito.dvi

renshumondai-kaito.dvi 3 1 13 14 1.1 1 44.5 39.5 49.5 2 0.10 2 0.10 54.5 49.5 59.5 5 0.25 7 0.35 64.5 59.5 69.5 8 0.40 15 0.75 74.5 69.5 79.5 3 0.15 18 0.90 84.5 79.5 89.5 2 0.10 20 1.00 20 1.00 2 1.2 1 16.5 20.5 12.5 2 0.10

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

応力とひずみ.ppt

応力とひずみ.ppt in yukawa@numse.nagoya-u.ac.jp 2 3 4 5 x 2 6 Continuum) 7 8 9 F F 10 F L L F L 1 L F L F L F 11 F L F F L F L L L 1 L 2 12 F L F! A A! S! = F S 13 F L L F F n = F " cos# F t = F " sin# S $ = S cos# S S

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

R R 16 ( 3 )

R R 16   ( 3 ) (017 ) 9 4 7 ( ) ( 3 ) ( 010 ) 1 (P3) 1 11 (P4) 1 1 (P4) 1 (P15) 1 (P16) (P0) 3 (P18) 3 4 (P3) 4 3 4 31 1 5 3 5 4 6 5 9 51 9 5 9 6 9 61 9 6 α β 9 63 û 11 64 R 1 65 13 66 14 7 14 71 15 7 R R 16 http://wwwecoosaka-uacjp/~tazak/class/017

More information

1 1.1 WINDOWS 1.1.1 ijs.,j 1.1.2 RUN/FILE, (ALT+ R F) 1.1.3 WINDOWS FILE/OPEN RUN/WINDOW WINDOW (ALT+F O) (ALT+R W),, RUN/WINDOU(ALT+R W), YES/NO 2 2.

1 1.1 WINDOWS 1.1.1 ijs.,j 1.1.2 RUN/FILE, (ALT+ R F) 1.1.3 WINDOWS FILE/OPEN RUN/WINDOW WINDOW (ALT+F O) (ALT+R W),, RUN/WINDOU(ALT+R W), YES/NO 2 2. Files Masato SHIMURA JCD02773@nifty.ne.jp 2004/12/11 last update 2005/02/05 1 2 1.1 WINDOWS................................. 2 2 2 2.1 EXCEL OLE................................ 2 2.2 CSV..................................

More information

s = 1.15 (s = 1.07), R = 0.786, R = 0.679, DW =.03 5 Y = 0.3 (0.095) (.708) X, R = 0.786, R = 0.679, s = 1.07, DW =.03, t û Y = 0.3 (3.163) + 0

s = 1.15 (s = 1.07), R = 0.786, R = 0.679, DW =.03 5 Y = 0.3 (0.095) (.708) X, R = 0.786, R = 0.679, s = 1.07, DW =.03, t û Y = 0.3 (3.163) + 0 7 DW 7.1 DW u 1, u,, u (DW ) u u 1 = u 1, u,, u + + + - - - - + + - - - + + u 1, u,, u + - + - + - + - + u 1, u,, u u 1, u,, u u +1 = u 1, u,, u Y = α + βx + u, u = ρu 1 + ɛ, H 0 : ρ = 0, H 1 : ρ 0 ɛ 1,

More information

最小2乗法

最小2乗法 2 2012 4 ( ) 2 2012 4 1 / 42 X Y Y = f (X ; Z) linear regression model X Y slope X 1 Y (X, Y ) 1 (X, Y ) ( ) 2 2012 4 2 / 42 1 β = β = β (4.2) = β 0 + β (4.3) ( ) 2 2012 4 3 / 42 = β 0 + β + (4.4) ( )

More information

73

73 73 74 ( u w + bw) d = Ɣ t tw dɣ u = N u + N u + N 3 u 3 + N 4 u 4 + [K ] {u = {F 75 u δu L σ (L) σ dx σ + dσ x δu b δu + d(δu) ALW W = L b δu dv + Aσ (L)δu(L) δu = (= ) W = A L b δu dx + Aσ (L)δu(L) Aσ

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

第13回:交差項を含む回帰・弾力性の推定

第13回:交差項を含む回帰・弾力性の推定 13 2018 7 27 1 / 31 1. 2. 2 / 31 y i = β 0 + β X x i + β Z z i + β XZ x i z i + u i, E(u i x i, z i ) = 0, E(u i u j x i, z i ) = 0 (i j), V(u i x i, z i ) = σ 2, i = 1, 2,, n x i z i 1 3 / 31 y i = β

More information

40 6 y mx x, y 0, 0 x 0. x,y 0,0 y x + y x 0 mx x + mx m + m m 7 sin y x, x x sin y x x. x sin y x,y 0,0 x 0. 8 x r cos θ y r sin θ x, y 0, 0, r 0. x,

40 6 y mx x, y 0, 0 x 0. x,y 0,0 y x + y x 0 mx x + mx m + m m 7 sin y x, x x sin y x x. x sin y x,y 0,0 x 0. 8 x r cos θ y r sin θ x, y 0, 0, r 0. x, 9.. x + y + 0. x,y, x,y, x r cos θ y r sin θ xy x y x,y 0,0 4. x, y 0, 0, r 0. xy x + y r 0 r cos θ sin θ r cos θ sin θ θ 4 y mx x, y 0, 0 x 0. x,y 0,0 x x + y x 0 x x + mx + m m x r cos θ 5 x, y 0, 0,

More information

151021slide.dvi

151021slide.dvi : Mac I 1 ( 5 Windows (Mac Excel : Excel 2007 9 10 1 4 http://asakura.co.jp/ books/isbn/978-4-254-12172-8/ (1 1 9 1/29 (,,... (,,,... (,,, (3 3/29 (, (F7, Ctrl + i, (Shift +, Shift + Ctrl (, a i (, Enter,

More information

Autumn 2005 1 9 13 14 16 16 DATA _null_; SET sashelp.class END=eof; FILE 'C: MyFiles class.txt'; /* */ PUT name sex age; IF eof THEN DO; FILE LOG; /* */ PUT '*** ' _n_ ' ***'; END; DATA _null_;

More information

2012専門分科会_new_4.pptx

2012専門分科会_new_4.pptx d dt L L = 0 q i q i d dt L L = 0 r i i r i r r + Δr Δr δl = 0 dl dt = d dt i L L q i q i + q i i q i = q d L L i + q i i dt q i i q i = i L L q i L = 0, H = q q i L = E i q i i d dt L q q i i L = L(q

More information

4.9 Hausman Test Time Fixed Effects Model vs Time Random Effects Model Two-way Fixed Effects Model

4.9 Hausman Test Time Fixed Effects Model vs Time Random Effects Model Two-way Fixed Effects Model 1 EViews 5 2007 7 11 2010 5 17 1 ( ) 3 1.1........................................... 4 1.2................................... 9 2 11 3 14 3.1 Pooled OLS.............................................. 14

More information

Rプログラミング

Rプログラミング 5 29 10 10 1 1 2 1 3 Excel 2 3.1 GDP................................... 2 3.2 Excel.................. 3 3.3 Excel............................... 3 3.3.1................................ 4 3.3.2.........................

More information

一般化線形 (混合) モデル (2) - ロジスティック回帰と GLMM

一般化線形 (混合) モデル (2) - ロジスティック回帰と GLMM .. ( ) (2) GLMM kubo@ees.hokudai.ac.jp I http://goo.gl/rrhzey 2013 08 27 : 2013 08 27 08:29 kubostat2013ou2 (http://goo.gl/rrhzey) ( ) (2) 2013 08 27 1 / 74 I.1 N k.2 binomial distribution logit link function.3.4!

More information

1 1.1 Excel Excel Excel log 1, log 2, log 3,, log 10 e = ln 10 log cm 1mm 1 10 =0.1mm = f(x) f(x) = n

1 1.1 Excel Excel Excel log 1, log 2, log 3,, log 10 e = ln 10 log cm 1mm 1 10 =0.1mm = f(x) f(x) = n 1 1.1 Excel Excel Excel log 1, log, log,, log e.7188188 ln log 1. 5cm 1mm 1 0.1mm 0.1 4 4 1 4.1 fx) fx) n0 f n) 0) x n n! n + 1 R n+1 x) fx) f0) + f 0) 1! x + f 0)! x + + f n) 0) x n + R n+1 x) n! 1 .

More information

1

1 PalmGauss SC PGSC-5G Instruction Manual PalmGauss SC PGSC-5G Version 1.01 PalmGauss SC PGSC5G 1.... 3 2.... 3 3.... 3 3.1... 3 3.2... 3 3.3 PalmGauss... 4 3.4... 4 3.4.1 (Fig. 4)... 4 3.4.2 (Fig. 5)...

More information

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16, 春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16, 32, n a n {a n } {a n } 2. a n = 10n + 1 {a n } lim an

More information

untitled

untitled 1 Hitomi s English Tests 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 1 0 1 1 0 1 0 0 0 1 0 0 1 0 2 0 0 1 1 0 0 0 0 0 1 1 1 1 0 3 1 1 0 0 0 0 1 0 1 0 1 0 1 1 4 1 1 0 1 0 1 1 1 1 0 0 0 1 1 5 1 1 0 1 1 1 1 0 0 1 0

More information

d dt P = d ( ) dv G M vg = F M = F (4.1) dt dt M v G P = M v G F (4.1) d dt H G = M G (4.2) H G M G Z K O I z R R O J x k i O P r! j Y y O -

d dt P = d ( ) dv G M vg = F M = F (4.1) dt dt M v G P = M v G F (4.1) d dt H G = M G (4.2) H G M G Z K O I z R R O J x k i O P r! j Y y O - 44 4 4.1 d P = d dv M v = F M = F 4.1 M v P = M v F 4.1 d H = M 4.2 H M Z K I z R R J x k i P r! j Y y - XY Z I, J, K -xyz i, j, k P R = R + r 4.3 X Fig. 4.1 Fig. 4.1 ω P [ ] d d = + ω 4.4 [ ] 4 45 4.3

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1  appointment Cafe David K2-2S04-00 : C 2S III IV K200 : April 16, 2004 Version : 1.1 TA M2 TA 1 10 2 n 1 ɛ-δ 5 15 20 20 45 K2-2S04-00 : C 2S III IV K200 60 60 74 75 89 90 1 email 3 4 30 A4 12:00-13:30 Cafe David 1 2 TA 1 email appointment Cafe

More information

1 I EViews View Proc Freeze

1 I EViews View Proc Freeze EViews 2017 9 6 1 I EViews 4 1 5 2 10 3 13 4 16 4.1 View.......................................... 17 4.2 Proc.......................................... 22 4.3 Freeze & Name....................................

More information

y i OLS [0, 1] OLS x i = (1, x 1,i,, x k,i ) β = (β 0, β 1,, β k ) G ( x i β) 1 G i 1 π i π i P {y i = 1 x i } = G (

y i OLS [0, 1] OLS x i = (1, x 1,i,, x k,i ) β = (β 0, β 1,, β k ) G ( x i β) 1 G i 1 π i π i P {y i = 1 x i } = G ( 7 2 2008 7 10 1 2 2 1.1 2............................................. 2 1.2 2.......................................... 2 1.3 2........................................ 3 1.4................................................

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

k2 ( :35 ) ( k2) (GLM) web web 1 :

k2 ( :35 ) ( k2) (GLM) web   web   1 : 2012 11 01 k2 (2012-10-26 16:35 ) 1 6 2 (2012 11 01 k2) (GLM) kubo@ees.hokudai.ac.jp web http://goo.gl/wijx2 web http://goo.gl/ufq2 1 : 2 2 4 3 7 4 9 5 : 11 5.1................... 13 6 14 6.1......................

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2 1 1.1 R(x) = 0 y + P (x)y + Q(x)y = R(x)...(1) y + P (x)y + Q(x)y = 0...(2) 1 2 u(x) v(x) c 1 u(x)+ c 2 v(x) = 0 c 1 = c 2 = 0 c 1 = c 2 = 0 2 0 2 u(x) v(x) u(x) u (x) W (u, v)(x) = v(x) v (x) 0 1 1.2

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

28

28 y i = Z i δ i +ε i ε i δ X y i = X Z i δ i + X ε i [ ] 1 δ ˆ i = Z i X( X X) 1 X Z i [ ] 1 σ ˆ 2 Z i X( X X) 1 X Z i Z i X( X X) 1 X y i σ ˆ 2 ˆ σ 2 = [ ] y i Z ˆ [ i δ i ] 1 y N p i Z i δ ˆ i i RSTAT

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

Rによる計量分析:データ解析と可視化 - 第3回 Rの基礎とデータ操作・管理

Rによる計量分析:データ解析と可視化 - 第3回  Rの基礎とデータ操作・管理 R 3 R 2017 Email: gito@eco.u-toyama.ac.jp October 23, 2017 (Toyama/NIHU) R ( 3 ) October 23, 2017 1 / 34 Agenda 1 2 3 4 R 5 RStudio (Toyama/NIHU) R ( 3 ) October 23, 2017 2 / 34 10/30 (Mon.) 12/11 (Mon.)

More information

Microsoft Word - 計算力学2007有限要素法.doc

Microsoft Word - 計算力学2007有限要素法.doc 95 2 x y yz = zx = yz = zx = { } T = { x y z xy } () {} T { } T = { x y z xy } = u u x y u z u x x y z y + u y (2) x u x u y x y x y z xy E( ) = ( + )( 2) 2 2( ) x y z xy (3) E x y z z = z = (3) z x y

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

1 J 2 tasu =: + (Tacit definition) (Explicit definition) 1.1 (&) x u&v y Fork Bond & Bond(&) 0&{ u u v v v y x y 1&{ ( p) ( q) x v&

1 J 2 tasu =: + (Tacit definition) (Explicit definition) 1.1 (&) x u&v y Fork Bond & Bond(&) 0&{ u u v v v y x y 1&{ ( p) ( q) x v& 1 J SHIMURA Masato jcd02773@nifty.ne.jp 2008 12 8 1 J 1 2 J 4 3 5 4 8 5 /de Morgan law 11 6 16 7 19 8 Reference 21 A 21 J 5 1 J J Atom ) APL J 1 J 2 tasu =: + (Tacit definition) (Explicit definition) 1.1

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

15 P3 Pm C.Reiter dwin C.Reiter Fractal Visualization and J 4th edition fvj4 J 2D gl2 J addon Appendix (hokusai olympic0.ijs dwin * 1 coinsert *

15 P3 Pm C.Reiter dwin C.Reiter Fractal Visualization and J 4th edition fvj4 J 2D gl2 J addon Appendix (hokusai olympic0.ijs dwin * 1 coinsert * SHIMURA Masato JCD02773@nifty.ne.jp 2017 2 23 1 2 2 6 3 9 4 15 A J 21 2 3 45 1 15 P3 Pm 1 1.1 C.Reiter dwin C.Reiter Fractal Visualization and J 4th edition fvj4 J 2D gl2 J addon Appendix (hokusai olympic0.ijs

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

II 1 3 2 5 3 7 4 8 5 11 6 13 7 16 8 18 2 1 1. x 2 + xy x y (1 lim (x,y (1,1 x 1 x 3 + y 3 (2 lim (x,y (, x 2 + y 2 x 2 (3 lim (x,y (, x 2 + y 2 xy (4 lim (x,y (, x 2 + y 2 x y (5 lim (x,y (, x + y x 3y

More information

st.dvi

st.dvi 9 3 5................................... 5............................. 5....................................... 5.................................. 7.........................................................................

More information

1 1 Gnuplot gnuplot Windows gnuplot gp443win32.zip gnuplot binary, contrib, demo, docs, license 5 BUGS, Chang

1 1 Gnuplot gnuplot   Windows gnuplot gp443win32.zip gnuplot binary, contrib, demo, docs, license 5 BUGS, Chang Gnuplot で微分積分 2011 年度前期 数学解析 I 講義資料 (2011.6.24) 矢崎成俊 ( 宮崎大学 ) 1 1 Gnuplot gnuplot http://www.gnuplot.info/ Windows gnuplot 2011 6 22 4.4.3 gp443win32.zip gnuplot binary, contrib, demo, docs, license 5

More information

1.1 1 A

1.1 1 A . A..2 2 2. () (xyz) ( xyz) ( xy z) = (x x)yz ( xy z) = yz ( xy z) = y(z ( x z)) = y((z x)(z z)) = y( x z) (2) (3) M aj (x, y, M aj ( x, ȳ, z)) = xy ȳm aj ( x, ȳ, z) M aj ( x, ȳ, z)x M aj (x, y, z) x =

More information

講義のーと : データ解析のための統計モデリング. 第3回

講義のーと :  データ解析のための統計モデリング. 第3回 Title 講義のーと : データ解析のための統計モデリング Author(s) 久保, 拓弥 Issue Date 2008 Doc URL http://hdl.handle.net/2115/49477 Type learningobject Note この講義資料は, 著者のホームページ http://hosho.ees.hokudai.ac.jp/~kub ードできます Note(URL)http://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture20

More information

sec13.dvi

sec13.dvi 13 13.1 O r F R = m d 2 r dt 2 m r m = F = m r M M d2 R dt 2 = m d 2 r dt 2 = F = F (13.1) F O L = r p = m r ṙ dl dt = m ṙ ṙ + m r r = r (m r ) = r F N. (13.2) N N = R F 13.2 O ˆn ω L O r u u = ω r 1 1:

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

応用数学III-4.ppt

応用数学III-4.ppt III f x ( ) = 1 f x ( ) = P( X = x) = f ( x) = P( X = x) =! x ( ) b! a, X! U a,b f ( x) =! " e #!x, X! Ex (!) n! ( n! x)!x! " x 1! " x! e"!, X! Po! ( ) n! x, X! B( n;" ) ( ) ! xf ( x) = = n n!! ( n

More information

R = Ar l B r l. A, B A, B.. r 2 R r = r2 [lar r l B r l2 ]=larl l B r l.2 r 2 R = [lar l l Br ] r r r = ll Ar l ll B = ll R rl.3 sin θ Θ = ll.4 Θsinθ

R = Ar l B r l. A, B A, B.. r 2 R r = r2 [lar r l B r l2 ]=larl l B r l.2 r 2 R = [lar l l Br ] r r r = ll Ar l ll B = ll R rl.3 sin θ Θ = ll.4 Θsinθ .3.2 3.3.2 Spherical Coorinates.5: Laplace 2 V = r 2 r 2 x = r cos φ sin θ, y = r sin φ sin θ, z = r cos θ.93 r 2 sin θ sin θ θ θ r 2 sin 2 θ 2 V =.94 2.94 z V φ Laplace r 2 r 2 r 2 sin θ.96.95 V r 2 R

More information

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

kubostat2015e p.2 how to specify Poisson regression model, a GLM GLM how to specify model, a GLM GLM logistic probability distribution Poisson distrib

kubostat2015e p.2 how to specify Poisson regression model, a GLM GLM how to specify model, a GLM GLM logistic probability distribution Poisson distrib kubostat2015e p.1 I 2015 (e) GLM kubo@ees.hokudai.ac.jp http://goo.gl/76c4i 2015 07 22 2015 07 21 16:26 kubostat2015e (http://goo.gl/76c4i) 2015 (e) 2015 07 22 1 / 42 1 N k 2 binomial distribution logit

More information

1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 5 3. 4. 5. A0 (1) A, B A B f K K A ϕ 1, ϕ 2 f ϕ 1 = f ϕ 2 ϕ 1 = ϕ 2 (2) N A 1, A 2, A 3,... N A n X N n X N, A n N n=1 1 A1 d (d 2) A (, k A k = O), A O. f

More information

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y 5 5. 2 D xy D (x, y z = f(x, y f D (2 (x, y, z f R 2 5.. z = x 2 y 2 {(x, y; x 2 +y 2 } x 2 +y 2 +z 2 = z 5.2. (x, y R 2 z = x 2 y + 3 (2,,, (, 3,, 3 (,, 5.3 (. (3 ( (a, b, c A : (x, y, z P : (x, y, x

More information

y = x 4 y = x 8 3 y = x 4 y = x 3. 4 f(x) = x y = f(x) 4 x =,, 3, 4, 5 5 f(x) f() = f() = 3 f(3) = 3 4 f(4) = 4 *3 S S = f() + f() + f(3) + f(4) () *4

y = x 4 y = x 8 3 y = x 4 y = x 3. 4 f(x) = x y = f(x) 4 x =,, 3, 4, 5 5 f(x) f() = f() = 3 f(3) = 3 4 f(4) = 4 *3 S S = f() + f() + f(3) + f(4) () *4 Simpson H4 BioS. Simpson 3 3 0 x. β α (β α)3 (x α)(x β)dx = () * * x * * ɛ δ y = x 4 y = x 8 3 y = x 4 y = x 3. 4 f(x) = x y = f(x) 4 x =,, 3, 4, 5 5 f(x) f() = f() = 3 f(3) = 3 4 f(4) = 4 *3 S S = f()

More information

5.2 White

5.2 White 1 EViews 1 : 2007/5/15 2007/5/25 1 EViews 4 2 ( 6 2.1............................................ 6 2.2 Workfile............................................ 7 2.3 Workfile............................................

More information

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b 23 2 2.1 n n r x, y, z ˆx ŷ ẑ 1 a a x ˆx + a y ŷ + a z ẑ 2.1.1 3 a iˆx i. 2.1.2 i1 i j k e x e y e z 3 a b a i b i i 1, 2, 3 x y z ˆx i ˆx j δ ij, 2.1.3 n a b a i b i a i b i a x b x + a y b y + a z b

More information

1 1 [1] ( 2,625 [2] ( 2, ( ) /

1 1 [1] ( 2,625 [2] ( 2, ( ) / [] (,65 [] (,3 ( ) 67 84 76 7 8 6 7 65 68 7 75 73 68 7 73 7 7 59 67 68 65 75 56 6 58 /=45 /=45 6 65 63 3 4 3/=36 4/=8 66 7 68 7 7/=38 /=5 7 75 73 8 9 8/=364 9/=864 76 8 78 /=45 /=99 8 85 83 /=9 /= ( )

More information

H22 BioS (i) I treat1 II treat2 data d1; input group patno treat1 treat2; cards; ; run; I

H22 BioS (i) I treat1 II treat2 data d1; input group patno treat1 treat2; cards; ; run; I H BioS (i) I treat II treat data d; input group patno treat treat; cards; 8 7 4 8 8 5 5 6 ; run; I II sum data d; set d; sum treat + treat; run; sum proc gplot data d; plot sum * group ; symbol c black

More information

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n . 99 () 0 0 0 () 0 00 0 350 300 () 5 0 () 3 {a n } a + a 4 + a 6 + + a 40 30 53 47 77 95 30 83 4 n S n S n = n = S n 303 9 k d 9 45 k =, d = 99 a d n a n d n a n = a + (n )d a n a n S n S n = n(a + a n

More information

power.tex

power.tex Contents ii 1... 1... 1... 7... 7 3 (DFFT).................................... 8 4 (CIFT) DFFT................................ 10 5... 13 6... 16 3... 0 4... 0 5... 0 6... 0 i 1987 SN1987A 0.5 X SN1987A

More information

notekiso1_09.dvi

notekiso1_09.dvi 39 3 3.1 2 Ax 1,y 1 Bx 2,y 2 x y fx, y z fx, y x 1,y 1, 0 x 1,y 1,fx 1,y 1 x 2,y 2, 0 x 2,y 2,fx 2,y 2 A s I fx, yds lim fx i,y i Δs. 3.1.1 Δs 0 x i,y i N Δs 1 I lim Δx 2 +Δy 2 0 x 1 fx i,y i Δx i 2 +Δy

More information

Stata11 whitepapers mwp-037 regress - regress regress. regress mpg weight foreign Source SS df MS Number of obs = 74 F(

Stata11 whitepapers mwp-037 regress - regress regress. regress mpg weight foreign Source SS df MS Number of obs = 74 F( mwp-037 regress - regress 1. 1.1 1.2 1.3 2. 3. 4. 5. 1. regress. regress mpg weight foreign Source SS df MS Number of obs = 74 F( 2, 71) = 69.75 Model 1619.2877 2 809.643849 Prob > F = 0.0000 Residual

More information

山形大学紀要

山形大学紀要 x t IID t = b b x t t x t t = b t- AR ARMA IID AR ARMAMA TAR ARCHGARCH TARThreshold Auto Regressive Model TARTongTongLim y y X t y Self Exciting Threshold Auto Regressive, SETAR SETARTAR TsayGewekeTerui

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

96 7 1m =2 10 7 N 1A 7.1 7.2 a C (1) I (2) A C I A A a A a A A a C C C 7.2: C A C A = = µ 0 2π (1) A C 7.2 AC C A 3 3 µ0 I 2 = 2πa. (2) A C C 7.2 A A

96 7 1m =2 10 7 N 1A 7.1 7.2 a C (1) I (2) A C I A A a A a A A a C C C 7.2: C A C A = = µ 0 2π (1) A C 7.2 AC C A 3 3 µ0 I 2 = 2πa. (2) A C C 7.2 A A 7 Lorentz 7.1 Ampère I 1 I 2 I 2 I 1 L I 1 I 2 21 12 L r 21 = 12 = µ 0 2π I 1 I 2 r L. (7.1) 7.1 µ 0 =4π 10 7 N A 2 (7.2) magnetic permiability I 1 I 2 I 1 I 2 12 21 12 21 7.1: 1m 95 96 7 1m =2 10 7 N

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

1 bmp gif,png,jpg bmp gif,png jpg BPG 2014 jpg *3 RAW TIFF RAW CCD CMOS R,G,B TIFF net *4 1.1 JPEG HP JPEG 3 1 4, 1 8, 1 16 JPEG SD jpeg JPEG RGB YCrC

1 bmp gif,png,jpg bmp gif,png jpg BPG 2014 jpg *3 RAW TIFF RAW CCD CMOS R,G,B TIFF net *4 1.1 JPEG HP JPEG 3 1 4, 1 8, 1 16 JPEG SD jpeg JPEG RGB YCrC Viewmat SHIMURA Masato 2015 6 12 viewnmat viewmat QT J8x 400 RGB CMYK *1 *2 RGB CMYK *1 CMYK,, *2 1 1 bmp gif,png,jpg bmp gif,png jpg BPG 2014 jpg *3 RAW TIFF RAW CCD CMOS R,G,B TIFF net *4 1.1 JPEG HP

More information

( 30 ) 30 4 5 1 4 1.1............................................... 4 1.............................................. 4 1..1.................................. 4 1.......................................

More information

5 Armitage x 1,, x n y i = 10x i + 3 y i = log x i {x i } {y i } 1.2 n i i x ij i j y ij, z ij i j 2 1 y = a x + b ( cm) x ij (i j )

5 Armitage x 1,, x n y i = 10x i + 3 y i = log x i {x i } {y i } 1.2 n i i x ij i j y ij, z ij i j 2 1 y = a x + b ( cm) x ij (i j ) 5 Armitage. x,, x n y i = 0x i + 3 y i = log x i x i y i.2 n i i x ij i j y ij, z ij i j 2 y = a x + b 2 2. ( cm) x ij (i j ) (i) x, x 2 σ 2 x,, σ 2 x,2 σ x,, σ x,2 t t x * (ii) (i) m y ij = x ij /00 y

More information

6.1 (P (P (P (P (P (P (, P (, P.101

6.1 (P (P (P (P (P (P (, P (, P.101 (008 0 3 7 ( ( ( 00 1 (P.3 1 1.1 (P.3.................. 1 1. (P.4............... 1 (P.15.1 (P.15................. (P.18............3 (P.17......... 3.4 (P................ 4 3 (P.7 4 3.1 ( P.7...........

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

講義のーと : データ解析のための統計モデリング. 第5回

講義のーと :  データ解析のための統計モデリング. 第5回 Title 講義のーと : データ解析のための統計モデリング Author(s) 久保, 拓弥 Issue Date 2008 Doc URL http://hdl.handle.net/2115/49477 Type learningobject Note この講義資料は, 著者のホームページ http://hosho.ees.hokudai.ac.jp/~kub ードできます Note(URL)http://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture20

More information

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα =

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα = 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a + b α (norm) N(α) = a + b = αα = α α (spure) (trace) 1 1. a R aα = aα. α = α 3. α + β = α + β 4. αβ = αβ 5. β 0 6. α = α ( ) α = α

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,. 23(2011) (1 C104) 5 11 (2 C206) 5 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 ( ). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5.. 6.. 7.,,. 8.,. 1. (75%

More information

chap10.dvi

chap10.dvi . q {y j } I( ( L y j =Δy j = u j = C l ε j l = C(L ε j, {ε j } i.i.d.(,i q ( l= y O p ( {u j } q {C l } A l C l

More information

JMP V4 による生存時間分析

JMP V4 による生存時間分析 V4 1 SAS 2000.11.18 4 ( ) (Survival Time) 1 (Event) Start of Study Start of Observation Died Died Died Lost End Time Censor Died Died Censor Died Time Start of Study End Start of Observation Censor

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information