Size: px
Start display at page:

Download ""

Transcription

1 A. Ya.

2

3 iii 3 A. Ya. Khinchin 3 State Press for Physics and Mathematics B.G. 0 A. N. Khovanskii Prilozhenie tsepnykh drobei i ikh obobshcheniǐ kvoprosam priblizhennogo analiza B. V. Gnedenko

4

5 v 2 D. A. Glava, V. A. Venkov, I. V. Arnold A.

6

7 vii a 0 + a + a 2 + a i (i ) 2

8 viii A.

9 ix

10

11 a 0 + a + a 2+ regular simple continued fraction a 0, a, a 2,... a 0, a, a 2,... a, a 2,... a 0 element () a 0 + a + a a n (2) finite n n n + 2 () infinite

12 2 () [a 0 ; a, a 2,...] (3) (2) [a 0 ; a, a 2,..., a n ] (4) 0 k n k s k := [a 0 ; a, a 2,..., a k ] (4) segment k 0 s k (3) s k r k := [a k ; a k+,... a n ] (4) remainder r k := [a k ; a k+,...] (3) [a 0 ; a, a 2,..., a n ] = [a 0 ; a, a 2,..., a k, r k ] (0 k n) (5) [a 0 ; a, a 2,...] = [a 0 ; a, a 2,..., a k, r k ] (0 k n) r k

13 [a 0 ; a, a 2,..., a n ] a 0, a,..., a n 2 P (a 0, a,..., a n ) Q(a 0, a,..., a n ) p/q canonical 0 [a 0 ] = a 0 a 0 / n (5) n [a 0 ; a,..., a n ] = [a 0 ; r ] = a 0 + r r = [a ; a 2,..., a n ] (n ) r = p q [a 0 ; a,..., a n ] = a 0 + q p = a 0p + q p [a 0 ; a,..., a n ] [a 0 ; a,..., a n ] = p q r = [a ; a 2,..., a n ] = p q

14 4 p = a 0 p + q, q = p (6) α = [a 0 ; a, a 2,...] s k = [a 0 ; a, a 2,..., a k ] p k /q k α k convergent approximant n α p n q n = α n + 0,, 2,..., n. k 2 p k = a k p k + p k 2 q k = a k q k + q k 2 (7). k = 2 (7) k < n [a ; a 2,..., a n ] r p r/q r (6) p n = a 0 p n + q n q n = p n p n = a n p n 2 + p n 3 q n = a n q n 2 + q n 3

15 2. 5 a n a n [a ; a 2,... a n ] a 0 a (6) p n = a 0 (a n p n 2 + p n 3) + (a n q n 2 + q n 3 ) = a n (a 0 p n 2 + q n 2) + (a 0 p n 3 + q n 3 ) = a n p n + p n 2 q n = a n p n 2 + p n 3 = a n q n q n 2 (7) n a n 2. p = q = 0 (7) k = 2. k 0 q k p k p k q k = ( ) k (8). (7) q k 2 p k 2 q k p k p k q k = (q k p k 2 p k q k 2 ) q 0 p p 0 q =. k p k q k p k q k = ( )k q k q k (9)

16 6 3. k q k p k 2 p k q k 2 = ( ) k a k. (7) q k 2 2 p k q k p k 2 p k q k 2 = a k (q k p k 2 p k q k 2 ) = ( ) k a k 2. k 2 p k 2 q k 2 p k q k = ( )k a k q k q k 2 (0) (0) 2 a (9) 4. α α α α 2 5. k ( k n) [a 0 ; a, a 2,... a n ] = p k r k + p k 2 q k r k + q k 2 () p i, q i, r i

17 3. 7. (5) [a 0 ; a, a 2,..., a n ] = [a 0 ; a, a 2,..., a k, r k ] (k ) p k /q k k p k /q k (7) p k = p k r k + p k 2, q k = q k r k + q k 2 6. k q k q k = [a k ; a k,..., a ]. k = q /q 0 = a k > (7) q k q k 2 = [a k ; a k 2,..., a ] (2) q k = a k q k + q k 2 q k = a k + q [ k 2 = a k ; q ] k q k q k q k 2 (5) (2) q k q k = [a k ; a k,... a ] 3 [a 0 ; a, a 2,...] (3) p 0, p,..., p k,... (4) q 0 q q k

18 8 (4) α α (3) α = [a 0 ; a, a 2,...] (3) converge (4) (3) 7. (3) (3). (3) p k /q k r n p k /q k () p n+k = [a 0 ; a, a 2,..., a n+k ] = p p k n q + p k n 2 (k = 0,,...) (5) q p n+k q k n q + q k n 2 r n k p k /q k p n+k /q n+k α = p n r n + p n 2 q n r n + q n 2 (6) (5) p k /q k (6) () r n

19 (3) α k 0 α p k q k < q k q k+ (9) k = n k < n α = [a 0 ; a, a 2,..., a n ] α = p n /q n α (3) α (3) α 7 (3) i a i > 0 0. (3) a n (7) n= (9) q k q k+ (k ) (8) (8) (7) (7) 2 q k > q k 2 (k ) k 0 q k > 0 q 0 = q = a (7) 2 k > q k > 0

20 0 k q k > q k q k > q k 2 (7) 2 q k < q k q k + q k 2 k a k < (7) k k 0 q k 2 q k < a k 2 a k < q k q k < ( + a k )q k < a k k k 0 q k < a k q l l < k l k 0 q l q k < q s ( a k )( a l ) ( a r ) (9) k > l > > r k 0 s < k 0 (7) n=k 0 ( a n ) λ ( a k )( a l ) ( a r ) n=k 0 ( a n ) = λ q 0, q,..., q k0 Q (9) q k < Q λ (k k 0 )

21 3. q k+ q k < Q2 λ 2 (k k 0 ) (8) (7) q k > q k 2 k 2 q 0, q c k 0 q k c (7) 2 q k q k 2 + ca k (k 2) q 2k q 0 + c q 2k+ q + c k n= k n= a 2n a 2n+ 2k+ q 2k + q 2k+ > q 0 + q + c k q k + q k > c k n= a n n= k k q k q k 2 c k n= a n c k q k q k > c2 a n 2 n= (7) (8) 0 a n

22 2 4 a, a 2,... a 0 0 (a n ) r n = a n + n [a 0 ; a, a 2,..., a n, ] (n ) [a 0 ; a, a 2,..., a n + ] 0 [] 2 5 p, q, p 0, q 0 (7). irreducible (8) p n q n q n p n p n q n (7) 2 k 2 q k > q k q, q 2,... q k,... q k 2. 2 k 2. k 2 q k 2 k 2 q k a k q k + q k 2 q k + q k 2 2q k 2 2 q k k

23 4. 3 q 2k 2 k q 0 = 2 k, q 2k+ 2 k q 2 k intermediate fractions k 2 i p k (i + ) + p k 2 q k (i + ) + q k 2 p k i + p k 2 q k i + q k 2 ( ) k [q k (i + ) + q k 2 ][q k i + q k 2 ] k i 0 p k 2 q k 2, p k 2 + p k q k 2 + q k, p k 2 + 2p k q k 2 + 2q k,..., p k 2 + a k p k q k 2 + a k q k = p k q k (20) k k 4 a k > intermediate fractions 2 mediant a 2 b c d a + c b + d. 2. a/b c/d bc ad 0 a + c b + d a bc ad = b b(b + d) 0, a + c b + d c ad bc = d b(b + d) 0

24 4 (20) (20) p k 2 /q k 2 p k /q k p k /q k 4 p k q k p k /q k p k 2 /q k 2 α p k /q k p k /q k p k 2 /q k 2 p k /q k α (20) α p k /q k (p k + p k 2 )/(q k + q k 2 ) p k /q k α p k 2 /q k 2 p k /q k a k p k /q k α 2 p k /q k p k /q k α α p k 2 /q k 2 p k /q k p k /q k α p k 2 /q k 2 α (p k + p k )/(q k + q k ) α α (p k /p k+ )/(q k + q k+ ) p k /q k α α p k /q k α p k > p k + p k+ p k q k + q k+ = q k ( k + q k+ ) q k q k α = p k + p k+ q k + q k+ p k q k = p k+2 q k+2, a k+2 = α

25 k 0 α p k > q k (q k+ + q k ) q k (2) α (p k /q k ) 9

26

27 α α α. α a 0 α α = a 0 + r (22) r r = α a 0 < r > r n a n r n r n+ r n = a n + r n+ (23) r n r n > n (22) α = [a 0 ; r ] α = [a 0 ; a, a 2,..., a n, r n ] (24) (5) (23) α = [a 0 ; a, a 2,..., a n, a n, r n+ ] i a i > 0

28 8 2 (24) n r, r 2,..., r n α r n r n = a/b r n a n = a ba n b r n a n < c < b (23) = c b r n+ = b c c 0 r n r n r n+ r n r, r 2,... r n = a n (24) α a n = r n > α r n [a 0 ; a, a 2,..., a n ] = p n q n p n /q n q n > 0 (24) (6) α = p n r n + p n 2 q n r n + q n 2 (n 2) p n q n = p n a n + p n 2 q n a n + q n 2 α p n = (p n q n 2 q n p n 2 )(r n a n ) q n (q n r n + q n 2 )(q n a n + q n 2 ) α p n < (q n r n + q n 2 )(q n a n + q n 2 ) < q n q 2 n pn q n α n

29 5. 9 [a 0 ; a, a 2,...] α α α 4 α = [a 0 ; a, a 2,...] = [a 0; a, a 2,...] 2 [x] x a 0 = [α] a 0 = [α] a 0 = a 0 a i = a i (i = 0,, 2,..., n) } p i = p i (i = 0,, 2,..., n) q i = q i (6) α = p nr n+ + p n = p nr n+ + p n q n r n+ + q n q nr n+ + = p nr n+ + p n q n q n r n+ + q n r n+ = r n+ a n+ = [r n+ ] a n+ = [r n+] a n+ = a n+ 2 a n+ r n = a n + a n [r n ] 0

30 20 2 0

31 α α 9 3 q n (q n + q n+ ) < α p n q n q n q n+ α α 2 α M. V. Ostrogradskiǐ E. Ya. Remez O znakoperemennykh ryadakh, kotorye mogut byt svyazany s dvumya algorifmami M. V. Ostrogradskogo dlya priblizheniya irratsional nykh chisel M. V. Ostrigradskiǐ 2

32 22 2 a/b b > 0 α 0 < d b a/b c/d α c > α a d b α best approximation 5. α 2 p = q = , 0,, 2, 3, 4 3. a/b α a/b a 0 a/b < a 0 a 0 / a/b b a/b α a/b a b a 0 + a 0 < (a/b) < a 0 + a/b = a 0 a/b = a 0 + a 0 / = p 0 /q 0 (a 0 + )/ = (p 0 + p )/(q 0 + q ) α a/b α 2 k r k > 0 0 r < a k+ k = 0 r < a p k r + p k q k r + q k, Uspekhi matematicheskikh nauk, 6, No. 5(45), (95) Remez Ostrogradskiǐ B.G.

33 6. 23 p k (r + ) + p k q k (r + ) + q k a b p kr + p k q k r + q k < p k (r + ) + p k p kr + p k q k (r + ) + q k q k r + q k = {q k (r + ) + q k }{q k r + q k } a b p kr + p k q k r + q k = m b(q k r + q k ) m b(q k r + q k ) < {q k (r + ) + q k }{q k r + q k } q k (r + ) + q k < b b p k (r + ) + p k q k (r + ) + q k (25) p k r + p k q k r + q k (26) α 3 α a/b α a/b (25) (26) 5 a/b α α (a/b) bα a b a/b α

34 24 2 b 5 best approximation of the first kind a/b b > 0 α 2 best approximation of the second kind c/d a/b 0 < d b dα c > bα a 2 α a/b bα a 2 α c α a ( c d b d a ) b, d b 3 dα c bα a a/b < 3 5 ( < 3) a/b α = [a 0 ; a, a 2,...]

35 p k /q k a/b < a 0 α a 0 < α a bα a ( b) b a/b 2 a/b a 0 a/b 2 p k /q k p k+ /q k+ p /q a b p k q k bq k a b p k q k < p k p k q k q k = q k q k b > q k (27) α a p k+ b a q k+ b bα a q k+ q k α p k q k+ bq k+ q k α p k bα a (28) (27) (28) a/b 2 2 a/b > p /q α a > p b a q b bq bα a > q = a α a 0 a

36 26 2 bα a > α a 0 ( b) a = < ( < 2) α = a 0 + 2, p 0 = a 0 q 0 α = a p 0/q 0 = a 0 / α (a 0 + ) = α a 0 2. yα x (29) y, 2,..., q k x y 0 x (29) y y y 0 x 0 y 0 a x x α x 0 = α x 0 (x 0 x 0) y 0 y 0

37 6. 27 α = x 0 + x 0 2y 0 x 0 + x 0 = lp 2y 0 = lq l > l < 2 q < y 0, α = p, qα p = 0 q y 0 l = 2 q = y 0 qα p = y 0 α p = 0 < y 0 α x 0 x 0 α α = p n q n, p n = x 0 = x 0, q n = 2y 0 = a n q n + q n 2, a n 2 a n > 2 a n = 2 n > q n < y 0 q n α p n = q n = 2y 0 2 y 0α x 0 y 0 n = a n = 2 α = a y 0 = y 0 x 0 x 0 /y 0 α 2 bα a y 0 α x 0, a b x 0 y 0, b y 0 x 0 y 0 6 x 0 = p s, y 0 = q s (s k) s = k s < k q s α p s >, q k α p k q s + q s+ q k + q k q k+

38 28 2 p s = x 0 q s = y 0 q s α p s q k α p k q k + q k < q k+ q k+ < q k + q k q k 7 Huygens 2 α α α 7 α (p k /q k ) α (p k /q k ) q k 9 3 α p k q k < qk 2 (30) 3 α = p k /q k q k+ 9 (30)

39 7. 29 q k f(q k ) n f(n) < n 2 (30) k α ε > 0 α p k > ε q k q 2 k α = [0; n,, n] = n + n(n + 2) p =, q = n, p 3 = n +, q 3 = n(n + 2) α p = p 3 p q 3 = n(n + 2) = q 2( + 2 n ) q n q + 2 n > ε α p > ε q q 2 k α 8. α k > 0 2 α p k <, α p k < q k 2q 2 k q k 2q 2 k

40 30 2. α p k /q k p k /q k α p k q k + α p k q k = p k p k q k q k = < q k q k+ 2qk 2 + 2qk 2 /qk 2 /q2 k q k = q k 9. α a < b 2b 2 α. 6 a/b α 2 dα c bα a < 2b ( d > 0, α c < d 2bd c d a ) b c d a α c + α a < b d b 2bd + 2b 2 = b + d 2b 2 d c/d a/b c d a b bd (3) ab < b + d 2b 2 d d > b a/b α (3)

41 α k > 3 α p k q k <, 5q 2 α p k k q k <, 5q 2 k α p k 2 q k 2 < 5q 2 k 2. k qk 2 = ϕ k, q k ϕ k + r k = ψ k 2. k 2 ψ k 5 ψ k 5 ϕ k > 5 2. = q n = a n + ϕ n (32) ϕ n+ q n r n = a n + r n+ + = ϕ n + r n = ψ n ϕ n+ r n+ ϕ k + r k 5, ϕ k + r k 5 ( ( ) 5 5 ϕ k ) ϕ k 5 ) 5 (ϕ k + ϕk > 0 4 I. I. Zhogin Variant dokazatel stva odnoi teoremy iz teoriǐtsepnykh drobei, Uspekhi matematicheskikh nauk, 2, No. 3, (957) ϕ k

42 32 2 ϕ k > 0 ( ) ϕ k < ϕ k < 5 2, ϕ k > 2 α p n (n = k, k, k 2) 5q 2 n q n (6) α p n = p n r n+ + p n p n q n r n+ + q n q n = q n q n (q n r n+ + q n ) = q 2 n(r n+ + ϕ n+ ) = q 2 nϕ n+ ϕ n+ 5 (n = k, k, k 2) 5 5 ϕ k >, ϕ k+ > 2 2 (32) a n = 2 5 ϕ k < = ϕ k α = [;,,...] α = + (/r ) r = α α = + α, α2 α = 0

43 8. 33 α = n r n = α α = p kα + p k q k α + q k α p k q k = q k (q k α + q k ) = ( α + q k 6 q 2 k q k q k = [;,,..., ] α (k ) q k q k = α + ε k = α p k q k = ( 5+ qk 2 q k ) 5 + ε k (ε k 0 as k ) ) = 2 + ε k qk 2( 5 + ε k ) c < (/ 5) k α p k > c q k q 2 k 20 / 5 α k α α = 2 ( 5 + ) k

44 34 2 c α α p q < c q 2 (33) p, q q > 0 2. α c (/ 5) (33) p, q q > 0 c < (/ 5) α (33). 20 α a/b 2 n =, 2, 3,... q = nb p = na c < (/ 5) 7 α = = [;,,...] 2 p q q > 0 (33) 9 p/q α 7 c < (/ 5) (33) α q/( 5q 2 ) 5 5

45 ϕ(q) α p q < ϕ(q) p, q q > 0 α. a k+ > qk 2ϕ(q k) α a 0 k 0 α p k q k < = q k q k+ q k (a k+ q k + q k ) a k+ qk 2 < ϕ(q k ) q k (q k + q k+ ) < α p k q k q k q k+ ( ) < qk 2 a k+ + + q α p k k q k qk 2a k+ + q k q q k k q k (a k+ + 2) < α p k q k qk 2a k+ (34) a 0, a,..., a k a k+ p k /q k α (34)

46 = [;,,...] 2 a α c α p q < c q 2 p, q q > 0 α c > 0 (33) /q 2. α c k a k+ > c (34) 2 α p k < c q k q 2 k k 2 M > 0 a k < M (k =, 2,...) (34) k 0 α p k > (M + 2) q k q 2 k

47 8. 37 p q q > 0 k q k < q q k α p q α p ( ) k 2 q k > qk 2(M + 2) = q q 2 (M + 2) q k ( ) 2 ( ) 2 qk q k > q 2 = (M + 2) q k q 2 (M + 2) a k q k + q k 2 > q 2 (M + 2) (a k + ) 2 > (M + 2)(M + ) 2 q 2 c < (M + 2)(M + ) 2 (33) p q q > 0 α (p/q) 6 qα p 2 x, y αx y = 0 (35) α x = y = 0 x y αx y (35) 2 / 5 C αx y < C (36) x x y y > 0 (35) αx y = β (37)

48 38 2 β x y x y αx y β P. L. Chebyshev β x y αx y β α αx y α b > 0 a α = a/b β = /2b x, y αx y β = 2(ax by) 2b 2b 2(ax by) α αx y β 24. α β αx y β < 3/x x y x > / p/q α α = p q + δ q 2 (0 < δ < ) (38) β t qβ t 2 6 Printsip Dirikhle v teorii diofantovykh, Uspekhi matematicheskikh nauk, priblizheniǐ 3, No. 3, 7 8 (948) O zadache Chebysheva, Izvestiya akad. nauk SSSR, ser. matem., 0, (946) B.G.

49 8. 39 β = t q + δ 2q ( δ ) (39) p q ± x y q 2 x < 3q, px qy = t 2 r/s p/q qr ps = ε = ±, k q(εrt) p(εst) = tε 2 = t p kq εst) q(kp εrt) = t k q 3q x = kq εst < 2 2 (38) (39) αx y β = xp q + xδ q 2 y t q δ 2q = xδ q 2 δ 2q < x q 2 + 2q q > 2 3 x αx y β < 9 4x + 3 4x = 3 x q x /2 x (37) x y αx y β 24 n α β x > 0 y αx y β < n (40)

50 /n N n α β (40) x N 24 x x β = n α x y 0 < x n, αx y < n. α q/b 0 < b < n x = b y = a α n k q k n < q k+ p k /q k α k α p k < q k q k+ q k n q k αq k p k < n, 0 < q k n (37) α C 0 < x Cn, αx y β < n

51 8. 4 n β x y C = C α α αx y β β α αx y β 24 β x y α αx y αx y β α 26. n β 2 x, y x > 0 x Cn, αx y β < n C α. α = [a 0 ; a, a 2,...] a i < M i =, 2,... m β α p k /q k k q k m < q k+ α p k q k < < q k q k+ mq k α = p k + δ q k mq k ( δ ) (4) t βq k t 2 β = t q k + δ 2q k ( δ ) (42)

52 x y xp k yq K = t, 0 < x q K (43) (4) (42) (43) αx y β = xp k y t + xδ δ q k q k mq k 2q k = xδ δ mq k 2q k < x + mq k 2q k m + ( ) qk+ 2q k+ q k < m + 2m (a k+ + ) < m + M + 2m = M + 3 2m m n m = 2 (M + 3) m > x y 0 < x q k m = M + 3 n 2 αx y β < n 2 α a k 23 ε q > 0 p α p q < ε2 q 2 α = p q + δε2 q 2 ( δ < ) n = q/ε β = /2q x y 0 < x Cn αx y β = xp q y 2q + xδε2 q 2 = 2(xp yq) 2q > 2(xp yq) 2q xε2 q 2 2q Cε q + xδε2 q 2 = 2Cε 2q = 2Cε 2ε C ε [( 2Cε)/2ε] > x y 0 < x Cn n αx y β > n

53 (37) normal C α /n x < Cn n β = supernormal ε > 0 n /n x < εn x > 0 y 26 C β C β 2 9 f(x) = a 0 + a x + + a n x n (44) a 0, a,..., a n n α α = a/b bx a = 0 n f(x) = 0 n x transcendental e π Liouville 27. n α C

54 44 2 p q q > 0 α p q > C q n. α (44) f(x) = (x α)f (x) (45) f (x) n f (α) 0 f (α) = 0 f (x) x α f(x) (x α) 2 f (x) x α f (α) = 0 f (x) α n f (α) 0 δ f (x) 0 (α δ x α + δ) p q q > 0 α (p/q) δ f (p/q) 0 x = p/q (45) p q α = f( p q ) f ( p q ) = a p 0 + a ( q ) + + a n( p q )n f ( p q ) = a 0q n + a pq n + + a n p n q n f ( p q ) α = p/q α (α δ, α + δ) f (x) M α p q Mq n α p q > δ α p q > δ q n

55 C δ /M q > 0 p α p q > C q n C > 0 n p q q > 0 α p q C q n (46) α a 0, a,..., a k p k /q k a k+ > q k k α p k q k < < q k q k+ qk 2a k+ < q k+ k C > 0 n k (46) α α C α p q < C q 2 p q q >

56 46 2 Lagrange 2 2 α = [a 0 ; a, a 2,...] periodic k 0 h k k 0 a k+h = a k 0 α = [a 0 ; a, a 2,..., a k0, a k0, a k0 +,..., a k0 +h ] (47) (47) r k+h = r k (k k 0 ) (6) k k 0 α = p k r k + p k 2 q k r k + q k 2 = p k+h r k+h + p k+h 2 q k+h r k+h + q k+h 2 = p k+h r k + p k+h 2 q k+h r k + q k+h 2 (48) pk r k + p k 2 q k r k + q k 2 = p k+h r k + p k+h 2 q k+h r k + q k+h 2 r k 2 2 (48) α 2 α 2 aα 2 + bα + c = 0 (49) α n α = p n r n + p n 2 q n r n + q n 2

57 (6) r n A n r 2 n + B n r n + C n = 0 (50) A n, B n, C n A n = ap 2 n + bp n q n + cq 2 n, B n = 2ap n p n 2 + b(p n q n 2 + p n 2 q n ) + 2cq n q n 2, C n = ap 2 n 2 + bp n 2 q n 2 + cq 2 n 2 (5) C n = A n (52) B 2 n 4A n C n = (b 2 4ac)(p n q n 2 q n p n 2 ) 2 = b 2 4ac (53) (50) n (49) α p n < q n (5) q 2 n p n = αq n + δ n q n ( δ n < ) ( A n = a αq n + δ ) ( n + b αq n + δ ) n q n + cqn 2 q n q n = (aα 2 + bα + c)qn 2 + 2aαδ n + a δ2 n qn bδ n (49) A n = 2aαδ n + a δ2 n + bδ n < 2 aα + a + b q 2 n (52) C n = A n < 2 aα + a + b

58 48 2 (50) A n C n n (53) B n n (50) r n k h r k = r k+h α 2 2 2

59 49 3 p/q /q () (2) 2 measure arithmetic of the continuum

60 50 3 a 4 = 2 q measure theory of continued fractions 0 a 0 = 0 2 α = [a 0 ; a, a 2,...] a n α α a n = a n (α) a 0 = 0 α = [a 0 ; a, a 2,...] α = [a, a 2,...]

61 2. 5 [a, a 2,...] = a + a α a α = a + a 2 + a = [/α] a /α a =, a = 2, a = 3, a = k, α < 2 2 < α 2 α < 3 3 < α 2 3 α < 4 4 < α 3 k α < k + k + < α k a = a (α) /α α α 0 3. a k + < α k intervals of the first rank 0 a (α) dα = + k= ( k k ) = k + k= k +

62 : a 2 (α) k + < α k a = k α = k + r 2 r 2 < a 2 = [r 2 ] r 2 α /(k + ) /k a 2 =, a 2 = 2, a 2 = 3, r 2 < 2 k + < α 2 r 2 < 3 k r 2 < 4 k + 3 k + 2 < α k + 3 < α k + 4

63 2. 53 a 2 = l, l r 2 < l + k + l < α k + l+ a 2 (α) : a 2 (α) ( k +, l ) k + l+ 2 2 a = k a 2 = l 2 a = k 2 a = k, a 2 = l n a (α), a 2 (α),..., a n (α) a = k, a 2 = k 2,..., a n = k n (54)

64 54 3 n J n J n a n+ (α) α α = [k, k 2,..., r n, r n+ ] (55) r n+ r n+ < r n+ < (55) (54) α J n a n+ = [r n+ ] n a n+ (α) α p k /q k α = p nr n+ + p n q n r n+ + q n α J n r n+ p n, q n, p n, q n a, a 2,..., a n J n r n+ = r n+ J n p n + p n q n + q n p n q n α p n = p nr n+ + p n p n ( ) n = q n q n r n+ + q n q n q n (q n r n+ + q n ) α (, ) r n+ r n+ a n+ J n = ( pn, p ) n + p n q n q n + q n α α J n a n+ (α), 2, 3,... J n n + n n a n (α) (0, ) 0 n n + n n a n+ (α) n = 0,, 2,... n +

65 2. 55 n a = k, a 2 = k 2,..., a n = k n n a m = k, a m2 = k 2,..., a ms = k s (0, ) a n = k (0, ) ( ) n, n 2,..., n s E k, k 2,..., k s a n = k, a n2 = k 2,..., a ns = k s n i k i n i ( ), 2,..., n E k, k 2,..., k n n a i = k i (i =, 2,..., n) ( ) n,..., n l, n l, n l+,..., n s E k,..., k l, k l k l+,..., k s ( ) n,..., n l, n l+,..., n s = E k,..., k l, k l+,..., k s k l = (56)

66 56 3 ME E n ( ), 2,..., n J n = E k, k 2,..., k n n + ( ) J (s) n+ = E, 2,..., n, n + k, k 2,..., k n, s J n p n q n p n + p n q n + q n p k /q k [k, k 2,..., k n ] k J (s) n+ a n+ = [r n+ ] = s s r n+ < s + J n α = p nr n+ + p n q n r n+ + q n s r n+ < s + n+ n+ p n s + p n p n(s + ) + p n q n s + q n q n (s + ) + q n J (s) MJ n = p n p n + p n q n q n + q n = q n (q n + q n ) = qn( 2 + q n q n ) J (s)

67 2. 57 MJ (s) n+ = p n s + p n p n(s + ) + p n p n s + q n q n (s + ) + q n = [q n s + q n ][q n (s + ) + q n ] = ) ( qns ( q n sq n + s + q n MJ (s) n+ = + ( MJ n s 2 + qn q n q n ) ( sq n + s + qn sq n ) + q n q n + qn sq n + s + q n sq n < 3 sq n ) (s) MJ n+ < < 2 3s2 MJ n s 2 (57) n a n+ = s n + /s 2 (57) k, k 2,..., k n n s MJ n 3s 2 < MJ (s) n+ < 2MJ n s 2 n J n k, k 2,..., k n ( ) (s) MJn =, MJ n+ = ME n + s ( ) 3s 2 < ME n + < 2 s s 2 s /3s 2 2/s 2 /s 2

68 (0, ) 0. (0, ) M E M J n n a i < M (i =, 2,..., M) (58) J n a n+ = k n + n+ (57) J (k) MJ (k) n+ > 3k 2 MJ n M k M J (k) n+ > 3 MJ n k 2 k M M > 3 MJ n k<m i= (M + i) 2 > 3 MJ du n M+ u 2 = 3(M + ) MJ n k= J (k) n+ > { τ = J (k) n+ = J n } MJ n = τmj n (59) 3(M + ) 3(M + ) M > 0 τ < E (n) M (58) (0, ) (59) n J n E (n+) M τmj n n E (n) M

69 3. 59 (58) E (n+) M (59) E (n) n ME (n+) M < τme (n) M (60) ME (n+) M < τ n ME () M (n ) τ < ME (n) M 0 (n ) E M ME M = 0 E M = E M= ME ME M = 0 M= E (n) M M E M E 2 23 α p q < C q 2 (6) α (6)

70 ϕ(n) n n= /ϕ(n) a n = a n (α) ϕ(n) (62) α n n= /ϕ(n) α n ϕ(n) M J n+m m + n E M a m+i < ϕ(m + i) (i =, 2,..., n) (63) a, a 2,..., a m 29 (59) M k<ϕ(m+n+) J (k) m+n+ < { 3( + ϕ(m + n + )) } MJ m+n (63) m + n (0, ) E m,n { } ME m,n+ < ME m,n 3( + ϕ(m + n + )) ME m,n < ME m, i=2 { } 3( + ϕ(m + i)) n= /ϕ(n) i=2 3( + ϕ(m + i))

71 3. 6 m i=2 3( + ϕ(m + i)) n 0 m ME m,n 0 (n ) a m+i < ϕ(m + i) (i =, 2,...) α E m,n (n =, 2,...) E m 0 E + E E m + = E ME = 0 (62) α m E m E n= /ϕ(n) J n n a n+ = k n + (57) 2 M k>ϕ(n+) J (k) n+ < 2MJ n 2MJ n MJ (k) n+ < 2 k 2 MJ n k>ϕ(n+) i=0 k 2 {ϕ(n + ) + i} 2 { < 2MJ n ϕ(n + ) + ϕ(n+) } du u 2 = 4MJ n ϕ(n + ) J (k) n+

72 62 3 (0, ) a n ϕ(n) F n n MF n+ < 4 ϕ(n + ) MJn = F, F 2,..., F n,... (0, ) F n F 2 MF = 0 F n (62) B n q n = q n (α) < e Bn 4 2 α q n n 3 α 2 a A < a < A (0, ) α n a < n q n < A 2 F m n=m Fn n=m MFn m

73 4. 63 γ n qn γ (n ) q n. (0, ) a a 2... a n g E n (g) n > 0, g 0 n 2 p n p n + p n q n q n + q n = q n (q n + q n ) < < (a n a n... a 2 a ) 2 q n > q n q n q 2 n q n > a n a n... a 2 a ME n (g) < a 2 na 2 n... a2 2 a2 a a 2...a n g (64) a a 2... a n g a, a 2,... a n n a 2 i= i = n ) ( + ai n a i (a i + ) 2n a i (a i + ) i= = 2 n n i= ai+ a i dx i x 2 i i= = 2 n a+ a a2+ a 2... an+ a n dx dx 2... dx n x 2 x x2 n Zur metrischen Kettenbruchtheorie, Composite Mathematica, 3, No. 2, (936) P. Lévy γ ln γ = π 2 /(2 ln 2) P. Lévy, Théorie de l addition des variables aléatoires, Paris, 937, p. 320 B.G.

74 64 3 { n } 2 n J n (g) a a 2...a n g a 2 i= i J n (g) n dx dx 2... dx n... x 2 x x2 n x i (i =, 2,..., n) x x 2... x n g g x i < i =, 2,..., n { } n dx J n (g) = x 2 = (65) g > J n (g) = g n i=0 (ln g) i i! (66) n = 0 dx x 2 = g n = k ( ) dx k+ g J k+ (g) = x 2 J k = g J k (u) du k+ x k+ g 0 = { g } J k (u) du + J k (u) du g 0 J k (u) (65) 2 (66) n = k, g { } J k+ (g) = k (ln g) i+ + = k (ln g) i g (i + ) g i! i=0 i=0

75 4. 65 ME n (g) < 2n g n i=0 (ln g) i i! A > g = e An n ME n (e An ) < e n(ln 2 A) i=0 (An) i (An) n n! Stirling ME n (e An ) < e n(ln 2 A) n (An)n n! < C e n(ln 2 A) n(an) n n n e n n < C 2 ne n(a ln A ln 2 ) C C 2 A A ln A ln 2 > 0 ME n (e An ) n ME n (e An ) n= 0 (0, ) E n (e An ) (0, ) n a a 2... a n < e An i! q n = a n q n + q n 2 < 2a n q n q n < 2 n a n q n... a 2 a

76 66 3 n q n < 2 n e An = e Bn B = A + ln f(x) x xf(x) α p q < f(q) q α p q q > 0 c c (67) f(x) dx (68) (68) (67) α p q q > 0 32 α p q < q 2 ln q α p q < q 2 ln +ε q ε > 0 0. (68) ϕ(x) = e Bx f(e Bx )

77 4. 67 B 3 A > a > 0 A a ϕ(x) dx = b BA Ba f(u) du A ϕ(x) ϕ(n) n= 30 a i+ ϕ (i) i α p i a i+qi 2 q i q i+ q i 3 i q i < e bi i > ln q i B (69) ( ) α p i ϕ ln qi q i B = f(q i) q i q 2 i i i ϕ(i) q 2 i 2 (68) f(n) n= (0, ) k α k n < f(n) n (69)

78 68 3 α E n E n /n, 2/n,..., (n )/n 2f(n)/n (0, f(n)/n) ( f(n)/n, ) ME n 2f(n) < f(n) > 2 ME n n= (0, ) α E n (0, ) α α p q f(q) q q p 2 5 Gauss α = [0; a, a 2,..., a n,...] r n = r n (α) = [a n ; a n+, a n+2,...] [0; a n+, a n+2,...] 4 R. O. Kuz min Ob odnoǐzadache Gaussa, Doklady akad. nauk, ser. A, (928) P. Lévym Sur les lois de probabilité dont dependent les quotients complets et incomplets d une fraction continue, Bull. Soc. Math., 57, (929) B.G.

79 5. 69 z n = z n (α) z n = r n = a n (0, ) α 0 z n < z n (α) < x m n (x) Laplace lim m ln( + x) n(x) = n ln 2 n ln( + x) m n (x) (70) ln 2 Kuz min (70) 5 m 0 (x), m (x), m 2 (x),..., m n (x),... { ( ) ( )} m n+ (x) = m n m n k k + x k= (0 x, n 0) (7) a n = a n+ + z n+ a n+ < x 5

80 70 3 k k + x < z n k ( ) ( ) m n m n k k + x (7) C ϕ(x) = ϕ(x) = C ln( + x) k= { ( ) ( )} ϕ ϕ k k + x m n (x) n (7) m n+(x) = k= ( ) (k + x) 2 m n k + x (72) z 0 (α) = α m 0 (x) = x m 0(x) = m n(x) n (72) (0, ) m n+(x) (72) (72) (7) 33. f (x), f 2 (x),..., f n (x),... (0, ) f n+ (x) = k= ( ) (k + x) 2 f n k + x 0 x 0 < f 0 (x) < M (72) (n 0) (73)

81 5. 7 f 0(x) < µ f n (x) = a + x + n θae λ (0 x ) a = ln 2 0 f 0 (z) dz θ < λ A M µ 3. n 0 (n) ( ) pn + xp n f n (x) = f0 q n + xq n (q n + xq n ) 2 (74) (p n /q, (p n + p n )/(q n + q n ) n n a, a 2,..., a n. n = 0 (74) (0, ) p 0 = 0, q 0 =, p =, q = 0 (74) n (73) f n+ (x) = ( ) (k + x) 2 f n k + x k= ( (n) pn + k+x = p ) n f0 (k + x) 2 q n + k+x q n k= (n) = k= ( ) (pn k + p n ) + xp n f 0 (q n k + q n ) + xq n = ( q n + k+x q n ) 2 {(q n k + q n ) + xq n } 2 (n+) ( ) pn+ + xp n f0 q n+ + xq n (q n+ + xq n ) 2

82 n 0 f n(x) < µ + 4M 2n 3. (74) f n(x) = (n) f 0 (u) ( )n (n) (q n xq n ) 4 2 q n f0 (u) (q n + xq n ) 3 u = p n + xp n q n + xq n 0 x (q n + xq n ) 2 < 2 q n (q n + q n ) 2 q n (q n + q n ) > q 2 n > 2 n (n) (n) q n (q n + q n ) = p n p n + p n q n q n + q n = 33 f n(x) < µ + 4M 2n 3 5. t + x < f n(x) < T + x t + x < f n+(x) < T + x (0 x ) (0 x )

83 (73) t k= k= t + (k + x) k+x 2 < f n+(x) < (k + x)(k + x + ) < f n+(x) < T t k= ( ) k + x < f n+ (x) < T k + x + k= T + (k + x) k+x 2 k= k= t + x < f n+(x) < T + x (k + x)(k + x + ) ( ) k + x k + x f n (z) dz = 0 f 0 (z) dz (n = 0,, 2,...). (73) n > 0 0 f n (z) dz = = ( ) dz f n k + z (k + z) 2 k= k= k k+ f n (u) du = 0 f n (u) du 33. f 0 (x) 0 x m m f 0 (x) < M 0 x m 2( + x) < f 0(x) < 2M + x g + x < f 0(x) < G + x (0 x ) (0 x )

84 74 3 g = m 2, G = 2M f n (x) g q + x = ϕ n(x) (0 x, n = 0,, 2,...) 5 F (x) = g/( + x) F (x) = F k= ( ) k + x (k + x) 2 ϕ 0 (x), ϕ (x),..., ϕ n (x),... (73) (74) ϕ n (x) = u = p n + xp n q n + xq n (n) ϕ0 (u) (q n + xq n ) 2 q n + xq n q n + q n < 2q n ϕ 0 (u) > 0 ϕ n (x) > 2 (n) ϕ0 (u) q n (q n + q n ) (75) 2 0 ϕ 0 (z) dz = 2 ϕ 0(u ) q n (q n + q n ) u (p n /q n, (p n +p n )/(q n +q n ) /[q n (q n + q n )] (75) (76) (76) ϕ n (x) 2 0 ϕ 0 (z) dz > 2 (n) {ϕ0 (u) ϕ 0 (u )} q n (q n + q n ) (77)

85 5. 75 ϕ 0 (x) f 0(x) + g < µ + g (0 x ) ϕ 0 (u) ϕ 0 (u ) < (µ + g) u u < < µ + g q 2 n < µ + g 2 n (77) ϕ n (x) > 2 f n (x) > 0 µ + g q n (q n + q n ) ϕ 0 (z) dz µ + g 2 n = l µ + g 2 n l = 2 0 ϕ 0 (z) dz g + x + l µ + g 2 n > g + l 2 n+ (µ + g) = g q + x + x ψ n (x) = G + x f n(x) (n = 0,, 2,...) f n (x) < G l + 2 n+ (µ + G) + x l = 2 0 ψ 0 (z) dz = G + x l > 0 l > 0 n g < g < G < G G g < G g (l + l ) + 2 n+2 (µ + G) l + l = 2 0 G g + z dz = (G g)ln 2 2

86 76 3 G g < (G g)δ + 2 n+2 (µ + G) δ = ln 2 2 < n g + x < f 0(x) < G + x, f 0(x) < µ g + x < f n(x) < G + x g < g < G < G, G g < (G g)δ + 2 n+2 (µ + G) f 0 (x) f n (x) µ g 2 + x < f 2n(x) < G 2 + x g < g 2 < G 2 < G, G 2 g 2 < δ(g g ) + 2 n+2 (µ + G ) f n(x) < µ (0 x ) g r + x < f rn(x) < G r + x (0 x ; r = 0,, 2,... r > 0 g r < g r < G r < G r G r g r < δ(g r g r ) + 2 n+2 (µ r + G r ) (78) µ r f (r )n (x) < µ r (0 x )

87 µ r = µ + 4M (r = 0,, 2,...) 2rn 3 n µ r < 5M (r =, 2,...) (78) r =, 2,..., n G n g n < (G g)δ n + 2 n+2 {(µ + 2M)δ n + 7Mδ n 2 + 7Mδ n Mδ + 7} δ < G n g n < Be λn λ > 0 B > 0 M µ lim G n = lim = a n n f n 2(x) a + x (0 x ) (79) 0 f n 2(z) dz a ln 2 (n ) 6 a = ln 2 0 f 0 (z) dz n 2 N < (n + ) 2 (79) a 2Be λn + x < f n 2(x) < a + 2Be λn + x

88 a 2Be λn + x < f N (x) < a + 2Be λn + x f N(x) a + x < 2Be λn < Ae λ(n+) < Ae λ N A = 2Be λ N A N 0 33 f n (x) = m n(x) (0 x ) f 0 (x) 33 m n(x) ( + x) ln 2 < Ae λ n (0 x ) (80) m ln( + x) n(x) ln 2 < Ae λ n (0 x ) A λ 6 n a n = k a n = k ( ) ( n ME = m n k k k + < z n k ) ( ) m n = k + k k+ m n (x) dx 6 B.G. m n (x) ln( + x) ln 2 < Ae λn (0 x )

89 5. 79 (80) ( ) { } ME n ln + k(k+2) k ln 2 < A n k(k + ) e λ (8) ( ) n 3 ME k ( ) { } n ln + k(k+2) ME (n ) k ln 2 a n = n ln 4 ln 3 ln 2 33 k z k+n < x M n (x) M n (x) (0, ) a = r, a 2 = r 2,..., a k = r k ; z k+n < x (82) r, r 2,..., r k n 0 x 0 x (82) a = r, a 2 = r 2,..., a k = r k ; r + x < z k+n r r { ( ) ( )} M n (x) = M n M n (n, 0 x ) r r + x r= M 0(x), M (x),..., M n(x),... (73) (p k /q k, (p k + p k )/(q k + q k )) α α = p kr k+ + p k q k r k+ + q k

90 80 3 z k = /r k+ α = p k + z k p k q k + z k q k z k < x α p k /q k (p k + xp k )/(q k + xq k ) M 0 (x) = p k p k + xp k q k q k + xq k = x q k (q k + q k x) ( ), 2,..., k M n (x) = ME χ n (x) (n 0, 0 x ) r, r 2,..., r k χ 0 (x), χ (x),..., χ n (x),... χ n(x) M n(x) (73) ( ), 2,..., k ME = p k r, r 2,..., r p k + p k k q k q k + q k = q k (q k + q k ) (83) χ 0 (x) = (q k + q k )x q k + q k x χ 0(x) = q k(q k + q k ) (q k + q k x) 2 χ 0(x) = 2q kq k (q k + q k ) (q k + q k x) 3 2 < χ 0(x) < 2, χ 0(x) < 4 (0 x ) (83)

91 χ n(x) A λ r, r 2,..., r k χ M n(x) = n(x) ( ) =, 2,..., k ( + x) ln 2 + n θae λ, θ < ME r, r 2,..., r k r /(r + ) /r θ < ( M ) ( ) n r Mn r+ ( ) =, 2,..., k ME r, r 2,..., r k { } ln + r(r+2) + θ A n ln 2 r(r + ) e λ ( ) ( ) ( ), 2,..., k, k + n + M n M n = ME r r + r, r 2,..., r k, r ( ), 2,..., k, k + n + ME r, r 2,..., r k, r { } = ln + r(r+2) + θ Ae λ ( ) n, 2,..., k ME ln 2 r(r + ) r, r 2,..., r k r, r 2,..., r k, 2,..., k n, n 2,..., n t A λ n < n 2 < < n t < n t+ r, r 2,..., r t, r ( ) n, n 2,..., n t, n t+ { } ME r, r 2,..., r t, r ln + r(r+2) ( ) A n, n 2,..., n t ln 2 < r(r + ) e λ n t+ n t ME r, r 2,..., r t

92 82 3 (0, ) a n = r n f(r) r C δ f(r) < Cr 2 δ (r =, 2,...) (0, ) 0 { } n ln + r(r+2) lim f(a k ) = f(r) (84) n n ln 2 k= r= (84) f(r). 0 f(a k ) dα = u k, 0 0 {f(a k ) u k } 2 dα = b k, {f(a i ) u i }{f(a k ) u k } dα g ik n {f(a k ) u k } = s n = s n (α) k= f(r) {f(a k )} 2 dα = {f(r)} 2 < C 2 r 2δ ( ) {f(r)} 2 k ME < 2C 2 r r 2δ r 2 = C 0 r= r= 7 Metrische Kettenbruchprobleme, Composito Mathematica,, (935) B.G.

93 6. 83 Bunyakovskiǐ Schwarz b k = {f(a k )} 2 dα u 2 k < C, 0 u k = f(a k ) dα < {f(a k )} 2 dα < (85) C 0 k > i ( ) i, k g ik = f(a i )f(a k ) dα u i u k = f(r)f(s)me u i u k (86) r, s 0 0 r,s= 34 2 ( ) { } ME i, k ln + ( ) s(s+2) i ME r, s ln 2 r ( ) k i < Ae λ i ME s(s + ) r ( ) ( ) < 3Ae λ k i i k ME ME r s (87) ( ) { } ME k ln + ( ) s(s+2) k s ln 2 < Ae λ < 3Ae λ k k ME (88) s(s + ) s ( ) i (88) ME (87) r ( ) ( ) ( ) ( ) ( ) ME i, k i k ME ME r, s r s < k i i k 6Ae λ ME ME r s (86) ( ) ( ) g i k ik f(s)f(s)me ME + u i u k r s r,s= ( ) ( ) < 6Ae λ k i i k f(s)f(s)me ME r s r,s=

94 84 3 ( ) ( ) i k f(s)f(s)me ME = u i u k r s r,s= (85) 2 g ik < 6Ae λ k i u i u k < 6AC e λ k i (89) (85) (89) n > m > 0 (s n s m ) 2 dα = 0 0 = = { n n k=m+ + 2 k=m+ n 0 i=m+ k=i+ n k=m+ b k AC n (f(a k ) u k )} 2 dα {f(a k ) u k } 2 dα n int 0{f(a i ) u i }{f(a k ) u k } dα n i=m+ k=i+ i=m+ k=i+ n g ik < C (n m) e λ k i < C 2 (n m) (90) C 2 e n (0, ) s n εn ε 0 s 2 n dα s 2 n dα ε 2 n 2 Me n e n (90) m = 0 Me n 0 s2 n dα ε 2 n 2 < C 2 ε 2 n

95 6. 85 Me n 2 n= (0, ) n =, 2, 3,... e n 2 (0, ) n s n 2 n 2 < ε ε s lim n 2 n n 2 = 0 (9) n 2 N < (n + ) 2 (90) 0 (s N s n 2) dα < C 2 (N n 2 ) < C 2 (2n + ) 3C 2 n (0, ) s N s n 2 εn 2 e n,n (n+) 2 N=n 2 e n,n E n n 2 N < (n + ) 2 (s N s n 2) 2 dα (s N s n 2) 2 dα > ε 2 n 4 Me n,n 0 e n,n ME n (n+) 2 Me n,n < ec 2 ε 2 n 3 Me n,n < 3C 2(2n + ) ε 2 n 3 9C 2 ε 2 n 2 N=n 2 n= ME n (0, ) E n e n,n (0, ) s N s n 2 > εn 2 n n 2 N < (n + ) 2 s N s n 2 n 2 < ε

96 86 3 n n 2 N < (n + ) 2 ε s N n 2 s n 2 n 2 0 (n, n2 N < (n + ) 2 ) (9) s N n 2 0 (n, n2 N < (n + ) 2 ) S N N 0 (N ) N N f(a k ) N k= N u k 0 (N ) (92) (8) { } ln + u r(r+2) k f(r) ln 2 = r= ( ) f(r) ME k ln r r= { + r(r+2) ln 2 k= } < Ae λ k r= f(r) r(r + ) < A e λ k A { } ln + r(r+2) u k f(r) (k ) ln 2 r= N N u k k= r= ln f(r) (92) N N f(a k ) k= r= { } + r(r+2) ln 2 (N ) { } ln + r(r+2) f(r) ln 2 (0, ) 35

97 6. 87 f(r) = r = k f(r) = 0 r k k ψ n (k) = n f(a i ) i= n k ψ n (k) n = n n f(a i ) i= n k ψ n (k) lim = d(k) n n k f(n) 35 k d() = ln 4 ln 3, d(2) = ln 2 ln 9 ln 8 ln 6 ln 5, d(3) = ln 2 ln 2 f(r) = ln r (r =, 2, 3,...) 35 n n ln a i i= r= { } ln + r(r+2) ln(r) ln 2 (n )

98 88 3 n a a 2... a n r= { } ln r ln 2 + r(r + 2) n n r= { } ln r ln 2 + = r(r + 2) 35 n n a i (93) i= f(r) = r 35 (93) 30 3 n a n > n ln n n a i > n ln n i= n a i < ln n n i= (93)

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a φ + 5 2 φ : φ [ ] a [ ] a : b a b b(a + b) b a 2 a 2 b(a + b). b 2 ( a b ) 2 a b + a/b X 2 X 0 a/b > 0 2 a b + 5 2 φ φ : 2 5 5 [ ] [ ] x x x : x : x x : x x : x x 2 x 2 x 0 x ± 5 2 x x φ : φ 2 : φ ( )

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

2012 A, N, Z, Q, R, C

2012 A, N, Z, Q, R, C 2012 A, N, Z, Q, R, C 1 2009 9 2 2011 2 3 2012 9 1 2 2 5 3 11 4 16 5 22 6 25 7 29 8 32 1 1 1.1 3 1 1 1 1 1 1? 3 3 3 3 3 3 3 1 1, 1 1 + 1 1 1+1 2 2 1 2+1 3 2 N 1.2 N (i) 2 a b a 1 b a < b a b b a a b (ii)

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

3 m = [n, n1, n 2,..., n r, 2n] p q = [n, n 1, n 2,..., n r ] p 2 mq 2 = ±1 1 1 6 1.1................................. 6 1.2......................... 8 1.3......................... 13 2 15 2.1.............................

More information

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n . 99 () 0 0 0 () 0 00 0 350 300 () 5 0 () 3 {a n } a + a 4 + a 6 + + a 40 30 53 47 77 95 30 83 4 n S n S n = n = S n 303 9 k d 9 45 k =, d = 99 a d n a n d n a n = a + (n )d a n a n S n S n = n(a + a n

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P 6 x x 6.1 t P P = P t P = I P P P 1 0 1 0,, 0 1 0 1 cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ x θ x θ P x P x, P ) = t P x)p ) = t x t P P ) = t x = x, ) 6.1) x = Figure 6.1 Px = x, P=, θ = θ P

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i [ ] (2016 3Q N) a 11 a 1n m n A A = a m1 a mn A a 1 A A = a n (1) A (a i a j, i j ) (2) A (a i ca i, c 0, i ) (3) A (a i a i + ca j, j i, i ) A 1 A 11 0 A 12 0 0 A 1k 0 1 A 22 0 0 A 2k 0 1 0 A 3k 1 A rk

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

ORIGINAL TEXT I II A B 1 4 13 21 27 44 54 64 84 98 113 126 138 146 165 175 181 188 198 213 225 234 244 261 268 273 2 281 I II A B 292 3 I II A B c 1 1 (1) x 2 + 4xy + 4y 2 x 2y 2 (2) 8x 2 + 16xy + 6y 2

More information

16 B

16 B 16 B (1) 3 (2) (3) 5 ( ) 3 : 2 3 : 3 : () 3 19 ( ) 2 ax 2 + bx + c = 0 (a 0) x = b ± b 2 4ac 2a 3, 4 5 1824 5 Contents 1. 1 2. 7 3. 13 4. 18 5. 22 6. 25 7. 27 8. 31 9. 37 10. 46 11. 50 12. 56 i 1 1. 1.1..

More information

ver Web

ver Web ver201723 Web 1 4 11 4 12 5 13 7 2 9 21 9 22 10 23 10 24 11 3 13 31 n 13 32 15 33 21 34 25 35 (1) 27 4 30 41 30 42 32 43 36 44 (2) 38 45 45 46 45 5 46 51 46 52 48 53 49 54 51 55 54 56 58 57 (3) 61 2 3

More information

iii 1 1 1 1................................ 1 2.......................... 3 3.............................. 5 4................................ 7 5................................ 9 6............................

More information

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P 4 ( ) ( ) ( ) ( ) 4 5 5 II III A B (0 ) 4, 6, 7 II III A B (0 ) ( ),, 6, 8, 9 II III A B (0 ) ( [ ] ) 5, 0, II A B (90 ) log x x () (a) y x + x (b) y sin (x + ) () (a) (b) (c) (d) 0 e π 0 x x x + dx e

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

高校生の就職への数学II

高校生の就職への数学II II O Tped b L A TEX ε . II. 3. 4. 5. http://www.ocn.ne.jp/ oboetene/plan/ 7 9 i .......................................................................................... 3..3...............................

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1, 17 ( ) 17 5 1 4 II III A B C(1 ) 1,, 6, 7 II A B (1 ), 5, 6 II A B (8 ) 8 1 I II III A B C(8 ) 1 a 1 1 a n+1 a n + n + 1 (n 1,,, ) {a n+1 n } (1) a 4 () a n OA OB AOB 6 OAB AB : 1 P OB Q OP AQ R (1) PQ

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign( I n n A AX = I, YA = I () n XY A () X = IX = (YA)X = Y(AX) = YI = Y X Y () XY A A AB AB BA (AB)(B A ) = A(BB )A = AA = I (BA)(A B ) = B(AA )B = BB = I (AB) = B A (BA) = A B A B A = B = 5 5 A B AB BA A

More information

_TZ_4797-haus-local

_TZ_4797-haus-local 1.1.................................... 3.3.................................. 4.4......................... 8.5... 10.6.................... 1.7... 14 3 16 3.1 ()........................... 16 3. 7... 17

More information

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0 (1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e 0 1 15 ) e OE z 1 1 e E xy 5 1 1 5 e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0 Q y P y k 2 M N M( 1 0 0) N(1 0 0) 4 P Q M N C EP

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6 1 1 1.1 64 A6, 1) B1, 1) 65 C A, 1) B, ) C 66 + 1 = 0 A1, 1) B, 0) P 67 A, ) B1, ) C4, 0) 1) ABC G ) A B C P 64 A 1, 1) B, ) AB AB = 1) + 1) A 1, 1) 1 B, ) 1 65 66 65 C0, k) 66 1 p, p) 1 1 A B AB A 67

More information

n ( (

n ( ( 1 2 27 6 1 1 m-mat@mathscihiroshima-uacjp 2 http://wwwmathscihiroshima-uacjp/~m-mat/teach/teachhtml 2 1 3 11 3 111 3 112 4 113 n 4 114 5 115 5 12 7 121 7 122 9 123 11 124 11 125 12 126 2 2 13 127 15 128

More information

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

数学概論I

数学概論I {a n } M >0 s.t. a n 5 M for n =1, 2,... lim n a n = α ε =1 N s.t. a n α < 1 for n > N. n > N a n 5 a n α + α < 1+ α. M := max{ a 1,..., a N, 1+ α } a n 5 M ( n) 1 α α 1+ α t a 1 a N+1 a N+2 a 2 1 a n

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

I II

I II I II I I 8 I I 5 I 5 9 I 6 6 I 7 7 I 8 87 I 9 96 I 7 I 8 I 9 I 7 I 95 I 5 I 6 II 7 6 II 8 II 9 59 II 67 II 76 II II 9 II 8 II 5 8 II 6 58 II 7 6 II 8 8 I.., < b, b, c, k, m. k + m + c + c b + k + m log

More information

,2,4

,2,4 2005 12 2006 1,2,4 iii 1 Hilbert 14 1 1.............................................. 1 2............................................... 2 3............................................... 3 4.............................................

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

prime number theorem

prime number theorem For Tutor MeBio ζ Eite by kamei MeBio 7.8.3 : Bernoulli Bernoulli 4 Bernoulli....................................................................................... 4 Bernoulli............................................................................

More information

Jacobi, Stieltjes, Gauss : :

Jacobi, Stieltjes, Gauss : : Jacobi, Stieltjes, Gauss : : 28 2 0 894 T. J. Stieltjes [St94a] Recherches sur les fractions continues Stieltjes 0 f(u)du, z + u f(u) > 0, z C z + + a a 2 z + a 3 +..., a p > 0 (a) Vitali (a) Stieltjes

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

.1 1,... ( )

.1 1,... ( ) 1 δ( ε )δ 2 f(b) f(a) slope f (c) = f(b) f(a) b a a c b 1 213 3 21. 2 [e-mail] nobuo@math.kyoto-u.ac.jp, [URL] http://www.math.kyoto-u.ac.jp/ nobuo 1 .1 1,... ( ) 2.1....................................

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

linearal1.dvi

linearal1.dvi 19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1  appointment Cafe David K2-2S04-00 : C 2S III IV K200 : April 16, 2004 Version : 1.1 TA M2 TA 1 10 2 n 1 ɛ-δ 5 15 20 20 45 K2-2S04-00 : C 2S III IV K200 60 60 74 75 89 90 1 email 3 4 30 A4 12:00-13:30 Cafe David 1 2 TA 1 email appointment Cafe

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,. (1 C205) 4 10 (2 C206) 4 11 (2 B202) 4 12 25(2013) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7. 8. 1., 2007 ( ).,. 2. P. G., 1995. 3. J. C., 1988. 1... 2.,,. ii 3.,. 4. F. ( ),..

More information

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1. () 1.1.. 1. 1.1. (1) L K (i) 0 K 1 K (ii) x, y K x + y K, x y K (iii) x, y K xy K (iv) x K \ {0} x 1 K K L L K ( 0 L 1 L ) L K L/K (2) K M L M K L 1.1. C C 1.2. R K = {a + b 3 i a, b Q} Q( 2, 3) = Q( 2

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 67 A Section A.1 0 1 0 1 Balmer 7 9 1 0.1 0.01 1 9 3 10:09 6 A.1: A.1 1 10 9 68 A 10 9 10 9 1 10 9 10 1 mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 A.1. 69 5 1 10 15 3 40 0 0 ¾ ¾ É f Á ½ j 30 A.3: A.4: 1/10

More information

Kullback-Leibler

Kullback-Leibler Kullback-Leibler 206 6 6 http://www.math.tohoku.ac.jp/~kuroki/latex/206066kullbackleibler.pdf 0 2 Kullback-Leibler 3. q i.......................... 3.2........... 3.3 Kullback-Leibler.............. 4.4

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 { 04 zz + iz z) + 5 = 0 + i z + i = z i z z z 970 0 y zz + i z z) + 5 = 0 z i) z + i) = 9 5 = 4 z i = i) zz i z z) + = a {zz + i z z) + 4} a ) zz + a + ) z z) + 4a = 0 4a a = 5 a = x i) i) : c Darumafactory

More information

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R V (I) () (4) (II) () (4) V K vector space V vector K scalor K C K R (I) x, y V x + y V () (x + y)+z = x +(y + z) (2) x + y = y + x (3) V x V x + = x (4) x V x + x = x V x x (II) x V, α K αx V () (α + β)x

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

(yx4) 1887-1945 741936 50 1995 1 31 http://kenboushoten.web.fc.com/ OCR TeX 50 yx4 e-mail: yx4.aydx5@gmail.com i Jacobi 1751 1 3 Euler Fagnano 187 9 0 Abel iii 1 1...................................

More information

2 (1) a = ( 2, 2), b = (1, 2), c = (4, 4) c = l a + k b l, k (2) a = (3, 5) (1) (4, 4) = l( 2, 2) + k(1, 2), (4, 4) = ( 2l + k, 2l 2k) 2l + k = 4, 2l

2 (1) a = ( 2, 2), b = (1, 2), c = (4, 4) c = l a + k b l, k (2) a = (3, 5) (1) (4, 4) = l( 2, 2) + k(1, 2), (4, 4) = ( 2l + k, 2l 2k) 2l + k = 4, 2l ABCDEF a = AB, b = a b (1) AC (3) CD (2) AD (4) CE AF B C a A D b F E (1) AC = AB + BC = AB + AO = AB + ( AB + AF) = a + ( a + b) = 2 a + b (2) AD = 2 AO = 2( AB + AF) = 2( a + b) (3) CD = AF = b (4) CE

More information

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law I (Radom Walks ad Percolatios) 3 4 7 ( -2 ) (Preface),.,,,...,,.,,,,.,.,,.,,. (,.) (Basic of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V I (..2) (0 < d < + r < u) X 0, X X = 0 S + ( + r)(x 0 0 S 0 ) () X 0 = 0, P (X 0) =, P (X > 0) > 0 0 H, T () X 0 = 0, X (H) = 0 us 0 ( + r) 0 S 0 = 0 S 0 (u r) X (T ) = 0 ds 0 ( + r) 0 S 0 = 0 S 0 (d r)

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト 名古屋工業大の数学 年 ~5 年 大学入試数学動画解説サイト http://mathroom.jugem.jp/ 68 i 4 3 III III 3 5 3 ii 5 6 45 99 5 4 3. () r \= S n = r + r + 3r 3 + + nr n () x > f n (x) = e x + e x + 3e 3x + + ne nx f(x) = lim f n(x) lim

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

平成 29 年度 ( 第 39 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 29 ~8 年月 73 月日開催 31 日 Riemann Riemann ( ). π(x) := #{p : p x} x log x (x ) Hadamard de

平成 29 年度 ( 第 39 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 29 ~8 年月 73 月日開催 31 日 Riemann Riemann ( ). π(x) := #{p : p x} x log x (x ) Hadamard de Riemann Riemann 07 7 3 8 4 ). π) : #{p : p } log ) Hadamard de la Vallée Poussin 896 )., f) g) ) lim f) g).. π) Chebychev. 4 3 Riemann. 6 4 Chebychev Riemann. 9 5 Riemann Res). A :. 5 B : Poisson Riemann-Lebesgue

More information

2001 Mg-Zn-Y LPSO(Long Period Stacking Order) Mg,,,. LPSO ( ), Mg, Zn,Y. Mg Zn, Y fcc( ) L1 2. LPSO Mg,., Mg L1 2, Zn,Y,, Y.,, Zn, Y Mg. Zn,Y., 926, 1

2001 Mg-Zn-Y LPSO(Long Period Stacking Order) Mg,,,. LPSO ( ), Mg, Zn,Y. Mg Zn, Y fcc( ) L1 2. LPSO Mg,., Mg L1 2, Zn,Y,, Y.,, Zn, Y Mg. Zn,Y., 926, 1 Mg-LPSO 2566 2016 3 2001 Mg-Zn-Y LPSO(Long Period Stacking Order) Mg,,,. LPSO ( ), Mg, Zn,Y. Mg Zn, Y fcc( ) L1 2. LPSO Mg,., Mg L1 2, Zn,Y,, Y.,, Zn, Y Mg. Zn,Y., 926, 1 1,.,,., 1 C 8, 2 A 9.., Zn,Y,.

More information