Size: px
Start display at page:

Download ""

Transcription

1

2

3 iii (shear stress) (shear strain) Bingham Herschel-Bulkley Casson / / /

4 iv Cahn-Hilliard Flory-Huggins

5 v Bingham (a) (b) (c) Bingham Herschel-Bulkley Casson Ω M Ω M Bingham Ω M (a) (b) t vib t config T m T g (a) T m (b) (a) 1 (b) (a) (b)

6 vi 4.5 A, B (a) (b) φ a φ b χ r R.A.L.Jones Soft Condensed Matter Fig (a) (b) C-C R.A.L.Jones Soft Condensed Matter Fig (a) (b) (c) (d) (a) (b) (c) (d)

7 vii 6.9 (a) (b) (c) (a) (b) (c) (a) A (b) C (a) (b) (a) (b) (a) (b) n u 1, u (7.3.17) (7.3.18) (a) S (b) S T c1 T c (a) (splay) n 0 (b) (twist) n 0 (c) (bend) n ( n) (a) H (b) H < H c x H > H c (a) van der Waals (b) van der Waals h (i)(ii)(iii) (a) (b) (c)

8

9 ,

10 DNA

11 (?)

12

13 5 2 ) ) 2.1 (shear stress) (shear strain) (Hookean solid) τ γ τ P Q F A τ = F/A (2.1.1) l x Q P F l H u 0 u Y Z y O P Q 2.1:

14 6 2 2 l F x γ = x/l (2.1.2) (Hooke s law) τ = Gγ (2.1.3) (shear modulus) G G (tensile stress) T (tensile strain) s E = T/s (Young s modulus) Q P u 0 P Q P Couette P Q OH O 0 H u 0 OH 1 Y u O y D y = l u = u 0 u = Dy (2.1.4) D = u 0 l D (2.1.5) Y YZ YZ YZ YZ τ x ( ) γ = γ/ t (Newtonian fluid) 2.1 u 0 F

15 : F = Aη u 0 l (2.1.1), (2.1.5) (2.1.6) D = τ η (2.1.7) η (viscosity) u 0 = x/ t u 0 l = x l 1 t = γ = γ (2.1.8) t τ = η γ (2.1.9) τ y 2.2 γ τ γ = f(τ) (2.2.1)

16 8 2 elastic viscous t 0 t 2.3: Bingham (a) (b) (c) eff eff eff 2.4: (a) (b) (c) γ τ 2.2 Bingham 2.3 t 0 τ = G 0 γ τ = η B γ G 0 = η B t 0 (2.2.2) (instantaneous modulus) η τ/ γ η eff = τ γ (2.2.3) η eff η eff γ

17 (a) (b) 2.5: γ = τ/η η = dτ/d γ η diff = dτ d γ (2.2.4) η diff 1 η eff γ (a) η eff γ (b) η eff γ (shear thinning) (c) η eff γ (shear thickening) k n γ = τ n (2.2.5) k n > 1 2.5(a) n < 1 2.5(b) n = 1

18 10 2 f B 2.6: Bingham Bingham τ f B f B γ τ f B γ = { τ fb η B (τ > f B ) 0 (τ < f B ) (2.2.6) Bingham Bingham Bingham (2.2.6) 2.6 f B Bingham η B (plastic viscosity) Bingham (plastic flow) Herschel-Bulkley τ f H f H (τ f H ) n γ γ = { (τ fh ) n k (τ > f H ) 0 (τ < f H ) (2.2.7) Herschel-Bulkley Bingham (2.2.7) 2.7 n = 1 Bingham

19 f H 2.7: Herschel-Bulkley f H = 0 n = 1, f H = Casson k 0 k 1 Casson τ = k0 + k 1 γ (2.2.8) k 0 k 1 (2.2.8) f C = k 2 0, η C = k 2 1 (2.2.9) γ = τ fc ηc (2.2.10) 2.8 γ τ (2.2.10) τ f C f C η C Casson Casson Casson (2.2.8) Casson (2.2.8) 1)

20 : Casson 2) Ω M 1. 2.

21 b a h 2.9: Ω 2 r r + r 2 h r τ 2πhr 2 τ 2πr 2 τ + d dr (2πhr2 τ)dr (2.3.1) d dr (2πhr2 τ)dr (2.3.2) r M M = 2πhr 2 τ (2.3.3)

22 14 2 a b τ a τ b M = 2πha 2 τ a = 2πhb 2 τ b (2.3.4) Ω r ω(r) u = rω du dr = r dω dr + ω (2.3.5) ω r du dr = ω (2.3.6) du dr ω = r dω (2.3.7) dr ω r dω/dr < 0 γ γ = r dω dr (2.2.1) (2.3.8) r dω dr (2.3.3) r τ = f(τ) (2.3.9) r dω dr = M dω dω πhr 2 = 2τ dτ dτ (2.3.10) 2τ dω dτ = f(τ) (2.3.11) ω = 1 τ f(τ) dτ + const (2.3.12) 2 τ

23 Ω = = 1 2 τa τb f(τ) dτ + const τ (2.3.13) f(τ) dτ + const τ (2.3.14) Ω f(τ) Ω = 1 2 τa τ b f(τ) dτ (2.3.15) τ (2.3.3) M γ = f( 2πhr 2 ) (2.3.16) r b a a 1 (2.3.17) γ r f(τ) = τ/η Ω = 1 2 τa 1 τ b η dτ = 1 2η (τ a τ b ) = 1 ( M 2η 2πha 2 M ) 2πhb 2 (2.3.18) Ω = M ( 1 4πhη a 2 1 ) b 2 (2.3.19) Margules Ω M Ω M 2.10 η (2.2.5)

24 16 2 M 2.10: Ω M log logm 2.11: Ω M Ω = 1 2 τa 1 τ b k τ n 1 dτ = 1 2kn (τ a n τb n ) = 1 [( ) n ( ) n ] M M 2kn 2πha 2 2πhb 2 (2.3.20) [ log Ω = n log M + log 1 2n(2πh) n ( 1 a 2n 1 b 2n ) ] 1 k log Ω log M 2.11 (2.3.21)

25 Bingham Bingham (2.2.6) Ω M Bingham f B 3 1. τ a < f B f B Ω = 0 2. τ b < f B < τ a f B < τ < τ a f B < τ (2.3.3) f B < r c M 2πhr 2 (2.3.22) ( ) 1/2 M r c = (2.3.23) 2πhf B r < r c r > r c τ < f B (2.3.15) Ω = 1 2 τa f B f(τ) dτ (2.3.24) τ f(τ) = (τ f B )/η B τ b < f B < τ a Ω = 1 τa 2η B f B τ f B dτ = 1 [ τ a f B f B log τ ] a τ 2η B f B (2.3.25) Bingham f B M c f B = M c 2πha 2 (2.3.26) τ a = M 2πha Ω M 2 ] 1 Ω = [M 4πha 2 M c M c log MMc η B (2.3.27)

26 18 2 M C M 2.12: Bingham Ω M 3. f B < τ b (2.3.15) Ω = 1 τa 2η B τ b (2.3.4) a 2 τ a = b 2 τ b τ f B dτ (2.3.28) τ Ω = 1 2η B [(1 a2 b 2 ) τ a 2f B log b ] a (2.3.29) τ a f B M M c Ω M ) 1 Ω = [(1 4πha 2 a2 η B b 2 M 2M c log b ] a (2.3.30) Bingham Ω M 2.12 M = M c M > (b/a) 2 M c η B

27 a k F r F = k(r a) (3.1.1) 1 a 2 (tensile stress)t T = (tensile strain)s k(r a) a 2 (3.1.2) a 3.1:

28 20 3 s = r a a (Young s modulus) (3.1.3) E = T s = k a (3.1.4) U(r) r = a U(r) = U(a) (r a)2 d 2 U dr 2 + (3.1.5) r=a = 1 2 k (r a)2 + const. (3.1.6) k = d2 U dr 2 (3.1.7) (3.1.8) r=a ( r U(r) = εf a) (3.1.9) r = a ε U(a) = ε f(x) f(1) = 1 k = d2 U dr 2 = ε r=a a 2 f (1) (3.1.10) f (1) C E = C ε a 3 (3.1.11) 3.2 )

29 ) 3.2(b) ε ν (relaxation time) t 0 ( t 1 0 ν exp ε ) k B T (3.2.1) ν Hz ε 1 ε ε 0.4ε t 0 = t 0 t 0 (2.2.2) G 0 (3.2.1) η = G ( ) 0 ε ν exp k B T (3.2.2) (Arrhenius behavior) (a) (b) 3.2: (a) (b)

30 (glassy state) t vib t config t t config η T 0 Vogel-Fulcher η = η 0 exp B T T 0 (3.3.1) T 0 Vogel-Fulcher (2.2.2) η G 0 t config t config = η 0 B exp (3.3.2) G 0 T T 0 t exp t config > t exp T g (glass transition temperature) T m V 3.4

31 T g 1 T g t config t exp t exp T g (kinetic transition) 3.5(a) C p = T ( ) S T p 3.5(b) T = 0 (residual entropy) (broken ergodicity) (excess configurational entropy) 3.5(b) S C T g Kauzmann T k T k Vogel-Fulcher T (free volume theory) (cooperatively rearranging region theory)

32 24 3 v f v v f v = f g + α f (T T g ) (3.3.3) f g α f ( ) bv η = a exp v f (3.3.4) { } b η = a exp f g + α f (T T g ) { = a exp b/α f T (T g f g /α f ) } (3.3.5) T 0 = T g f g /α f Vogel-Fulcher (3.3.1) (3.3.4) (3.3.3) 3.6 (a) 1 (b) 1 Adam and Gibbs 1965 (cooperatively rearranging region=crr) Vogel-Fulcher T 0 1 µ CRR z ( ) t 1 config ν exp z µ k B T (3.3.6)

33 Arrhenius (3.2.2) ε T z S C C ( t 1 config ν exp C ) T S C (3.3.7) S C T T k Vogel-Fulcher λ d θ Bragg 2d sin θ = λ d r F F = = dv n(r) exp [i(k k ) r] (3.3.8) dv n(r) exp [iq r] (3.3.9) n(r) 1 k k q = k k m f m = dv n m (r r m ) exp [ iq (r r m )] (3.3.10) r m m

34 26 3 F (q) = m f m exp( iq r m ) (3.3.11) I F 2 I(q) = f m f n exp( iq (r m r n )) (3.3.12) m n q r r m α I(q) = f m f n exp( iqr mn cos α) (3.3.13) m n q = q r mn = r m r n exp(iqr cos α) = 2π 1 d(cos α) exp(iqr mn cos α) (3.3.14) 4π 1 I(q) = m = sin qr mn qr mn (3.3.15) (f m f n sin qr mn )/qr mn (3.3.16) n f = f m = f n N I(q) = Nf 2 [ 1 + (sin qr mn )/qr mn ] m m r ρ(r) I(q) = Nf 2 [1 + R 0 dr4πr 2 ρ(r) ] sin qr qr R ρ 0 I(q) = Nf 2 [1 + R 0 dr4πr 2 [ρ(r) ρ 0 ] sin qr qr + ρ 0 q R 0 dr4πr sin qr (3.3.17) (3.3.18) ] (3.3.19)

35 (3.3.19) R 3 I(q) = Nf 2 [1 + S(q) 0 dr4πr 2 [ρ(r) ρ 0 ] ] sin qr qr (3.3.20) S(q) I(q) Nf 2 = dr4πr 2 [ρ(r) ρ 0 ] sin qr qr (3.3.21) ρ(r) g(r)ρ 0 (3.3.22) sin qr/qr exp(iq r) S(q) = 1 + 4πρ 0 Fourier 0 2 sin qr dr [g(r) 1] r qr (3.3.23) = 1 + ρ 0 dr [g(r) 1] exp(iq r) (3.3.24) 0 g(r) 1 = = 1 8π 3 dq [S(q) 1] exp( iq r) (3.3.25) ρ 0 1 2π 2 dq [S(q) 1] q sin qr (3.3.26) ρ 0 r S(q)

36 28 3 log t 1/t vib 1/t exp 1/t config 1/T g 1/T 3.3: t vib t config V liquid glass(1) glass(2) crystal T (2) T (1) g g T m T 3.4: T m T g

37 (a) C p (b) S S 2 (2) S C S 2 (1) T g T T k T (2) T (1) g g T m T 3.5: (a) T m (b) (a) (b) 3.6: (a) 1 (b) 1

38

39 31 4 T = 1618 (order parameter) / (a) 1 4.1(b) 2

40 32 4 (a) (b) T C T T C T 4.1: (a) (b) T ρ gas ρ liq ρ = ρ liq ρ gas T c / 0 T C M σ i = ±1 N M = 1 N N σ i (4.1.1) i / NH 4 Cl + 2 NH 4 Cl N +

41 T C T 4.2: M T T C 4.3:

42 34 4 T T C 4.4: φ = 2N + N 1 (4.1.2) 4.2 / / Curie-Weiss / Bragg-Williams (mean-field approximation) (regular solution model) 2 A B 4.5 F A+B F A +F B (mixing free energy)f mix F A+B (F A + F B )

43 4.2. / 35 A B A+B Temperature 4.5: A, B2 F mix (mixing entropy)s mix (mixing energy)u mix F mix = U mix T S mix (4.2.1) S mix U mix z A B φ A φ B φ A + φ B = 1 (4.2.2) φ A = V A V, φ B = V B V (4.2.3) A B S = k B p i ln p i (4.2.4) p i A B 2 φ A φ B i S mix = k B (φ A ln φ A + φ B ln φ B ) (4.2.5) 1 φ A = 1 φ B = 1 S mix = 0

44 A B ε AA, ε BB A B ε AB zφ A A zφ B B 1 z ( φ 2 2 A ε AA + φ 2 ) Bε BB + 2φ A φ B ε AB (4.2.6) 1/2 z 2 (φ Aε AA + φ B ε BB ) (4.2.6) U mix = z 2 [ (φ 2 A φ A )ε AA + (φ 2 B φ B )ε BB + 2φ A φ B ε AB ] (4.2.7) = z 2 [ φ Aφ B ε AA φ A φ B ε BB + 2φ A φ B ε AB ] (4.2.8) = z 2 φ Aφ B (2ε AB ε AA ε BB ) (4.2.9) χ χ = z 2k B T (2ε AB ε AA ε BB ) (4.2.10) A B χ U mix = χφ A φ B k B T (4.2.11) F mix k B T = φ A ln φ A + φ B ln φ B + χφ A φ B (4.2.12) φ = φ A (= 1 φ B ) F k B T = φ ln φ + (1 φ) ln (1 φ) + χφ(1 φ) (4.2.13) 4.6 χ χ 2.0 φ = 0.5 1

45 4.2. / 37 0 >2.0 F k B T =2.0 < : A φ 0 V 0 A B V 1 V 2 A φ 1 φ 2 A φ 0 V 0 = φ 1 V 1 + φ 2 V 2 (4.2.14) φ 0 = V 1 V 0 φ 1 + V 2 V 0 φ 2 (4.2.15) α 1 = V 1 V 0 α 2 = V 2 V 0 α 1 + α 2 = 1 φ 0 = α 1 φ 1 + (1 α 1 )φ 2 = φ 2 + (φ 1 φ 2 )α 1 α 1 = φ 0 φ 2 φ 1 φ 2 φ 0 = (1 α 2 )φ 1 + α 2 φ 2 = φ 1 + (φ 2 φ 1 )α 2 α 2 = φ 0 φ 1 φ 2 φ 1 2 F sep = α 1 F mix (φ 1 ) + α 2 F mix (φ 2 ) (4.2.16) = φ 0 φ 2 φ 1 φ 2 F mix (φ 1 ) + φ 0 φ 1 φ 2 φ 1 F mix (φ 2 ) (4.2.17) 4.7(a) φ 0 φ 1 φ 2 F sep > F 0 φ 1 φ 2

46 38 4 (a) F (b) F F mix ( 1 ) F mix ( F sep 2 ) F 0 F 0 F sep F mix ( 1 ) F mix ( 2 ) : (a) (b) F F b F b ' F a ' F a a b 4.8: φ a φ b 4.7(b) F sep < F φ a F a F a (metastable) φ b F b F b (unstable)

47 4.2. / 39 F >2.0 =2.0 < : χ 1. d 2 F dφ 2 2. d 2 F dφ 2 > 0: < 0: d2 F dφ = 0 2 (spinodal point) d2 F dφ > 0 2 d2 F dφ < 0 (critical point) 2 3 d3 F dφ (4.2.13) χ 4.9 χ > 2 2 χ = df dφ = 0 d2 F dφ 2 = 0 φ = 0.5

48 40 4 spinodal line unstable binodal line metastable c 4.10: χ < 2 φ = χ (binodal line) (spinodal line) χ ε AA ε BB ε AB T (4.2.10) χ 1 T (spinodal decomposition) enhance (nucleation and growth)

49 T gas liquid 4.11: enhance (uphill diffusion) µ = ( ) F φ T,V d 2 F dφ 2 = dµ dφ < 0 F φ x 1 ) 2 φ dφ dx ( dφ(x) dx κ

50 42 4 [ ( ) ] 2 dφ(x) F = A f 0 (φ(x)) + κ dx (4.3.1) dx Fick dφ dx J D J = D dφ(x) dx dφ dt = dj dx (4.3.2) (4.3.2) (4.3.3) φ t = D 2 φ x 2 (4.3.4) J A B J A = M d dx (µ A µ B ) (4.3.5) M Onsager µ A µ B A B Cahn-Hilliard enhance f µ f φ (4.3.1) φ δφ F δf

51 [( ) df0 δf = A δφ + 2κ dφ ] d dφ dx dx δφ dx (4.3.6) [ ] df0 = A dφ φ 2κd2 dx 2 δφdx (4.3.7) (4.3.5) (4.3.3) [ φ t = M µ = df 0 dφ 2κd2 φ dx 2 (4.3.8) J A = Mf 0 φ x φ 2Mκ 3 x 3 (4.3.9) ( ) f 0 = d2 f 0 dφ 2 f 0 2 φ x 2 + f 0 ( φ x ) ] 2 2κ 4 φ x 4 (4.3.10) φ [ φ t = M f 0 2 ] φ x 2 φ 2κ 4 x 4 Cahn-Hilliard 2 (4.3.11) D eff = Mf 0 M f 0 f 0 < 0 D eff < 0 Cahn-Hilliard (4.3.11) φ Fourier φ = q φ q cos qx (4.3.11) φ q = ( q 2 D eff 2q 4 Mκ ) φ q (4.3.12) t ) ] φ q = exp [ D eff q ( κq2 f 0 t (4.3.13)

52 44 4 R R(q m ) 0 q m q c q 4.12: φ(x, t) = φ 0 + A q cos qx exp ) ] [ D eff q ( κq2 f 0 t (4.3.14) ( ) R(q) = D eff q κq2 f 0 (4.3.15) (amplification factor) 4.12 R(q) R(q) q = 0 R q m = 1 2 ( f ) 1/2 0 (4.3.16) κ R(q m ) = Mf 0 2 8κ q c q c = q m = q c / 2 (4.3.17) ( f ) 1/2 0 (4.3.18) 2κ

53 F(r) 0 r* r 4.13: r v F v r F (r) = 4 3 πr3 F v + 4πr 2 γ (4.3.19) γ F (r) r 4.13 r = 2γ F v r F = F (r ) = 16πγ3 3 F 2 v (4.3.20) (nucleation rate) exp ( F ) k B T (4.3.21)

54 46 4 (a) φ φ 1 R(t) φ 0 (b) φ 2 φ R(t) x φ 1 φ 0 w(t) (c) φ 2 φ R(t) x φ 1 φ 0 w(t) φ 2 x 4.14: 3 (homogeneous nucleation) (heterogeneous nucleation) driving force (Ostwald ripening) 1/3 (Lifshitz-Slyozov )

55 R(t) w(t) (early stage) 4.14(a) R(t) w(t) early stage (intermediate stage) R(t) w(t) (late sage) R(t) late stage (dynamical scaling) R(t) G(r, t) x G(r, t) = G(x), x = r R(t) (4.3.22) G(x) R(t) R(t) Lifshitz-Slyozov

56

57 (polymer) A-A-A- (monomer) (degree of polymerisation)n (CH 2 ) ) PMMA (Polymethyl methacrylate) PDMS Polydimethyl siloxane N

58 : R.A.L.Jones Soft Condensed Matter Fig.5.1

59 : (a) (b) C-C (ideal chain) 1 C-C (segment) (bond) b z N random walk r n

60 : 1-2 R N R = r n (5.2.1) n=1 R = 0 R 2 R 2 N N = r n r m (5.2.2) n=1 m=1 n m r n r m = r n r m = 0 R 2 N = r 2 n = Nb 2 n=1 (5.2.3) R N 1 2 R R P (R, N) b i (i = 1, 2,...z) N R R b i 1 z R P (R, N) = 1 z z P (R b i, N) (5.2.4) i=1 N 1, R b i P (R b i, N 1) = P (R, N) P N P b iα P b iα b iβ (5.2.5) R α 2 R α R β

61 b iα, R iα b i R (5.2.5) (5.2.4) 1 z P N = b2 6 z b iα = 0, 1 z i=1 2 P R 2 (5.2.6) z b iα b iβ = 1 3 δ αβb 2 (5.2.7) N = 0 R (5.2.6) ( ) 3 ) 3 2 P (R, N) = exp ( 3R2 2πNb 2 2Nb 2 i=1 R (5.2.8) U chain = n U (r n, r n+1,..., r n+nc ) (5.2.9) r n r m n m random walk R 2 = Nb 2 eff (5.2.10) b eff 5.3 r Gauss (Gaussian chain) p(r) = ( ) 3 ) 3 2 exp ( 3r2 2πb 2 2b 2 (5.3.1) R n r n = R n R n 1 (5.3.1) {R n } (R 0, R 1,..., R N ) ( ) 3N ) 3 2 P ({R n }) = exp ( 3 N 2πb 2 2b 2 (R n R n 1 ) 2 (5.3.2) 0 n=1 k U = 1 N 2 k (R n R n 1 ) 2 (5.3.3) n=1

62 : 1-3 exp( U/k B T ) k = 3k BT b 2 (5.3.4) (5.3.2) 5.4 random walk self-avoiding walk R R+dR W (R)dR W 0 (R)dR N z N (5.2.8) W 0 (R)dR = P (R, N)4πR 2 dr = ( ) 3 ) 3 z N 4πR 2 2 exp ( 3R2 2πNb 2 2Nb 2 (5.4.1) R 3 1 v c R 3 R 3 /v c 1 1 v c /R 3 N(N 1)/2

63 p(r) ( R 3 v c ln 1 v ) c R 3 ( p(r) = 1 v ) N(N 1) c 2 [ R 3 1 ( = exp 2 N(N 1) ln 1 v )] c R 3 (5.4.2) v c 2 N 1 N(N 1) N R3 p(r) = exp ( N 2 ) v c 2R (5.4.3) W (R) = W 0 (R)p(R) R 2 exp ( 3R2 2Nb 2 N 2 ) v c 2R 3 (5.4.4) (5.4.1) W 0 (R) R 0 = (2Nb 2 /3) 1/2 W (R) (5.4.4) R 3R 2 R 0 R 0 2Nb 2 + 3N 2 v c + 1 = 0 (5.4.5) 4R 3 ( ) R 5 ( ) R 3 = 9 6 v c N (5.4.6) 16 b 3 R 0 N 1 2 R = R 0 ( N 1 2 v c b 3 ) 1 5 N 3 5 (5.4.7) (R N 1 2 ) N R g N b (5.4.8) R g R 5.5

64 : polymer polymer : ε pp polymer solvent : ε ps (5.5.1) solvent solvent : ε ss i N pp (i) N ps (i), N ss (i) E i = N (i) pp ε pp N (i) ps ε ps N (i) ss ε ss (5.5.2) ( R) [ P (R) W (R) exp E(R) ] k B T E(R) R (5.5.3) R 3 1 φ = Nv c /R 3

65 5.6. Flory-Huggins 57 N pp N pp (i) 1 2 znφ N ps (i) zn(1 φ) Nss 0 N (i) ss [ 1 znφ + zn(1 φ) 2 ] (5.5.4) N 0 ss (5.5.2) E(R) 1 2 znφ(ε pp + ε ss 2ε ps ) + (φ independent) = zn 2 v c R 3 ε + (R independent) (5.5.5) (5.5.6) ε = 1 2 (ε pp + ε ss ) ε ps (5.5.7) χ = z ε k B T (5.5.8) (4.2.10) (5.5.5) (5.5.3) P (R) R 2 exp [ 3R2 2Nb 2 N 2 ] v c (1 2χ) 2R3 (5.5.9) (5.4.4) ( v = v c (1 2χ) = v c 1 2z ) k B T ε (5.5.10) 5.6 Flory-Huggins F mono k B T = φ A ln φ A + φ B ln φ B + χφ A φ B (5.6.1) N 1 N F mol poly k B T = φ A ln φ A + φ B ln φ B + Nχφ A φ B (5.6.2)

66 : 2 χ 1 F site poly k B T = φ A N ln φ A + φ B N ln φ B + χφ A φ B (5.6.3) Flory-Huggins χ χn χ c = 2 N χ > χ c (5.6.4) χ < χ c (5.6.5) N χ c χ 0 2 A B N A = N B = N φ A = φ, φ B = 1 φ F k B T = 1 [φ ln φ + (1 φ) ln(1 φ)] + χφ(1 φ) (5.6.6) N φ = 1 2 F (φ) F (φ) F φ = 0 (5.6.7) 1 ln φ1 φ = Nχ (5.6.8) 1 2φ

67 5.6. Flory-Huggins 59 Nχ 1 φ b = exp( Nχ) (5.6.9) 1 φ b = exp( Nχ) (5.6.10) A B 2 sharp A, B

68

69 (hydrophilicity) (hydrophobicity) (lipophilicity) (hydrophobic interaction) 4 2

70 (hydrophilic head-group) (hydrophobic tail) (amphiphilic molecule) (surface activity) (surfactant) 6.2 (micelle) 1 1 N N E N = k B T Nϵ N ϵ N 1 1 f f f = N P N N [ ( k B T log P ) ] N N 1 + E N (6.2.1) P N N / N

71 P N /N φ φ = N P N (6.2.2) (6.2.2) P N µ µ = ϵ N + k BT N log P N N (6.2.3) 1 N 2 (6.2.3) ( ) N(µ ϵn ) P N = N exp k B T (6.2.4) N = 1 µ 1 P 1 P N = N [ P 1 exp (ϵ ] N 1 ϵ N ) (6.2.5) k B T ϵ 1 < ϵ N ϵ 1 ϵ N ϵ N N (6.2.4) µ < min{ϵ N } φ P N N N = 1 µ ϵ N (critical micelle concentration=cmc) φ c φ c P 1 = P 1 (6.2.6) N > 1 φ φ c φ ϵ N N N r = (3Nv/4π) 1/3 v γ

72 : R.A.L.Jones Soft Condensed Matter Fig.9.1 4πr 2 γ ϵ ϵ N ϵ N = ϵ + 4π N ( ) 2/3 3Nv (6.2.7) 4π = ϵ + αk BT N 1/3 (6.2.8) αk B T = 4πγ(3v/4π) 2/3 (6.2.5) P N = N { [ ( P 1 exp α 1 1 )]} N (6.2.9) N 1/3 N [P 1 exp(α)] N (6.2.10) P 1 P 1 exp(α) < 1 P 1 exp( α) P N 1 ϵ N N Israerachivilli

73 : (critical packing parameter) 3 (optimum head-group area)a 0 (critical chain length)l c (hydrocarbon volume)v v l c a a 0 M r 4πr 3 /3 = Mv 4πr 2 = Ma 0 M r = 3v/a 0 r l c v l c a N s = (6.3.1) v l c a 0 (6.3.2) a 0 v

74 : l M r πr 2 l = Mv 2πrl = Ma 0 r = 2v/a < N s 1 2 (6.3.3) 6.3 N s 6.4 N ϵ N N = M N < M N > M ϵ N N = M ϵ N = ϵ M + Λ(N M) 2 (6.4.1)

75 (6.2.4) P N P M (6.4.1) [ ( )] N/M PM P N = N M exp M(ϵM ϵ N ) (6.4.2) k B T [ ( )] PM MΛ(M N) 2 N/M P N = N M exp (6.4.3) k B T M < N M 2 >= k BT 2MΛ (6.4.4) k B T M ϵ = ϵ 1 ϵ M P M = M [ ( )] M ϵ P 1 exp (6.4.5) k B T φ = P 1 + P M P 1 < exp( ϵ/k B T ) φ c = exp( ϵ/k B T ) 6.5 ϵ N N N (endcap) E endcap 1 α ϵ N = ϵ + αk BT N (6.5.1) ϵ 1 (6.2.4) P N = N [P 1 e α ] N e α (6.5.2)

76 : N=1 NxN = x/(1 x) 2 φ = N = N P N (6.5.3) N(P 1 e α ) N e α (6.5.4) = P 1 [1 P 1 e α ] 2 (6.5.5) P 1 = 1 + 2φeα 1 + 4φe α 2φe 2α (6.5.6) φe α 1 P 1 φ φ c e α φ c P 1 e α φ c P N = N ( 1 φ 1/2 e α/2) N e α P N / N = 0 N (6.5.7) N max = φe α (6.5.8) P N Ne N/M (6.5.9)

77 (bilayer) 2 CMC 1 (6.2.4) ϵ N = ϵ + αk BT N (6.6.1) P N = N[P 1 e α ] N e α N (6.6.2) e α e α N (vesicle) 6.7 (bending energy) 2 (principal curvature)c 1 c c 1, c 2 c 1 c 2 da c 1 c 2 [ ] k E el = 2 (c 1 + c 2 2c 0 ) 2 + kc 1 c 2 da (6.7.1)

78 : c 0 (spontaneous curvature) k k (bending modulus) (saddle-spray modulus) k (mean curvature)(c 1 +c 2 )/ (lyotropic liquid crystal) (lyo-) N s < 1/3

79 : (a) (b) (c) (d) 4.24 L 1 I H I L α L 1 H I L α L 1 H I H I L α a b H I I 6 L 2

80 : (a) (b) (c) (d) : 4.26

81 : (a) (b) (c) 4.27 c V 2 d I 2 1 hydrophile-lipophile balance = HLB HLB

82

83 Reinitzer Kristalline Fluessigkeiten (=Liquid Crystal) Fergason RCA Reinitzer (N)

84 第 7 章 液晶 76 (a) (b) (c) 図 7.1: サーモトロピック液晶の温度による相転移の模式図 (a) は等方相で 重心も配向もランダム (b) は液晶相で 重心位置はランダムだが配向は揃っ ている (c) は結晶相で重心も配向も揃っている 7.1 の (b) スメクチック (Sm) 相 方向が揃っているだけでなく 分子が層状に並 んでいる相 図 7.2 層平面内では重心位置に秩序はなく液体的だが 分子の軸方向に沿った秩序がある また分子の配向が層の積層方向に 対して垂直なスメクチック A(Sm A) 相 図 7.2(a) の他に 配向が層 に対して傾いているスメクチック C(Sm C) 相 図 7.2(b) や その分 子の配向方向がピッチ p で周期的に変化しているスメクチック C (Sm C ) 相 図 7.3(b) など様々なバリエーションがある カイラルネマチック (N ) 相 ネマチック相と同様に分子の重心位置に 秩序はないが 分子の配向方向がある距離 d ピッチ で周期的に変化 する このピッチ p は 100nm から無限大を取りうる また d が光の波 長程度の時に可視光を散乱して色が付いて見える p が温度に敏感なこ とから これを用いて thermotropic device 温度計 が作られる 図 7.3(a) ディスコティック相とカラムナー相 ディスコティック相は円板状の分 子が同じ方向を向いている相で 並進秩序がなく長距離配向秩序があ るという点でネマチック相と同様である 従ってネマチック D 相と呼 ぶこともある カラムナー相は円板状の分子が積み重なって柱のよう になっている相で 分子の積層方向に対して垂直な方向への秩序と配向 秩序を持っている 図 7.4 液晶は方向秩序を持っているため マクロな性質にも異方性が現れる 例 えば配向方向に平行方向の屈折率 n と垂直方向の屈折率 n が違う場合には 複屈折 と呼ばれる現象が見られる また電場や磁場を加えることによって 分子に電気双極子モーメントや磁気双極子モーメントが誘起され 電場や磁 場の方向に沿って配向する 更にガラス平面などに垂直に分子が揃う ホメ オトロピック配向 や 平行に分子が揃う プレーナー配向 ホモジニアス 配向 などの力学的配向が起こる 液晶ディプレイはこれらの性質を利用し

85 7.1. 液晶とは 77 (a) (b) 図 7.2: (a) スメクチック A 相 (b) スメクチック C 相 (b) (a) p 図 7.3: (a) カイラルネマチック相 (b) カイラルスメクチック相 (a) (b) 図 7.4: (a) ディスコティック相 (b) カラムナー相

86 78 7 (a) (b) 7.5: (a) (b) u 1 u r 12 n 7.6: n u 1, u 2 ON/OFF 7.2 n u du u du ψ(u)du ψ(u) (orientation distribution function) ψ(u) duψ(u) = 1 (7.2.1) u ψ(u) = 1 4π (7.2.2) u n

87 P = n u = ψ(u) (7.2.3) u -u n u = 0 (n u) 2 u ux 2 = u 2 y = u 2 z u 2 x + u 2 y + u 2 z = 1 u 2 z = 1 3 n z (n u) 2 = 1 3 (7.2.4) n u 2 z > 1 3 (n u) S = 3 2 (n u) (7.2.5) S = 0 n (n u) 2 = 1 S = 1 S 7.3 r 12 u 1, u 2 2 w(r 12, u 1, u 2 ) w(r 12, u 1, u 2 ) = w(r 12, u 1, u 2 ) = w(r 12, u 1, u 2 ) (7.3.1) w w i w a w(r 12, u 1, u 2 ) = w i (r 12 ) + w a (r 12 )(u 1 u 2 ) 2 (7.3.2)

88 80 7 u w mf (u) w mf (u) = dr 12 du 2 w(r 12, u 1, u 2 )g 2 (r 12, u 2 ) (7.3.3) g 2 (r 12, u 2 ) r 12 u 2 u 2 r 12 ψ(u) g 2 (r 12, u 2 ) = g 2 (r 12 )ψ(u 2 ) (7.3.4) w mf (u) = + dr 12 du 2 w i (r 12 )g 2 (r 12 )ψ(u 2 ) dr 12 du 2 (u u 2 ) 2 w a (r 12 )g 2 (r 12 )ψ(u 2 ) (7.3.5) 1 u 2 r 12 w mf (u) = const U du 2 (u u 2 ) 2 ψ(u 2 ) (7.3.6) U = dr 12 w a (r 12 )g 2 (r 12 ) (7.3.7) U U > 0 (7.3.7) ψ(u) = exp( βw ( mf (u)) β = 1 ) du exp( βwmf (u)) k B T (7.3.8) u 3 u α, (α = x, y, z) (7.3.7) w mf (u) = U (u u ) 2 = Uu α u β u α u β (7.3.9)

89 ψ(u ) u 2 u n z ψ(u ) z u 2 x = u 2 y = 1 2 u (1 2 z ) (7.2) S = 3 2 u 2 z 1 3 (7.3.10) u 2 z u 2 x u x u y = 1 (2S + 1) (7.3.11) 3 = u 2 y = 1 ( S + 1) (7.3.12) 3 = u xu z = u zu x = 0 (7.3.13) (7.3.12) (7.3.13) (7.3) w mf (u) = U [ 1 3 ( S + 1)(u2 x + u 2 y) + 1 ] 3 (2S + 1)u2 z = USu 2 z + const (7.3.14) (7.3) (7.3) ψ(u) ψ(u) = exp(βusu2 z) du exp(βusu 2 z ) (7.3.15) (7.3) S = 3 2 du exp(βusu 2 z )(u 2 z 1 3 du exp(βusu 2 z ) (7.3.16) t = u z, x = βus (7.3) 2k B T x = I(x) (7.3.17) 3U 1 0 I(x) = dtext (t ) 1 (7.3.18) 0 dtext2 y = I(x) y = (2k B T/3U)x x T S T > T c1 x = 0 S = 0 T = T c1

90 82 7 y T = T c1 T = T c2 y = I(x) x T > T c1 7.7: (7.3.17) (7.3.18) x = T = T c2 x 1 I(x) I(x) = 4 ( ) 45 x + (7.3.19) T = T c2 y = (2k B T/3U)x y = I(x) 2k B T c2 /3U = 4/45 T c2 = 2 U (7.3.20) 15 k B 7.8 (a) S F S = 0 (7.3.21) T > T c1 (7.3) S = 0 F S = 0 T < T c1 (7.3) 3 F 2 1 T = T c1 2 T = T c2 (7.3) 1 S = 0 T = T c2 T e S = 0 S 0

91 : (a) S (b) S T c1 T c2 5 F T c2 < T e < T c1 7.4 S n n 7.9: (a) (splay) n 0 (b) (twist) n 0 (c) (bend) n ( n) 0 5

92 第 7 章 液晶 84 図 7.10: フレデリクス転移 (a) 液晶に磁場 H を加えて液晶層を通過する光 の強さを制御する (b) 配向ベクトルの空間変化 H < Hc では配向ベクトル は x 軸を向いたままだが H > Hc では磁場方向を向くようになる 土井正 男 ソフトマター物理学入門 第 5 章より ギーは線形のバネを仮定すると空間変化の 2 乗に比例する 例えばフックの 法則では f = kx, E = 12 kx2 液晶の弾性エネルギーは次の形に書く事ができる fel = K1 ( n)2 + K2 (n ( n))2 + K3 (n ( n)) (7.4.1) ここで K1, K2, K3 は [J/m] の単位を持つ定数で フランク弾性定数 (Frank elastic constant) と呼ばれる これらはそれぞれ splay, twist bend の 変形が起きた場合のエネルギー変化に対応する 外場がある時はここに外場との相互作用項が加わる 例えば磁場 H に対し ては 1 fh = x(h n)2 + (n independent) 2 (7.4.2) ここで x = αd nseq で αd は分子長軸方向の帯磁率と短軸方向の帯磁率の 差 また Seq は S の平衡値である 7.5 フレデリクス転移 2 枚の平行基板に液晶が挟まれていて 基板上では液晶は x 軸方向を向いて いるものとする この時 z 軸方向に磁場 H をかけた場合を考える nは x z 面内にあり その向きは z 座標のみに依存する と仮定する するとnの各 成分は

93 n z (z) = cos θ(z), z y (z) = 0, n z (z) = sin θ(z) (7.5.1) n = n x x + n y y + n z z = n z dθ = cos θ z dz ( nz n = y n y z, n x z n z x, n y x n ) x y ( = 0, n ) x z, 0 ( = 0, sin θ dθ ) dz, 0 (7.5.2) (7.5.3) (7.4) (7.4) F tot = = dz(f el + f H ) (7.5.4) [ ( ) 2 1 dθ dz 2 K 1 cos 2 θ + 1 ( ) ] 2 dθ dz 2 K 3 sin 2 θ 1 dz 2 xh sin2 θ θ(0) = θ(l) = 0 (7.5.5) F tot θ(z) = θ 0 sin( πz L ) (7.5.6) θ 1 (7.5) (7.5) θ 0 F tot = 1 4 [ K1 π 2 L ] xh2 L θ0 2 = 1 4 xl(h2 c H 2 )θ0 2 (7.5.7) H c = K1 π 2 xl 2 (7.5.8)

94 86 7 H < H c θ 0 = 0 H > H c (Fredericks transition) ON/OFF

95 m 8.1 1nm 1µm van der Waals k B T 1 k B T

96 : (a) (b) r-r' r h 8.2: (a) van der Waals (b) van der Waals h 8.2 van der Waals 8.2(a) r 2 van der Waals

97 U atom (r) = c ( a0 ) 6 (8.2.1) r a 0 c k B T 1 van der Waals 2 h van der Waals U particle (h) = dr 1 r 1 V 1 = dr 1 r 1 V 1 dr 2 n 2 ca 2 0 r 2 V 2 r 1 r 2 6 A H dr 2 r 2 V 2 π r 1 r 2 6 (8.2.2) n A H = π 2 n 2 ca 6 0 n 1/a 3 0 A H c S S h 2 S U particle (h) = Sw(h) (8.2.3) w(h) (8.2) r 1 V 1 dr 1 A H dr 2 r 2 V 2 π r 1 r 2 6 = A H 12πh 2 (8.2.4) R h S Rh R h U particle Sw(h) A H R h (8.2.5) van der Waals R/h R = 0.1µm h 1nm R/h = 100 van der Waals

98 90 8 h 8.3: (1) (2) van der Waals z ψ(z) ψ(0) = ψ s > 0 ψ(z) = ψ s exp( κz) (8.2.6) 1/κ κ = ( i n iqi 2 ) 1/2 (8.2.7) ϵk B T n i i q i i ϵ NaCl 1mM 1/κ 10 nm (M= mol/l) 1M 1/κ 0.3 nm

99 w tot (h) (i) (ii) (iii) h 8.4: (i)(ii)(iii) w charge (h) DLVO van der Waals w tot (h) = w(h) + w charge (h) (8.2.8) 8.4 w tot (h) h van der Waals w charge (h) (i) (ii)(iii) (a) h p 2

100 92 8 (a) (b) (c) Π h h h 8.5: (a) (b) (c) (b) (a) (c) R g h < 2R g Π = n p k B T n p Π 0 (h > 2R g ) w dep (h) = n p k B T (h 2R g ) (h < 2R g ) R U dep (h) = πr h 0 (h > 2R g ) dxw(x) = 1 2 πrn pk B T (h 2R g ) 2 (h < 2R g )

2007 5 iii 1 1 1.1.................... 1 2 5 2.1 (shear stress) (shear strain)...... 5 2.1.1...................... 6 2.1.2.................... 6 2.2....................... 7 2.2.1........................

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

3 3.1 R r r + R R r Rr [ ] ˆn(r) = ˆn(r + R) (3.1) R R = r ˆn(r) = ˆn(0) r 0 R = r C nn (r, r ) = C nn (r + R, r + R) = C nn (r r, 0) (3.2) ( 2.2 ) C

3 3.1 R r r + R R r Rr [ ] ˆn(r) = ˆn(r + R) (3.1) R R = r ˆn(r) = ˆn(0) r 0 R = r C nn (r, r ) = C nn (r + R, r + R) = C nn (r r, 0) (3.2) ( 2.2 ) C 3 3.1 R r r + R R r Rr [ ] ˆn(r) = ˆn(r + R) (3.1) R R = r ˆn(r) = ˆn(0) r 0 R = r C nn (r, r ) = C nn (r + R, r + R) = C nn (r r, 0) (3.2) ( 2.2 ) C nn (r r ) = C nn (R(r r )) [2 ] 2 g(r, r ) ˆn(r) ˆn(r

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

I ( ) 2019

I ( ) 2019 I ( ) 2019 i 1 I,, III,, 1,,,, III,,,, (1 ) (,,, ), :...,, : NHK... NHK, (YouTube ),!!, manaba http://pen.envr.tsukuba.ac.jp/lec/physics/,, Richard Feynman Lectures on Physics Addison-Wesley,,,, x χ,

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional 19 σ = P/A o σ B Maximum tensile strength σ 0. 0.% 0.% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional limit ε p = 0.% ε e = σ 0. /E plastic strain ε = ε e

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi

iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi 4 4 9............................................... 3.3......................... 4.4................. 5.5............................ 7 9..................... 9.............................3................................4..........................5.............................6...........................

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb r 1 r 2 r 1 r 2 2 Coulomb Gauss Coulomb 2.1 Coulomb 1 2 r 1 r 2 1 2 F 12 2 1 F 21 F 12 = F 21 = 1 4πε 0 1 2 r 1 r 2 2 r 1 r 2 r 1 r 2 (2.1) Coulomb ε 0 = 107 4πc 2 =8.854 187 817 10 12 C 2 N 1 m 2 (2.2)

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat / Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiation and the Continuing Failure of the Bilinear Formalism,

More information

Contents 1 Jeans (

Contents 1 Jeans ( Contents 1 Jeans 2 1.1....................................... 2 1.2................................. 2 1.3............................... 3 2 3 2.1 ( )................................ 4 2.2 WKB........................

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3 4.2 4.2.1 [ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 S i S j (4.39) i, j z 5 2 z = 4 z = 6 3 z = 6 z = 8 zn/2 1 2 N i z nearest neighbors of i j=1

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ II p = mv p x > h/4π λ = h p m v Ψ 2 Ψ Ψ Ψ 2 0 x P'(x) m d 2 x = mω 2 x = kx = F(x) dt 2 x = cos(ωt + φ) mω 2 = k ω = m k v = dx = -ωsin(ωt + φ) dt = d 2 x dt 2 0 y v θ P(x,y) θ = ωt + φ ν = ω [Hz] 2π

More information

現代物理化学 2-1(9)16.ppt

現代物理化学 2-1(9)16.ppt --- S A, G U S S ds = d 'Q r / ΔS = S S = ds =,r,r d 'Q r r S -- ds = d 'Q r / ΔS = S S = ds =,r,r d 'Q r r d Q r e = P e = P ΔS d 'Q / e (d'q / e ) --3,e Q W Q (> 0),e e ΔU = Q + W = (Q + Q ) + W = 0

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

untitled

untitled (a) (b) (c) (d) Wunderlich 2.5.1 = = =90 2 1 (hkl) {hkl} [hkl] L tan 2θ = r L nλ = 2dsinθ dhkl ( ) = 1 2 2 2 h k l + + a b c c l=2 l=1 l=0 Polanyi nλ = I sinφ I: B A a 110 B c 110 b b 110 µ a 110

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1) 23 2 2.1 10 5 6 N/m 2 2.1.1 f x x L dl U 1 du = T ds pdv + fdl (2.1) 24 2 dv = 0 dl ( ) U f = T L p,t ( ) S L p,t (2.2) 2 ( ) ( ) S f = L T p,t p,l (2.3) ( ) U f = L p,t + T ( ) f T p,l (2.4) 1 f e ( U/

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

untitled

untitled 1 Physical Chemistry I (Basic Chemical Thermodynamics) [I] [II] [III] [IV] Introduction Energy(The First Law of Thermodynamics) Work Heat Capacity C p and C v Adiabatic Change Exact(=Perfect) Differential

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz 2 Rutherford 2. Rutherford N. Bohr Rutherford 859 Kirchhoff Bunsen 86 Maxwell Maxwell 885 Balmer λ Balmer λ = 364.56 n 2 n 2 4 Lyman, Paschen 3 nm, n =3, 4, 5, 4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n

More information

物性物理学I_2.pptx

物性物理学I_2.pptx phonon U r U = nαi U ( r nαi + u nαi ) = U ( r nαi ) + () nαi,β j := nαi β j U r nαi r β j > U r nαi r u nαiuβ j + β j β j u β j n α i () nαi,β juβj 調和振動子近似の復習 極 小 値近傍で Tylor展開すると U ( x) = U ( x ) + (

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> マイクロメカトロニクス サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/077331 このサンプルページの内容は, 初版 1 刷発行当時のものです. 1984.10 1986.7 1995 60 1991 Piezoelectric Actuators and Ultrasonic Motors

More information

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n = JKR 17 9 15 1 Point loading of an elastic half-space Pressure applied to a circular region 4.1 Boussinesq, n = 1.............................. 4. Hertz, n = 1.................................. 6 4 Hertz

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

b3e2003.dvi

b3e2003.dvi 15 II 5 5.1 (1) p, q p = (x + 2y, xy, 1), q = (x 2 + 3y 2, xyz, ) (i) p rotq (ii) p gradq D (2) a, b rot(a b) div [11, p.75] (3) (i) f f grad f = 1 2 grad( f 2) (ii) f f gradf 1 2 grad ( f 2) rotf 5.2

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v 12 -- 1 4 2009 9 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 c 2011 1/(13) 4--1 2009 9 3 x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

4 5.............................................. 5............................................ 6.............................................. 7......................................... 8.3.................................................4.........................................4..............................................4................................................4.3...............................................

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

http://www1.doshisha.ac.jp/ bukka/qc.html 1. 107 2. 116 3. 1 119 4. 2 126 5. 132 6. 136 7. 1 140 8. 146 9. 2 150 10. 153 11. 157 12. π Hückel 159 13. 163 A-1. Laguerre 165 A-2. Hermite 167 A-3. 170 A-4.

More information

薄膜結晶成長の基礎2.dvi

薄膜結晶成長の基礎2.dvi 2 464-8602 1 2 2 2 N ΔμN ( N 2/3 ) N - (seed) (nucleation) 1.4 2 2.1 1 Makio Uwaha. E-mail:uwaha@nagoya-u.jp; http://slab.phys.nagoya-u.ac.jp/uwaha/ 2 [1] [2] [3](e) 3 2.1: [1] 2.1 ( ) 1 (cluster) ( N

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A 2 1 2 1 2 3 α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 4 P, Q R n = {(x 1, x 2,, x n ) ; x 1, x 2,, x n R}

More information

鉄筋単体の座屈モデル(HP用).doc

鉄筋単体の座屈モデル(HP用).doc RC uckling elastic uckling of initiall ent memer full-plastic ultimate elasto-plastic uckling model cover concrete initial imperfection 1 Fixed-fixed Hinged-hinged x x M M 1 3 1 a π = 1 cos x πx = a sin

More information

H22環境地球化学4_化学平衡III_ ppt

H22環境地球化学4_化学平衡III_ ppt 1 2 3 2009年度 環境地球化学 大河内 温度上昇による炭酸水の発泡 気泡 温度が高くなると 溶けきれなくなった 二酸化炭素が気泡として出てくる 4 2009年度 環境地球化学 圧力上昇による炭酸水の発泡 栓を開けると 瓶の中の圧力が急激に 小さくなるので 発泡する 大河内 5 CO 2 K H CO 2 H 2 O K H + 1 HCO 3- K 2 H + CO 3 2- (M) [CO

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

215 11 13 1 2 1.1....................... 2 1.2.................... 2 1.3..................... 2 1.4...................... 3 1.5............... 3 1.6........................... 4 1.7.................. 4

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) http://astr-www.kj.yamagata-u.ac.jp/~shibata f4a f4b 2 f4cone f4eki f4end 4 f5meanfp f6coin () f6a f7a f7b f7d f8a f8b f9a f9b f9c f9kep f0a f0bt version feqmo fvec4 fvec fvec6 fvec2 fvec3 f3a (-D) f3b

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

δf = δn I [ ( FI (N I ) N I ) T,V δn I [ ( FI N I ( ) F N T,V ( ) FII (N N I ) + N I ) ( ) FII T,V N II T,V T,V ] ] = 0 = 0 (8.2) = µ (8.3) G

δf = δn I [ ( FI (N I ) N I ) T,V δn I [ ( FI N I ( ) F N T,V ( ) FII (N N I ) + N I ) ( ) FII T,V N II T,V T,V ] ] = 0 = 0 (8.2) = µ (8.3) G 8 ( ) 8. 1 ( ) F F = F I (N I, T, V I ) + F II (N II, T, V II ) (8.1) F δf = δn I [ ( FI (N I ) N I 8. 1 111 ) T,V δn I [ ( FI N I ( ) F N T,V ( ) FII (N N I ) + N I ) ( ) FII T,V N II T,V T,V ] ] = 0

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information