, 0 = U 1 (g) U 0 (g) U 1 (g)..., U(g) = p U p (g) U p (g)u q (g) U p+q (g), [U p (g), U q (g)] U p+q 1 (g). U(g) PBW,. Associated graded algebra gr U

Size: px
Start display at page:

Download ", 0 = U 1 (g) U 0 (g) U 1 (g)..., U(g) = p U p (g) U p (g)u q (g) U p+q (g), [U p (g), U q (g)] U p+q 1 (g). U(g) PBW,. Associated graded algebra gr U"

Transcription

1 W ( ) 1. ( )W Kac-Moody Virasoro,,,,, 4, Langlands.,, W., W, W ([A1, A2, A3, A7]). Premet[Pre] W ( )W, Kostant[Kos]. W Slodowy, primitive ideal. Premet Losev[Los2]. primitive ideal. W. ( )W Losev. Kac-Moody ĝ ( primitive ideal, primitive ideal Kac-Moody kλ 0 (k ) g., Kac-Moody ĝ ĝ ĝ g (Feigin-Frenkel [A5]). ĝ [A4] g,, ([A5])., Kac-Moody [A6], Losev, Kac-Moody W, 20 W [FKW] ([A7]).. 2. g, U(g) g : U(g) = T (g)/ x y x x [x, y] x, y g., T (g) g., g ( )U(g). U p (g) := ( p g ) U(g)

2 , 0 = U 1 (g) U 0 (g) U 1 (g)..., U(g) = p U p (g) U p (g)u q (g) U p+q (g), [U p (g), U q (g)] U p+q 1 (g). U(g) PBW,. Associated graded algebra gr U(g) = p U p (g)/u p 1 (g) Poisson. σ p (a)σ q (b) = σ ab, {σ p (a), σ q (b)} = σ p+q 1 ([a, b])., σ p : U p (g) U p (g)/u p 1 (g) (symbol map). 2.1 (Poincaré-Birkoff-Witt).. gr U(g) = S(g) = C[g ]., g Kirillov-Kostant Poisson ( x, y g C[g ] {x, y} = [x, y]). Z(g) U(g), Z p (g) = Z(g) U p (g) Z(g), gr Z(g) = p Z p(g)/z p 1 (g) gr U(g) = C[g ] Poisson., gr Z(g) = C[g ] G. Lie G = g. I U(g), I p = I U p (g) associated graded gr I = p I p/i p 1 C[g ] C[g ] G. Var(I) := {λ g f(λ) = 0, f gr I} I. Var(I) g G,. I U(g) primitive ideal, M 1. Shur, M γ : Z(g) C, (1) z χ(z) I = Ann U(g) M, z Z(g). N g. N =: {x g (ad x) r = 0, r 0} g. g g g ( ), N = {λ g p(λ) = 0, p C[g ] G +} g (Duflo 77). primitigve ideal.

3 . C[g ] G + C[g ] G argumentation ideal. C[g ] = C[p 1,..., p l ], deg p i > 0, C[g ] G + = l i=1 C[g ]p i.) (1), primitive ideal I 2. Var(I) N 2.3 (Joseph[Jos]). U(g) primitive ideal I., 3 O. Var(I) = O 3. W f N. Jacobson-Morozov f sl 2 {e, f, h} : [h, e] = 2e, [h, f] = 2f, [e, f] = h. f g Slodowy S f := f + g e g = g. S f g G ([GG]). γ : C G, t γ t, h g G 1, C t : x t 2 Ad(γt 1 )(x) S f C. C f. S f. χ g x (f x)., g., g = j Z g j, g j = {x g ad h(x) = jx} g 1 g 1 C (x, y) χ([x, y]). g 1 l, m = l j 2 g j g, m g., χ m (, χ([m, m]) = 0) M m G µ : g m M, χ m M. µ 1 (χ) = χ + m S f, S f. 2, U(g). 3 O = Ad G.x, x N ( )G.

4 3.1 ([Kos, GG]). (i) χ µ. (ii). M S f µ 1 (χ), (g, x) Ad g.x. 3.1 S f = µ 1 (χ)/m. S f ([Kos, Pre]). BRST ([KS]). Cl m m m, deg m = 1, deg m = 1 : Cl m = p Z Clp m. Cl m Cl m,p = Λ p (m)λ (m ) gr Cl m = p Cl m,p/cl m,p 1.., gr Cl m = Λ(m) Λ(m ) {x, y} = 0 {f, g} = 0 {f, x} = f(x) (x, y m, f, g m ). U(g) Cl m, Lie. θ : m U(m) Cl 0 U(g) Cl m, ad : m Cl 0 m Lie ([KS, Akm, BD] x x ad(x) (i) x m [Q, 1 x] = θ(x) + χ(x) U(g) Cl 1 m Q. (ii) Q Q 2 = 0., Q. m {x i }, {x i }, {c k ij } Q = (x i + χ(x i )) x i 1 1 (2) c k 2 ijx i x j x k. i Q odd Q 2 = 0 (ad Q) 2 = 0. (C (g), ad Q) dga(differential graded algebra). i,j,k H f (U(g)) := H (U(g) Cl m, ad Q). U(g) Cl m F p (U(g) Cl m ) = i+j p U i(g) Cl m,j associated graded gr F (U(g) Cl m ) = gr U(g) gr Cl m = C[g ] gr Cl m 4 m.

5 . Q (F 1 U(g) Cl m) gr F (U(g) Cl m ) = C[g ] gr Cl m Q (ad Q) 2 = 0. (C[g ] gr Cl m, ad Q) dgpa(differential graded Poisson algebra). ( ). 3.3 ([KS]). i Z H i (C[g ] gr Cl m, ad Q) = 0,. H 0 (C[g ] gr Cl m, ad Q) = C[S f ] 3.4 ([Kos, Pre, GG]). H i 0 f (U(g)) = 0 and gr Hf 0(U(g)) = C[S f ]. gr Hf 0(U(g)) U(g) Cl m H f (U(g)) associated graded. S f (3) U(g, f) := H 0 f (U(g)) (g, f) W 5. W, ([A2, DSK, BGK]) g = gl N. (gl N. ) f = f prin := f = F prin., N = Ad G.f prin y 1 y 2 y 3 y N 1 y 1 y 2... y N 1 S f = 0 1 y 1... y N 2 y ,..., y N C y 1, C[S f ] C[g ] GL N = C[h ] S N Chevalley. h g Cartan. (4) U(g, f prin ). Z(g) = S(h) S N, Kostant Whitttaker [Kos] Harish-Chandra 5 U(g, f) l.

6 W. (cf. [A2, A7]) U(g) Harish-Chandra HC : HC = {g U(g) }. M HC M Cl m U(g) Cl m, ad Q. H f (M) = H0 (M Cl m, ad Q) U(g, f), (5). HC { U(g, f) }, M H 0 f (M), 3.6 ([Los2, Gin]). M HC H i 0 f (M) = 0. (5). I U(g) I U(g)/I HC H 0 f (I) U(g, f) H 0 f (U(g)/I) 0. Hf 0 (I) (graded ). U(g, f) J associated variety Var(J) S f, Hf 0 (I) graded Var(Hf 0(I)) S f C. 3.7 ([Los1], [Gin]). U(g) I. Var(H 0 f (I)) = Var(I) S f I U(g) primitive ideal, O Var(I) = O g. (i) Hf 0 (U(g)/I) 0 Ad G.f O. (ii) Hf 0 (U(g)/I) ( ) ( ) f O. Hf 0(U(g)/I) U(g, f), H0 f (U(g)/I) U(g, f). 3.9 ([Los2]). I U(g) primitive ideal, O Var(I) = O g, f O, Hf 0 (U(g)/I). U(g, f). 4. ĝ g Kac-Moody. ĝ = g C[t, t 1 ] CK. [xt m, yt n ] = [x, y]t m+n + (x y)δ m+n,0 K, [K, ĝ] = 0 (x, y g). g (θ, θ) = 2. θ g. k C V k (g) := U(ĝ) U(g[t] CK) C k

7 ., C k g[t], K k g[t] CK. V k (g), V k (g) = k ĝ ([Kac, FBZ] ). ĝ M ĝ k K k, x g, m M xt r m = 0 r. V k (g) g k. N k (g) V k (g), N k (g) V k (g). L k (g) = V k (g)/n k (g). L k (g) L k (g) -Mod V k (g) V k (g) -Mod(= k ĝ ). L k (g)-mod = {M V k (g)-mod a (n) M = 0 a N k (g), n Z}, V V -Mod V, V (End M)[[z, z 1 ]], a a(z) = n Z a (n) z n 1 V M. L k (g)-mod., k, L k (g)-mod ĝ k. V k (g), L k (g) deg xt n = n. Zhu[FZ] { } {C }, V A(V ),,. {Z 0 V } { A(V ) } M M top., M top M., A(V k (g)) = U(g) k, U(g) E V k (g) U(g) U(g[t] CK) E. V V A(V ) A(V ). L k (g) Zhu U(g) : A(L k (g)) = U(g)/I k I k. L k (g) (U(g) modulo ) I k U(g) primitive ideal. Primitive ideal J I k Var(J) Var(I k ), I k associated variety. A(V ),.

8 , V. Zhu[Zhu], R V := V/C 2 (V ), C 2 (V ) = {a ( 2) b a, b V }.. ā b = a ( 1) b, {ā, b} = a (0) b. R V Zhu C 2. V X V X V = Specm R V. V V k (g),, C 2 (V ) = g[t 1 ]t 2 V., C[g ] = S(g) = R V k (g), x xt 1 1 X V k (g) = g. X Lk (g) g G. X V V. 4.2 ([A4]).. (i) dim X V = 0, (ii) dim Spec(gr V ) = 0. gr V V associated graded vertex algebra 6. X V 0 C , C 2, ([ABD, H2, H1, Miy] ) (i) dim X Lk (g) = 0, (ii) L k (g). (iii) k Z 0., C 2 Kac-Moody. Zhu Zhu C ([ALY]). R V gr A(V ). gr A(V ) V A(V ) associated graded Poisson algebra. 6 Poisson vertex algebra, C.

9 (6) Var(I k ) X Lk (g). R Lk (g) gr A(L k (g)) 7,. 4.5 ([A7]). k Var(I k ) = X Lk (g). U(g) primitive associated variety, X Lk (g) N., k L k (g) = V k (g) X Lk (g) = g., 4.3 k Z 0 X Lk (g) = {0}. X Lk (g) N h g Cartan, ĥ = h CK ĝ Cartan. ĥ+ = h CΛ 0., Λ 0 (K) = 1, Λ 0 (h) = 0. re re ĝ, + ĝ. λ ĥ L(λ) λ ĝ. ĝ, L k (g) = L(kΛ 0 ). L(λ). (i) λ regular dominant., λ + ρ, α {0, 1, }, α re + ĝ. (ii) Q (λ) = Q re., Q (λ) λ integral root system: (λ) = {α re λ, α Z}., { } { }..,. (i) Weyl-Kac. (7) ch L(λ) = w c W (λ) re + ( 1) lλ(w) e w λ α b + (1 e α ) dim bg. α Ŵ (λ) re (λ) ĝ Ŵ. (ii) ch L(λ), SL 2 (Z) ( [KW1]). 2 ([GK]). ĝ., ( ) 8,. (, (. 7 g E8 k = 1, (vareity {0} ). 8 (7) c W (λ).

10 k L(kΛ 0 ).. (1) k Q (2) kλ 0 ĝ regular dominant. ([KW2]). { k + h = p q, (p, q) N, (p, q) = 1, p h (r, q) = 1, h (r, q) = r 1 g ADE, h, h ĝ Coxter Coxeter, r = 2 g BCF 3 g G 2. Feigin-Frenkel, g = sl 2 Feigin-Malikov [FM]. 4.6 ([A5]). k X Lk (g) N. (Joseph ). 4.7 ([A5]). k X Lk (g) k q N N., q N O q, q k X Lk (g) = O q. O q. { {x g (ad x) 2q = 0}, (q, r ) = 1, O q = {x g π θs (x) 2q/r = 0}, (q, r ) = r. θ s g, π θs θ s g. { (n) n (q n) 4.8. g = sl n (C), O q (q, q,..., q, s) n (0 s < n) (q < n) k Specm(gr L k (g)) = JO q. JX X [A7] k 4.5., q N k Var(I k ) = O q ( )W. Duflo, I k U(g) primitive ideal ([A6]). λ ĥ k(i.e. λ(k) = k) L(λ) L k (g) L(λ) (λ) = (kλ 0 ). 9 C X, JX C A Hom(Spec A, JX) = Hom(Spec A[[t]]], X) (cf. citeeinmus).

11 5. ( )W f N, W k (g, f) (g, f) k C W ([FF, KRW]). W k (g, f),. X Wk (g,f) = S f, gr W k (g, f) = C[JS f ] ([DSK, A5]). W k (g, f) W U(g, f) 10 ([[DSK, A2]]). A(W k (g, f)) = U(g, f) W k (g, f) Kac-Moody Virasoro. W k (g, 0) = V k (g), W k (sl 2, f) (k 2 ) 1 6(k+1) 2 /(k+2) Virasoro. W k (g, f) Drinfeld-Sokolov. BRST H f (?) W k (g, f) = H 0 f (V k (g)) ((3) ). W k (g, f) 11 W k (g, f). X WK (g,f) = S f X Wk (g,f) S f C., W k (g, f) C 2 X Wk (g,f) = {f} g = gl N, f = f prin. (4), U(g, f prin ) S(h) S N S(h). h Heisenberg. h ( κ = k + N 12 ) H κ. x i (z) = n Z x i,nz n 1 (i = 1,..., N), OPE x i (z)x j (w) κδ i,j (z w) 2 ( [x i,n, x j,m ] = κnδ n+m,0 δ i,j ). Harish-Chandra, W k (g, f prin ) H κ.. H κ W k (g, f prin ) W (1) (z), W (2) (z),..., W (N) (z) 10 W k (g, f) 1 2 Z 0-graded Zhu Ramond twisted Zhu. 11 k = h graded simple quotient 12 κ 0.

12 . N W (j) (z)(ν ) N j =: (ν z + x 1 (z))(ν z + x 1 (z))... (ν z + x N (z)) : j=0, z x i (z) = d dz x i(z) + x i (z) z, ν = κ 1 = k + N 1. W (r) (z) = : x i1 (z)x i2 (z)... x ir (z) : +lower i 1 <i 2 < <i r ([FL], [AM] )., W (r) )(z) OPE( ) closed formula ( ).,,. V k (g)-mod W k (g, f)-mod, M H 0 f (M) KL k ĝ k Harish-Chandra (ĝ, G[[t]]). KL k G[[t]], g[[t]] g[t] ĝ k ĝ. 5.2 ([A5]). k C, M KL k H i 0 f (M) = 0.. KL k W k (g, f)-mod, M H 0 f (M),, V k (g) L k (g) W k (g, f) = H 0 f (V k (g)) H 0 f (L k(g)). H 0 f (L k(g)) W k (g, f). W W k (g, f). 5.3 ([FKW, KRW]). H 0 f (L k(g)) W k (g, f). [A1, A2, A3]. 5.4 ([A5]). k C, f N. X H 0 f (L k (g)) = X L(kΛ0 ) S f H 0 f (L k(g)) 0 f X L(kΛ0 ) k q N, f O q. X H 0 f (L(kΛ 0 )) = {f}. H 0 f (L(kΛ 0)) C 2. W k (g, f) C W V V C 2, CFT. (i) ([Zhu], Dong-Lin-Ng]) {M 1,..., M r } V, v V k {q c v 24 tr Mi (o(v)q L 0 )} k., o(v) V v(z). (ii) ([H1]) V. Reshetikhin- Turaev 3.

13 O prin N G. k. X Lk (g) = O prin (= N ). q N k. { h ((q, r ) = 1 ), q r L h ((q, r ) = r ). 6.2 ([FKW]). k W k (g, f prin ) ( C 2 ). g = sl 2, W k (g, f prin ) Virasoro ([BPZ]). 6.2 Kac- [KW2]. O q ([A5]). 6.3 ([KW2]). k q N. W k (g, f). f O q. f Levi type. (q, r ) = 1., (A.). k q N. f O q W k (g, f) (i) ([A7]) 6.2. (ii) ([A8]) g = sl n, ). (iii) ([A8]) f ADE Kac- 6.4 (DE Levi type ). References [ABD] Toshiyuki Abe, Geoffrey Buhl, and Chongying Dong. Rationality, regularity, and C 2 - cofiniteness. Trans. Amer. Math. Soc., 356(8): (electronic), [Akm] Füsun Akman. A characterization of the differential in semi-infinite cohomology. J. Algebra, 162(1): , [ALY] Tomoyuki Arakawa, Ching Hung Lam, and Hiromichi Yamada. Zhu s algebra, C 2 -algebra and C 2 -cofiniteness of parafermion vertex operator algebras. Adv. Math., 264: , [AM] Tomoyuki Arakawa and Alexander Molev. Explicit generators in rectangular affine W -algebras o type A. arxiv: [math.rt]. [A1] Tomoyuk Arakawa. Representation theory of superconformal algebras and the Kac-Roan- Wakimoto conjecture. Duke Math. J., 130(3): , [A2] Tomoyuki Arakawa. Representation theory of W -algebras. Invent. Math., 169(2): , [A3] Tomoyuki Arakawa. Representation theory of W -algebras, II. In Exploring new structures and natural constructions in mathematical physics, volume 61 of Adv. Stud. Pure Math., pages Math. Soc. Japan, Tokyo, [A4] Tomoyuki Arakawa. A remark on the C 2 cofiniteness condition on vertex algebras. Math. Z., 270(1-2): , [A5] Tomoyuki Arakawa. Associated varieties of modules over Kac-Moody algebras and C 2 - cofiniteness of W-algebras v2.

14 [A6] T. Arakawa. Rationality of admissible affine vertex algebras in the category O. arxiv: [math.qa]. [A7] Tomoyuki Arakawa. Rationality of W-algebras; principal nilpotent cases. arxiv: [math.qa]. [A8] Tomoyuki Arakawa. in preparation. [BD] Alexander Beilinson and Vladimir Drinfeld. Quantization of hitchin s integrable system and hecke eigensheaves. preprint. [BGK] Jonathan Brundan, Simon M. Goodwin, and Alexander Kleshchev. Highest weight theory for finite W -algebras. Int. Math. Res. Not. IMRN, (15):Art. ID rnn051, 53, [BPZ] A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov. Infinite conformal symmetry in two-dimensional quantum field theory. Nuclear Phys. B, 241(2): , [DSK] Alberto De Sole and Victor G. Kac. Finite vs affine W -algebras. Japan. J. Math., 1(1): , [FBZ] Edward Frenkel and David Ben-Zvi. Vertex algebras and algebraic curves, volume 88 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, second edition, [FF] Boris Feigin and Edward Frenkel. Quantization of the Drinfel d-sokolov reduction. Phys. Lett. B, 246(1-2):75 81, [FKW] Edward Frenkel, Victor Kac, and Minoru Wakimoto. Characters and fusion rules for W - algebras via quantized Drinfel d-sokolov reduction. Comm. Math. Phys., 147(2): , [FL] V. A. Fateev and S. L. Lykyanov. The models of two-dimensional conformal quantum field theory with Z n symmetry. Internat. J. Modern Phys. A, 3(2): , [FM] Boris Feigin and Fyodor Malikov. Modular functor and representation theory of sl b 2 at a rational level. In Operads: Proceedings of Renaissance Conferences (Hartford, CT/Luminy, 1995), volume 202 of Contemp. Math., pages , Providence, RI, Amer. Math. Soc. [FZ] Igor B. Frenkel and Yongchang Zhu. Vertex operator algebras associated to representations of affine and Virasoro algebras. Duke Math. J., 66(1): , [GG] Wee Liang Gan and Victor Ginzburg. Quantization of Slodowy slices. Int. Math. Res. Not., (5): , [Gin] Victor Ginzburg. Harish-Chandra bimodules for quantized Slodowy slices. Represent. Theory, 13: , [GK] Maria Gorelik and Victor Kac. On complete reducibility for infinite-dimensional Lie algebras. Adv. Math., 226(2): , [H1] Yi-Zhi Huang. Rigidity and modularity of vertex tensor categories. Commun. Contemp. Math., 10(suppl. 1): , [H2] Yi-Zhi Huang. Vertex operator algebras and the Verlinde conjecture. Commun. Contemp. Math., 10(1): , [Jos] Anthony Joseph. On the associated variety of a primitive ideal. J. Algebra, 93(2): , [Kac] Victor Kac. Vertex algebras for beginners, volume 10 of University Lecture Series. American Mathematical Society, Providence, RI, second edition, [Kos] Bertram Kostant. On Whittaker vectors and representation theory. Invent. Math., 48(2): , [KRW] Victor Kac, Shi-Shyr Roan, and Minoru Wakimoto. Quantum reduction for affine superalgebras. Comm. Math. Phys., 241(2-3): , [KS] Bertram Kostant and Shlomo Sternberg. Symplectic reduction, BRS cohomology, and infinite-dimensional Clifford algebras. Ann. Physics, 176(1):49 113, [KW1] V. G. Kac and M. Wakimoto. Classification of modular invariant representations of affine algebras. In Infinite-dimensional Lie algebras and groups (Luminy-Marseille, 1988), volume 7 of Adv. Ser. Math. Phys., pages World Sci. Publ., Teaneck, NJ, [KW2] Victor G. Kac and Minoru Wakimoto. On rationality of W -algebras. Transform. Groups, 13(3-4): , [Los1] Ian Losev. 1-dimensional representations and parabolic induction for w-algebras. preprint, arxiv:math/ [math.rt]. [Los2] Ivan Losev. Finite-dimensional representations of W -algebras. Duke Math. J., 159(1):99 143, 2011.

15 [Miy] Masahiko Miyamoto. Modular invariance of vertex operator algebras satisfying C 2 - cofiniteness. Duke Math. J., 122(1):51 91, [Pre] Alexander Premet. Special transverse slices and their enveloping algebras. Adv. Math., 170(1):1 55, With an appendix by Serge Skryabin. [Zhu] Yongchang Zhu. Modular invariance of characters of vertex operator algebras. J. Amer. Math. Soc., 9(1): , 1996.

2 TOMOYUKI ARAKAWA 2. Beilinson-Drinfeld W W. Weyl. g C Lie, G, W Weyl, h Cartan. S(h) W S(h) W. S(h) 3 Heisenberg( ) (free boson). Fateev-Lukyanov [F

2 TOMOYUKI ARAKAWA 2. Beilinson-Drinfeld W W. Weyl. g C Lie, G, W Weyl, h Cartan. S(h) W S(h) W. S(h) 3 Heisenberg( ) (free boson). Fateev-Lukyanov [F PRINCIPAL AFFINE W -ALGEBRAS: AN OVERVIEW TOMOYUKI ARAKAWA ( ). Borcherds [Bor86] (vertex algebra),,. W. W Virasoro ([KRW03]),,. W Zamolodchikov[Zam85]. Feigin-Frenkel[FF90], Kac-Roan-Wakimoto[KRW03],

More information

1 Affine Lie 1.1 Affine Lie g Lie, 2h A B = tr g ad A ad B A, B g Killig form., h g daul Coxeter number., g = sl n C h = n., g long root 2 2., ρ half

1 Affine Lie 1.1 Affine Lie g Lie, 2h A B = tr g ad A ad B A, B g Killig form., h g daul Coxeter number., g = sl n C h = n., g long root 2 2., ρ half Wess-Zumino-Witten 1999 3 18 Wess-Zumino-Witten., Knizhnik-Zamolodchikov-Bernard,,. 1 Affine Lie 2 1.1 Affine Lie.............................. 2 1.2..................................... 3 2 WZW 4 3 Knizhnik-Zamolodchikov-Bernard

More information

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. R-space ( ) Version 1.1 (2012/02/29) i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. ii 1 Lie 1 1.1 Killing................................

More information

平成 15 年度 ( 第 25 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 15 月年 78 日開催月 4 日 ) X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = (

平成 15 年度 ( 第 25 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 15 月年 78 日開催月 4 日 ) X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = ( 1 1.1 X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = (X 1,..., X n ) ( ) X 1,..., X n f 1,..., f r A T X + XA XBR 1 B T X + C T QC = O X 1.2 X 1,..., X n X i X j X j X i = 0, P i

More information

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t e-mail: koyama@math.keio.ac.jp 0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo type: diffeo universal Teichmuller modular I. I-. Weyl

More information

. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2

. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2 2014 6 30. 2014 3 1 6 (Hopf algebra) (group) Andruskiewitsch-Santos [AFS09] 1980 Drinfeld (quantum group) Lie Lie (ribbon Hopf algebra) (ribbon category) Turaev [Tur94] Kassel [Kas95] (PD) x12005i@math.nagoya-u.ac.jp

More information

2018 : msjmeeting-2018mar-02i003 : Demazure ( ) 1. Macdonald Weyl Demazure. g, h Cartan., Q := i I Zα i h root lattice, Q + := i I Z 0α

2018 : msjmeeting-2018mar-02i003 : Demazure ( ) 1. Macdonald Weyl Demazure. g, h Cartan., Q := i I Zα i h root lattice, Q + := i I Z 0α 2018 : 2018 21 msjmeeting-2018mar-02i003 : Demazure ( ) 1. Macdonald 1.1. Weyl Demazure. g, h Cartan, Q := i I Zα i h root lattice, Q + := i I Z 0α i Q, P := i I Zϖ i h g weight lattice ;, ϖ i h, i I,

More information

2 2 Belavin Polyakov Zamolodchikov (BPZ) 1984 [13] 2 BPZ BPZ Virasoro [16][18] [20], [30], [47] [1][6] [8][10], [11], [12] Affine [6],GKO [2] W

2 2 Belavin Polyakov Zamolodchikov (BPZ) 1984 [13] 2 BPZ BPZ Virasoro [16][18] [20], [30], [47] [1][6] [8][10], [11], [12] Affine [6],GKO [2] W SGC -83 2 2 Belavin Polyakov Zamolodchikov (BPZ) 1984 [13] 2 BPZ BPZ 1 3 4 Virasoro [16][18] [20], [30], [47] [1][6] [8][10], [11], [12] Affine [6],GKO [2] W [14] c = 1 CFT [8] Rational CFT [15], [56]

More information

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, PC ( 4 5 )., 5, Milnor Milnor., ( 6 )., (I) Z modulo

More information

R R P N (C) 7 C Riemann R K ( ) C R C K 8 (R ) R C K 9 Riemann /C /C Riemann 10 C k 11 k C/k 12 Riemann k Riemann C/k k(c)/k R k F q Riemann 15

R R P N (C) 7 C Riemann R K ( ) C R C K 8 (R ) R C K 9 Riemann /C /C Riemann 10 C k 11 k C/k 12 Riemann k Riemann C/k k(c)/k R k F q Riemann 15 (Gen KUROKI) 1 1 : Riemann Spec Z 2? 3 : 4 2 Riemann Riemann Riemann 1 C 5 Riemann Riemann R compact R K C ( C(x) ) K C(R) Riemann R 6 (E-mail address: kuroki@math.tohoku.ac.jp) 1 1 ( 5 ) 2 ( Q ) Spec

More information

1

1 1 Borel1956 Groupes linéaire algébriques, Ann. of Math. 64 (1956), 20 82. Chevalley1956/58 Sur la classification des groupes de Lie algébriques, Sém. Chevalley 1956/58, E.N.S., Paris. Tits1959 Sur la classification

More information

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ Galois ) 0 1 1 2 2 4 3 10 4 12 5 14 16 0 Galois Galois Galois TaylorWiles Fermat [W][TW] Galois Galois Galois 1 Noether 2 1 Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R

More information

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c GL 2 1 Lie SL(2, R) GL(2, A) Gelbart [Ge] 1 3 [Ge] Jacquet-Langlands [JL] Bump [Bu] Borel([Bo]) ([Ko]) ([Mo]) [Mo] 2 2.1 H = {z C Im(z) > 0} Γ SL(2, Z) Γ N N Γ (N) = {γ SL(2, Z) γ = 1 2 mod N} g SL(2,

More information

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ). 1.1. modular symbol., notation. H = z = x iy C y > 0, cusp H = H Q., Γ = PSL 2 (Z), G Γ [Γ : G]

More information

Dynkin Serre Weyl

Dynkin Serre Weyl Dynkin Naoya Enomoto 2003.3. paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie 4 1.1 Lie ( )................................ 4 1.2 Killing form...........................................

More information

1 Part I (warming up lecture). (,,...) 1.1 ( ) M = G/K :. M,. : : R-space. R-space..

1 Part I (warming up lecture). (,,...) 1.1 ( ) M = G/K :. M,. : : R-space. R-space.. ( ) ( ) 2012/07/14 1 Part I (warming up lecture). (,,...) 1.1 ( ) M = G/K :. M,. : : R-space. R-space.. 1.2 ( ) ( ): M,. : (Part II). 1 (Part III). : :,, austere,. :, Einstein, Ricci soliton,. 1.3 : (S,

More information

Step 2 O(3) Sym 0 (R 3 ), : a + := λ 1 λ 2 λ 3 a λ 1 λ 2 λ 3. a +. X a +, O(3).X. O(3).X = O(3)/O(3) X, O(3) X. 1.7 Step 3 O(3) Sym 0 (R 3 ),

Step 2 O(3) Sym 0 (R 3 ), : a + := λ 1 λ 2 λ 3 a λ 1 λ 2 λ 3. a +. X a +, O(3).X. O(3).X = O(3)/O(3) X, O(3) X. 1.7 Step 3 O(3) Sym 0 (R 3 ), 1 1 1.1,,. 1.1 1.2 O(2) R 2 O(2).p, {0} r > 0. O(3) R 3 O(3).p, {0} r > 0.,, O(n) ( SO(n), O(n) ): Sym 0 (R n ) := {X M(n, R) t X = X, tr(x) = 0}. 1.3 O(n) Sym 0 (R n ) : g.x := gxg 1 (g O(n), X Sym 0

More information

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi 1 Surveys in Geometry 1980 2 6, 7 Harmonic Map Plateau Eells-Sampson [5] Siu [19, 20] Kähler 6 Reports on Global Analysis [15] Sacks- Uhlenbeck [18] Siu-Yau [21] Frankel Siu Yau Frankel [13] 1 Surveys

More information

1.2 (Kleppe, cf. [6]). C S 3 P 3 3 S 3. χ(p 3, I C (3)) 1 C, C P 3 ( ) 3 S 3( S 3 S 3 ). V 3 del Pezzo (cf. 2.1), S V, del Pezzo 1.1, V 3 del Pe

1.2 (Kleppe, cf. [6]). C S 3 P 3 3 S 3. χ(p 3, I C (3)) 1 C, C P 3 ( ) 3 S 3( S 3 S 3 ). V 3 del Pezzo (cf. 2.1), S V, del Pezzo 1.1, V 3 del Pe 3 del Pezzo (Hirokazu Nasu) 1 [10]. 3 V C C, V Hilbert scheme Hilb V [C]. C V C S V S. C S S V, C V. Hilbert schemes Hilb V Hilb S [S] [C] ( χ(s, N S/V ) χ(c, N C/S )), Hilb V [C] (generically non-reduced)

More information

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,.

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,. 1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, 2015. webpage,.,,. 2 1 (1),, ( ). (2),,. (3),.,, : Hashinaga, T., Tamaru, H.: Three-dimensional solvsolitons and the

More information

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+ 1 SL 2 (R) γ(z) = az + b cz + d ( ) a b z h, γ = SL c d 2 (R) h 4 N Γ 0 (N) {( ) } a b Γ 0 (N) = SL c d 2 (Z) c 0 mod N θ(z) θ(z) = q n2 q = e 2π 1z, z h n Z Γ 0 (4) j(γ, z) ( ) a b θ(γ(z)) = j(γ, z)θ(z)

More information

数学メモアール 第4巻, (2004)

数学メモアール 第4巻, (2004) 6 9 7 i 2002 5 6 0, [TUY] Lie, P ŝl 2, 3 ) OPE) 2) 3) factorization property ), 2, 4 2) 4, 3) 7, 2, OPE 3, P n 3, 4, 5 6, 7 6, 7 factorization property,,, Lie Lie 2, [K] 5.2, 7.9 5.2 3.4, 7.9, 6.2, 6,

More information

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona Macdonald, 2015.9.1 9.2.,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdonald,, q., Heckman Opdam q,, Macdonald., 1 ,,. Macdonald,

More information

Gauss Fuchs rigid rigid rigid Nicholas Katz Rigid local systems [6] Fuchs Katz Crawley- Boevey[1] [7] Katz rigid rigid Katz middle convolu

Gauss Fuchs rigid rigid rigid Nicholas Katz Rigid local systems [6] Fuchs Katz Crawley- Boevey[1] [7] Katz rigid rigid Katz middle convolu rigidity 2014.9.1-2014.9.2 Fuchs 1 Introduction y + p(x)y + q(x)y = 0, y 2 p(x), q(x) p(x) q(x) Fuchs 19 Fuchs 83 Gauss Fuchs rigid rigid rigid 7 1970 1996 Nicholas Katz Rigid local systems [6] Fuchs Katz

More information

Chern-Simons Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q

Chern-Simons   Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q Chern-Simons E-mail: fuji@th.phys.nagoya-u.ac.jp Jones 3 Chern-Simons - Chern-Simons - Jones J(K; q) []Jones q J (K + ; q) qj (K ; q) = (q /2 q /2 )J (K 0 ; q), () J( ; q) =. (2) K Figure : K +, K, K 0

More information

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo] 2 Hecke ( ) 0 1n J n =, Γ = Γ n = Sp(n, Z) = {γ GL(2n,

More information

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X 2 E 8 1, E 8, [6], II II, E 8, 2, E 8,,, 2 [14],, X/C, f : X P 1 2 3, f, (O), f X NS(X), (O) T ( 1), NS(X), T [15] : MWG(f) NS(X)/T, MWL(f) 0 (T ) NS(X), MWL(f) MWL(f) 0, : {f λ : X λ P 1 } λ Λ NS(X λ

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

『共形場理論』

『共形場理論』 T (z) SL(2, C) T (z) SU(2) S 1 /Z 2 SU(2) (ŜU(2) k ŜU(2) 1)/ŜU(2) k+1 ŜU(2)/Û(1) G H N =1 N =1 N =1 N =1 N =2 N =2 N =2 N =2 ĉ>1 N =2 N =2 N =4 N =4 1 2 2 z=x 1 +ix 2 z f(z) f(z) 1 1 4 4 N =4 1 = = 1.3

More information

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara 80 1963 Sp(2, R) p L holomorphic discrete series Eichler Brandt Eichler

More information

コホモロジー的AGT対応とK群類似

コホモロジー的AGT対応とK群類似 AGT K ( ) Encounter with Mathematics October 29, 2016 AGT L. F. Alday, D. Gaiotto, Y. Tachikawa, Liouville Correlation Functions from Four-dimensional Gauge Theories, Lett. Math. Phys. 91 (2010), arxiv:0906.3219.

More information

Affine Hecke ( A ) Irreducible representations of affine Hecke algebras (survey talk with emphasis on type A) (Syu Kato) Recently, there are

Affine Hecke ( A ) Irreducible representations of affine Hecke algebras (survey talk with emphasis on type A) (Syu Kato) Recently, there are Affine Hecke ( A ) Irreducible representations of affine Hecke algebras (survey talk with emphasis on type A) (Syu Kato) 20 10 29 Recently, there are several successful attempts on the classification of

More information

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T 0 2 8 8 6 3 0 0 Young Young [F] 0.. Young λ n λ n λ = (λ,, λ l ) λ λ 2 λ l λ = ( m, 2 m 2, ) λ = n, l(λ) = l {λ n n 0} P λ = (λ, ), µ = (µ, ) n λ µ k k k λ i µ i λ µ λ = µ k i= i= i < k λ i = µ i λ k >

More information

2016 Course Description of Undergraduate Seminars (2015 12 16 ) 2016 12 16 ( ) 13:00 15:00 12 16 ( ) 1 21 ( ) 1 13 ( ) 17:00 1 14 ( ) 12:00 1 21 ( ) 15:00 1 27 ( ) 13:00 14:00 2 1 ( ) 17:00 2 3 ( ) 12

More information

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like () 10 9 30 1 Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [], [13]) Poincaré e m Poincaré e m Kähler-like Kähler-like Kähler M g M X, Y, Z (.1) Xg(Y, Z) = g( X Y, Z) + g(y, XZ)

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

,2,4

,2,4 2005 12 2006 1,2,4 iii 1 Hilbert 14 1 1.............................................. 1 2............................................... 2 3............................................... 3 4.............................................

More information

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1) φ 4 Minimal subtraction scheme 2-loop ε 28 University of Tokyo Atsuo Kuniba version 2/Apr/28 Formulas Γ n + ɛ = n n! ɛ + ψn + + Oɛ n =,, 2, ψn + = + 2 + + γ, 2 n ψ = γ =.5772... Euler const, log + ax x

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

2 Three-wave Painlevé VI 21 -Wilson three-wave Painlevé VI Gauss -Wilson [KK3] n 3 3 t = t 1 t 2 t 3 -Wilson W z; t := I + W 1 z + W 2 z 2 + z; t := 0

2 Three-wave Painlevé VI 21 -Wilson three-wave Painlevé VI Gauss -Wilson [KK3] n 3 3 t = t 1 t 2 t 3 -Wilson W z; t := I + W 1 z + W 2 z 2 + z; t := 0 1473 : de nouvelles perspectives 2006 2 pp 102 119 VI q 1 Tetsuya Kikuchi Sabro Kakei Drinfel d-sokolov Painlevé [KK1] [KK2] [KK3] [KIK] [ ] [ ] [KK3] three-wave equation Painlevé VI q q Drinfel d-sokolov

More information

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1 014 5 4 compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) 1 1.1. a, Σ a {0} a 3 1 (1) a = span(σ). () α, β Σ s α β := β α,β α α Σ. (3) α, β

More information

欧州特許庁米国特許商標庁との共通特許分類 CPC (Cooperative Patent Classification) 日本パテントデータサービス ( 株 ) 国際部 2019 年 7 月 31 日 CPC 版が発効します 原文及び詳細はCPCホームページのCPC Revision

欧州特許庁米国特許商標庁との共通特許分類 CPC (Cooperative Patent Classification) 日本パテントデータサービス ( 株 ) 国際部 2019 年 7 月 31 日 CPC 版が発効します 原文及び詳細はCPCホームページのCPC Revision 欧州特許庁米国特許商標庁との共通特許分類 CPC (Cooperative Patent Classification) 日本パテントデータサービス ( 株 ) 国際部 2019 年 7 月 31 日 CPC 2019.08 版が発効します 原文及び詳細はCPCホームページのCPC Revisions(CPCの改訂 ) をご覧ください https://www.cooperativepatentclassification.org/cpcrevisions/noticeofchanges.html

More information

untitled

untitled Lie L ( Introduction L Rankin-Selberg, Hecke L (,,, Rankin, Selberg L (GL( GL( L, L. Rankin-Selberg, Fourier, (=Fourier (= Basic identity.,,.,, L.,,,,., ( Lie G (=G, G.., 5, Sp(, R,. L., GL(n, R Whittaker

More information

1 Slodowy 005 3 9 3 1 ADE ADE (0) ADE (1) SL(, C), R 3 (), (3) ADE, II 1 (4) SL(, Z)- (5) F 4, B, M McKay E 6, E 7, E 8 4 A n 5 5 5... 5 5 5 D n 5 5 5... 5 5 5 E 6 5 5 5 5 5 5 E 7 5 5 5 5 5 5 5 E 8 5

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

( ) (, ) ( )

( ) (, ) ( ) ( ) (, ) ( ) 1 2 2 2 2.1......................... 2 2.2.............................. 3 2.3............................... 4 2.4.............................. 5 2.5.............................. 6 2.6..........................

More information

2017 : msjmeeting-2017sep-00f003 ( ) 1. 1 = A 1.1. / R T { } Λ R = a i T λ i a i R, λ i R, lim λ i = + i i=0 R Λ R v T ( a i T λ i ) = inf λ i, v T (0

2017 : msjmeeting-2017sep-00f003 ( ) 1. 1 = A 1.1. / R T { } Λ R = a i T λ i a i R, λ i R, lim λ i = + i i=0 R Λ R v T ( a i T λ i ) = inf λ i, v T (0 2017 : msjmeeting-2017sep-00f003 ( ) 1. 1 = A 1.1. / R T { } Λ R = a i T λ i a i R, λ i R, lim λ i = + i i=0 R Λ R v T ( a i T λ i ) = inf λ i, v T (0) = + a i 0 i=0 v T Λ R 0 = {x Λ R v T (x) 0} R Remark

More information

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 (4/12) 1 1.. 2. F R C H P n F E n := {((x 0,..., x n ), [v 0 : : v n ]) F n+1 P n F n x i v i = 0 }. i=0 E n P n F P n

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS, KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$:, Cape i,.,.,,,,.,,,.

CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS, KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$:, Cape i,.,.,,,,.,,,. 1508 2006 1-11 1 CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$: Cape i Capelli 1991 ( ) (1994 ; 1998 ) 100 Capelli Capelli Capelli ( ) (

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,, 15, pp.1-13 1 1.1,. 1.1. C ( ) f = u + iv, (, u, v f ). 1 1. f f x = i f x u x = v y, u y = v x.., u, v u = v = 0 (, f = 2 f x + 2 f )., 2 y2 u = 0. u, u. 1,. 1.2. S, A S. (i) A φ S U φ C. (ii) φ A U φ

More information

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 (vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2 1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac

More information

Λ (Kyo Nishiyama) 1 p q r ( determinantal variety) n n r Kostant ( Rallis, Steinberg ) D 1980 Borho-Brylinski Vogan Springer theta theta theta

Λ (Kyo Nishiyama) 1 p q r ( determinantal variety) n n r Kostant ( Rallis, Steinberg ) D 1980 Borho-Brylinski Vogan Springer theta theta theta Λ (Kyo Nishiyama) 1 p q r ( determinantal variety) n n r 1960 70 Kostant ( Rallis, Steinberg ) D 1980 Borho-Brylinski Vogan Springer theta theta theta theta ( ) Λ ( ) August 9, 2000 Theta lifting of representations

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

main.dvi

main.dvi SGC - 70 2, 3 23 ɛ-δ 2.12.8 3 2.92.13 4 2 3 1 2.1 2.102.12 [8][14] [1],[2] [4][7] 2 [4] 1 2009 8 1 1 1.1... 1 1.2... 4 1.3 1... 8 1.4 2... 9 1.5... 12 1.6 1... 16 1.7... 18 1.8... 21 1.9... 23 2 27 2.1

More information

非可換Lubin-Tate理論の一般化に向けて

非可換Lubin-Tate理論の一般化に向けて Lubin-Tate 2012 9 18 ( ) Lubin-Tate 2012 9 18 1 / 27 ( ) Lubin-Tate 2012 9 18 2 / 27 Lubin-Tate p 1 1 ( ) Lubin-Tate 2012 9 18 2 / 27 Lubin-Tate p 1 1 Lubin-Tate GL n n 1 Lubin-Tate ( ) Lubin-Tate 2012

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) h

( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) h 2011 9 5 1 Lie 1 2 2.1 (category) (object) a, b, c, a b (arrow, morphism) f : a b (2.1) f a b (2.2) ( 1) f : a b g : b c (composite) g f : a c ( 2) f f a b g f g c g h (2.3) a b c d (2.4) h (g f) = (h

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n ( ), Jürgen Berndt,.,. 1, CH n.,,. 1.1 ([6]). CH n (n 2), : (i) CH k (k = 0,..., n 1) tube. (ii) RH n tube. (iii). (iv) ruled minimal, equidistant. (v) normally homogeneous submanifold F k tube. (vi) normally

More information

セアラの暗号

セアラの暗号 1 Cayley-Purser 1 Sarah Flannery 16 1 [1] [1] [1]314 www.cayley-purser.ie http://cryptome.org/flannery-cp.htm [2] Cryptography: An Investigation of a New Algorithm vs. the RSA(1999 RSA 1999 9 11 2 (17

More information

0406_total.pdf

0406_total.pdf 59 7 7.1 σ-ω σ-ω σ ω σ = σ(r), ω µ = δ µ,0 ω(r) (6-4) (iγ µ µ m U(r) γ 0 V (r))ψ(x) = 0 (7-1) U(r) = g σ σ(r), V (r) = g ω ω(r) σ(r) ω(r) (6-3) ( 2 + m 2 σ)σ(r) = g σ ψψ (7-2) ( 2 + m 2 ω)ω(r) = g ω ψγ

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K 2 2 T c µ T c 1 1.1 1911 Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 1 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K τ 4.2K σ 58 213 email:takada@issp.u-tokyo.ac.jp 1933 Meissner Ochsenfeld λ = 1 5 cm B = χ B =

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

Twist knot orbifold Chern-Simons

Twist knot orbifold Chern-Simons Twist knot orbifold Chern-Simons 1 3 M π F : F (M) M ω = {ω ij }, Ω = {Ω ij }, cs := 1 4π 2 (ω 12 ω 13 ω 23 + ω 12 Ω 12 + ω 13 Ω 13 + ω 23 Ω 23 ) M Chern-Simons., S. Chern J. Simons, F (M) Pontrjagin 2.,

More information

p.2/76

p.2/76 kino@info.kanagawa-u.ac.jp p.1/76 p.2/76 ( ) (2001). (2006). (2002). p.3/76 N n, n {1, 2,...N} 0 K k, k {1, 2,...,K} M M, m {1, 2,...,M} p.4/76 R =(r ij ), r ij = i j ( ): k s r(k, s) r(k, 1),r(k, 2),...,r(k,

More information

D-brane K 1, 2 ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane

D-brane K 1, 2   ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane K 1, 2 E-mail: sugimoto@yukawa.kyoto-u.ac.jp (2004 12 16 ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane RR D-brane K D-brane K D-brane K K [2, 3]

More information

( ),.,,., C A (2008, ). 1,, (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,, (M, g) p M, s p : M M p, : (1) p s p, (

( ),.,,., C A (2008, ). 1,, (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,, (M, g) p M, s p : M M p, : (1) p s p, ( ( ),.,,., C A (2008, ). 1,,. 1.1. (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,,. 1.2. (M, g) p M, s p : M M p, : (1) p s p, (2) s 2 p = id ( id ), (3) s p ( )., p ( s p (p) = p),,

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

²ÄÀÑʬΥ»¶ÈóÀþ·¿¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤ÎÁ²¶á²òÀÏ Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation

²ÄÀÑʬΥ»¶ÈóÀþ·¿¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤ÎÁ²¶á²òÀÏ  Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation ( ) ( ) 2016 12 17 1. Schrödinger focusing NLS iu t + u xx +2 u 2 u = 0 u(x, t) =2ηe 2iξx 4i(ξ2 η 2 )t+i(ψ 0 +π/2) sech(2ηx

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

SUSY DWs

SUSY DWs @ 2013 1 25 Supersymmetric Domain Walls Eric A. Bergshoeff, Axel Kleinschmidt, and Fabio Riccioni Phys. Rev. D86 (2012) 085043 (arxiv:1206.5697) ( ) Contents 1 2 SUSY Domain Walls Wess-Zumino Embedding

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

等質空間の幾何学入門

等質空間の幾何学入門 2006/12/04 08 tamaru@math.sci.hiroshima-u.ac.jp i, 2006/12/04 08. 2006, 4.,,.,,.,.,.,,.,,,.,.,,.,,,.,. ii 1 1 1.1 :................................... 1 1.2........................................ 2 1.3......................................

More information

1 [BPZ] model Wess-Zumino-Witten model,, compact Riemann, principal G-bunlde quasi parabolic structure) family, family base space twisted D-module) 11

1 [BPZ] model Wess-Zumino-Witten model,, compact Riemann, principal G-bunlde quasi parabolic structure) family, family base space twisted D-module) 11 2003 12 26 ) 71 1995 11 2 ) 1 2 2 Twisted diffrential operator tdo) 6 21 compact Riemann quasi parabolic G-bundle 6 22 compact Riemann quasi parabolic G-bundle family 6 23 Lie algebroid dg Lie algebroid

More information

II (No.2) 2 4,.. (1) (cm) (2) (cm) , (

II (No.2) 2 4,.. (1) (cm) (2) (cm) , ( II (No.1) 1 x 1, x 2,..., x µ = 1 V = 1 k=1 x k (x k µ) 2 k=1 σ = V. V = σ 2 = 1 x 2 k µ 2 k=1 1 µ, V σ. (1) 4, 7, 3, 1, 9, 6 (2) 14, 17, 13, 11, 19, 16 (3) 12, 21, 9, 3, 27, 18 (4) 27.2, 29.3, 29.1, 26.0,

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0,

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0, 2005 4 1 1 2 2 6 3 8 4 11 5 14 6 18 7 20 8 22 9 24 10 26 11 27 http://matcmadison.edu/alehnen/weblogic/logset.htm 1 1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition)

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

0. Intro ( K CohFT etc CohFT 5.IKKT 6.

0. Intro ( K CohFT etc CohFT 5.IKKT 6. E-mail: sako@math.keio.ac.jp 0. Intro ( K 1. 2. CohFT etc 3. 4. CohFT 5.IKKT 6. 1 µ, ν : d (x 0,x 1,,x d 1 ) t = x 0 ( t τ ) x i i, j, :, α, β, SO(D) ( x µ g µν x µ µ g µν x ν (1) g µν g µν vector x µ,y

More information

Donaldson Seiberg-Witten [GNY] f U U C 1 f(z)dz = Res f(a) 2πi C a U U α = f(z)dz dα = 0 U f U U P 1 α 0 a P 1 Res a α = 0. P 1 Donaldson Seib

Donaldson Seiberg-Witten [GNY] f U U C 1 f(z)dz = Res f(a) 2πi C a U U α = f(z)dz dα = 0 U f U U P 1 α 0 a P 1 Res a α = 0. P 1 Donaldson Seib ( ) Donaldson Seiberg-Witten Witten Göttsche [GNY] L. Göttsche, H. Nakajima and K. Yoshioka, Donaldson = Seiberg-Witten from Mochizuki s formula and instanton counting, Publ. of RIMS, to appear Donaldson

More information

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1. () 1.1.. 1. 1.1. (1) L K (i) 0 K 1 K (ii) x, y K x + y K, x y K (iii) x, y K xy K (iv) x K \ {0} x 1 K K L L K ( 0 L 1 L ) L K L/K (2) K M L M K L 1.1. C C 1.2. R K = {a + b 3 i a, b Q} Q( 2, 3) = Q( 2

More information

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

反D中間子と核子のエキゾチックな   束縛状態と散乱状態の解析 .... D 1 in collaboration with 1, 2, 1 RCNP 1, KEK 2 . Exotic hadron qqq q q Θ + Λ(1405) etc. uudd s? KN quasi-bound state? . D(B)-N bound state { { D D0 ( cu) B = D ( cd), B = + ( bu) B 0 ( bd) D(B)-N

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

Îã³°·¿¤Î¥·¥å¡¼¥Ù¥ë¥È¥«¥êto=1=¡á=1=¥ë¥�¥å¥é¥¹

Îã³°·¿¤Î¥·¥å¡¼¥Ù¥ë¥È¥«¥êto=1=¡á=1=¥ë¥�¥å¥é¥¹ (kaji@math.sci.fukuoka-u.ac.jp) 2009 8 10 R 3 R 3 ( wikipedia ) (Schubert, 19 ) (= )(Ehresmann, 20 ) (Chevalley, 20 ) G/P: ( : ) W : ( : ) X w : W X w W G: B G: Borel P B: G/P: 1 C n ( ) Fl n := {0 V

More information

ADM-Hamiltonian Cheeger-Gromov 3. Penrose

ADM-Hamiltonian Cheeger-Gromov 3. Penrose ADM-Hamiltonian 1. 2. Cheeger-Gromov 3. Penrose 0. ADM-Hamiltonian (M 4, h) Einstein-Hilbert M 4 R h hdx L h = R h h δl h = 0 (Ric h ) αβ 1 2 R hg αβ = 0 (Σ 3, g ij ) (M 4, h ij ) g ij, k ij Σ π ij = g(k

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

( ) Lemma 2.2. X ultra filter (1) X = X 1 X 2 X 1 X 2 (2) X = X 1 X 2 X 3... X N X 1, X 2,..., X N (3) disjoint union X j Definition 2.3. X ultra filt

( ) Lemma 2.2. X ultra filter (1) X = X 1 X 2 X 1 X 2 (2) X = X 1 X 2 X 3... X N X 1, X 2,..., X N (3) disjoint union X j Definition 2.3. X ultra filt NON COMMTATIVE ALGEBRAIC SPACE OF FINITE ARITHMETIC TYPE ( ) 1. Introduction (1) (2) universality C ( ) R (1) (2) ultra filter 0 (1) (1) ( ) (2) (2) (3) 2. ultra filter Definition 2.1. X F filter (1) F

More information

( ) 1., ([SU] ): F K k., Z p -, (cf. [Iw2], [Iw3], [Iw6]). K F F/K Z p - k /k., Weil., K., K F F p- ( 4.1).,, Z p -,., Weil..,,. Weil., F, F projectiv

( ) 1., ([SU] ): F K k., Z p -, (cf. [Iw2], [Iw3], [Iw6]). K F F/K Z p - k /k., Weil., K., K F F p- ( 4.1).,, Z p -,., Weil..,,. Weil., F, F projectiv ( ) 1 ([SU] ): F K k Z p - (cf [Iw2] [Iw3] [Iw6]) K F F/K Z p - k /k Weil K K F F p- ( 41) Z p - Weil Weil F F projective smooth C C Jac(C)/F ( ) : 2 3 4 5 Tate Weil 6 7 Z p - 2 [Iw1] 2 21 K k k 1 k K

More information

nsg02-13/ky045059301600033210

nsg02-13/ky045059301600033210 φ φ φ φ κ κ α α μ μ α α μ χ et al Neurosci. Res. Trpv J Physiol μ μ α α α β in vivo β β β β β β β β in vitro β γ μ δ μδ δ δ α θ α θ α In Biomechanics at Micro- and Nanoscale Levels, Volume I W W v W

More information