2 TOMOYUKI ARAKAWA 2. Beilinson-Drinfeld W W. Weyl. g C Lie, G, W Weyl, h Cartan. S(h) W S(h) W. S(h) 3 Heisenberg( ) (free boson). Fateev-Lukyanov [F

Size: px
Start display at page:

Download "2 TOMOYUKI ARAKAWA 2. Beilinson-Drinfeld W W. Weyl. g C Lie, G, W Weyl, h Cartan. S(h) W S(h) W. S(h) 3 Heisenberg( ) (free boson). Fateev-Lukyanov [F"

Transcription

1 PRINCIPAL AFFINE W -ALGEBRAS: AN OVERVIEW TOMOYUKI ARAKAWA ( ). Borcherds [Bor86] (vertex algebra),,. W. W Virasoro ([KRW03]),,. W Zamolodchikov[Zam85]. Feigin-Frenkel[FF90], Kac-Roan-Wakimoto[KRW03], W g BRST., W, W, BRST W., BRST, W. ( Z-algebra) W 2., W, W. W (Zhu ) W ([dbt93]), (Lie g )Gelfand-Graev End ([DSK06])., W Kostant-Lynch [Kos78, Lyn79]., Premet[Pre02], W ( ) Lie, 0 W Slodowy ([GG02] )., Brundan-Kleshchev[BK06, BK05], A W A Yangian ( )., W. W.,, ( )W. W,.,,., C W 90 [BS95]. 2,.

2 2 TOMOYUKI ARAKAWA 2. Beilinson-Drinfeld W W. Weyl. g C Lie, G, W Weyl, h Cartan. S(h) W S(h) W. S(h) 3 Heisenberg( ) (free boson). Fateev-Lukyanov [FL88] S(h) W, Heisenberg W. W 4,, ( )A, D. ( ) 5,. Chevalley () C[h] W = C[g] G., C[h] W C[g] G. g exponent = d < d 2 < < d l (l = rank g), C[g] G d i + P i (i =, 2,..., l) C[g]., C[g] G augmentation ideal C[g] G + g N : (2) N = Spec C[g]/C[g] G + = Spec(C[g]/ P,..., P l )., G, g, N G, g, N ( ) 6. (6) (7) G = G[[t]], g = g[[t]] = lim n. {x i } g g n, g n = g[t]/(t n+ ) C[g ] = C[x i,(n) ; n ] (x i = x i,( ) ). C[g ] T. (8) (9) T x i,( n) = nx i,( n ). N = Spec(C[g ]/ T n P i ; i =,..., l, n 0 ). C[N ]. P i C[g] G T n P i C[g ] G C X X, X m- X m. (3) X = lim m X m. X m. (4) Hom(Spec R, X m ) = Hom(Spec R[z]/(z m+ ), X) X, X (5) C[X] C[[z]], a X a (n) z n.. n R.

3 PRINCIPAL AFFINE W -ALGEBRAS: AN OVERVIEW 3 2. (Beilionson-Drinfeld[BD]). :, C[g ] G = C[T n P i ; i =,..., l, n 0]. N = Spec C[g ]/(C[g ] G + ). Z(g) U(g)., U(g), Z(g) C[g], C[g] G., C[g ], C[g ] G?, C[g ] = S(g[t ]t ), C[g ] ( ) U(g[t ]t ), g V k (g) (k 7 ) 8., V U(g) standard filtration, gr V. gr V (differential algebra). V k (g), (0) gr V k (g) = C[g ]., g ( ) W W k (g), () gr W k (g) = C[g ] G 9., k C. ( k = h, h g Coxeter ), W h (g) V h (g) [FF92, Fre07],., V k (g)., W k (g) V k (g)., W k (g) V k (g) Whittaker., W k (g), ( ). W 0, V. V =Virasoro ( ), Virasoro.,, g = sl 2 W, Virasoro( ) 2., g = sl 2, (OPE), W k (g) Lie. W. W 3,. Lie Virasoro,,, W. 7 g Lie gaff. 8 V k (g) g g aff ( 3.3 ). 9 C[g ] G, unique. 0 Wakimoto.,. 2, W Virasoro. 3 W k (sl 3 ), [BMP96]. k k

4 4 TOMOYUKI ARAKAWA 3. Vertex algebra basics. [Kac98, MN99, FBZ04] V, V [[z, z ]] = { n Z v n z n ; v n V }. V [[z, z ]] V C[[z, z ]]., V [[z, w, z, w ]] = { v m,n z m w n ; v m,n V, m, n Z}, m,n Z V ((z)) = { n Z v n z n V [[z, z ]]; v n = 0 (n 0)}. V ((z)) C((z))., a(z) (End V )[[z, z ]] (2) a(z) = n Z a (n) z n. a(z), v V a(z)v V ((z)), a (n) v = 0 n 0, (quantum) field. field a(z), b(z), a(z)b(z) well-defined., a(z)b(w) (End V )[[z, w, z, w ]] well-defined, v V (3) a(z)b(w)v V ((z))((w)), b(w)a(z)v V ((w))((z))., C[z, w, z, w, z w ] ( ) C[z, w, z, w ] z w.. (4) (5) t z,w : C[z, w, z, w, t w,z : C[z, w, z, w, f ] C((z))((w)), z w f ] C((z))((w)), z w z w f n 0 z w f n 0 z (w z )n, w ( z w )n. τ z,w z > w, τ w,z w > z,,. (6) δ(z w) := τ z,w ( z w ) τ w,z( z w ) = z (w z )n C[[z, w, z, w ]]. n Z f(z) (End V )[[z, z ]] f(z)δ(z w), f(w)δ(z w) well-defined. 3.. f(z) (End V )[[z, z ]] f(z)δ(z w) = f(w)δ(z w).

5 PRINCIPAL AFFINE W -ALGEBRAS: AN OVERVIEW 5. f C[z, w, z, w ] τ z,w (f) = τ w,z (f). (z n w n )δ(z w) = (z n w n )(τ z,w ( z w ) τ w,z( z w )) n Z. = τ z,w ( zn w n z w ) τ w,z( zn w n z w ) = OPE., Res z f f z, [j] w = j j! w j 3.2. (i) (z w) N w [j] δ(z w) = 0 (N j + ). (ii) Res z (z w) N δ w [j] δ(z w) = δ N,j V field a(z), b(z) local, N (z w) N [a(z), b(w)] = V field a(z), b(z). (7) (i) a(z), b(z) local. (ii) V field c 0 (z), c (z),... c N (z),. [a(z), b(w)] = N j=0 c j (w) [j] w δ(z w). (iii) V field c 0 (z), c (z),... c N (z),. N ( ) a(z)b(w) =: a(z)b(w) : + c j (w)τ z,w (z w) j+,, j=0 N ( b(w)a(z) =: a(z)b(w) : + c j (w)τ w,z (z w) j+ j=0 : a(z)b(w) := a(z) b(w) + b(w)a(z) +, a(z) = n<0 a (n)z n, a(z) + = n 0 a (n)z n., 3.4 (ii) ( (iii)), a(z)b(w) N j=0 c j (w) (z w) j+, a(z) b(w) OPE(operator product expansion). 3.2 (ii) (8). n (9) c j (w) = Res z (z w) j [a(z), b(w)] a(w) (n) b(w) = Res z (z w) n [a(z), b(w)], a(w) b(w) n. Dong. 3.5 (Li[Li96]). a(z), b(z), c(z) local, n Z a(z) (n) b(z) c(z) local. ).

6 6 TOMOYUKI ARAKAWA (20) OPE a(z)b(w) j 0 a(w) (j) b(w) (z w) j , V. V, T End V, V field {a α (z); α A} ( ).. (i) α, β A a α (z), a β (z) local. (ii) a α (n )... aα r (n r ) (α i A, n i Z) V. (iii) α A, a α (n) = 0 (n 0). aα (z) V [[z]]. (iv) T = 0. (v) α A, [T, a α (z)] = z a α (z). 3.7 (state-field correspondence). V, Y (?, z) : V (End V )[[z, z ]], a Y (a, z) = a(z) = n Z a (n) z n ( state-field correspondence ). (i) a α (z) Y (a α ( ), z) = aα (z). (ii) a V Y (a, z) V field. (iii) a, b V Y (a, z) Y (b, z) local. (iv) a V, [T, Y (a, z)] = z Y (a, z). (v) a V. Y (a, z) V [[z]] lim z 0 Y (a, z) = a., state-field correspondence V a field a(z) = Y (a, z). V. (2) Y (a, z)y (b, w) j 0 Y (a (j) b, w) (z w) j+, (22) Y (a (n) b, w) = Res z (z w) n [Y (a, z), Y (b, w)]... [a (m), b (n) ] = ( ) m (23) (a j (j) b) (m+n j), j 0 (a (m) b) (n) = ( ) m (24) ( ) j (a j (m j) b (n+j) ( ) m b (m+n j) a (j) ). j 0 (23), (24) m.

7 PRINCIPAL AFFINE W -ALGEBRAS: AN OVERVIEW ( ) g. (g, ( )) Lie g aff. (25). g aff = g[t, t ] CK CD. [x(m), y(n)] = [x, y](m + n) + m(x y)δ m+n,0 K [D, x(m)] = mx(m), [K, g aff ] = 0., x(m) = x t m. C k (26) V k (g) = U(g aff ) U(g[t] CK CD) C k (x, y g),. C k g[t] CD, K k. V k (g) field x(z) (x g), (27) x(z) = n Z x(n)z n 4., x(z), y(z) (x, y g) local, OPE. (28) x(z)y(w) [x, y](w) z w + k(x y) (z w) 2. V k (g) =, {x(z); x g}. V k (g) (g, ( )) k M V, (29),. (30) (3) (32) Y M (?, z) : V (End M)[[z, z ]], a Y M (a, z) Y M (a, z) M field Y M (a, z)y M (b, w) j 0 Y M (a (j) b, w) (z w) j+, Y M (a (n) b, w) = Res z (z w) n [Y M (a, z), Y M (b, w)]. V V. N V V/N Zhu., V H 5 : V = V, V = {v V : Hv = v}. Z 0, V. (33) [H, Y (a, z)] = Y (Ha, z) + zy (Ha, z) a V. 4 ( ) x(n) = x(n). 5 VOA( ),.

8 8 TOMOYUKI ARAKAWA H a a., (34) [H, a (n) ] = (n a + )a (n) V k (g) field S(z). (35) S(z) = a : J a (z)j a (z) :., {J a } g. State-field correspondence S(z) = Y (S ( ), z). k h, (36), L(z) OPE L(z) = n Z L(n)z n 2 = L(z)L(w) z w wl(w) + 2(k + h ) S(z) k dim g (z w) 2 L(w) + k+h 2(z w) 4., {L(n); n Z} k dim g k+h Virasoro ( )., L(0) V k (g). (37) [L(0), xt n ] = nxt n, L(0) = 0, L(0) = D. (L(0) ) k = h D V h (g). (38), Lie V = V [t, t ]/ Im(T + d/dt), Lie V Lie ([Bor86]). [at m, bt n ] = ( ) m (39) (a j (j) b)t m+n j. j 0, a t m + Im(T + d/dt) at m. [H, at m ] = (n a +)at m, V Lie V : Lie V = d Z (Lie V ) d., (Lie V ) d = {x Lie V ; Hx = dx}. (23) V Lie V., (24), Lie V V. U(Lie V ) = d Z U(Lie V ) d,. Ũ(Lie V ) = d Z Ũ(Lie V ) d, Ũ(Lie V ) d = lim N U(Lie V ) d / r>n U(Lie V ) d r U(Lie V ) r. ( [MNT05] standard degreewise filtration.) (24) t n δ n, Ũ(Lie V ) graded ideal I. Ũ(Lie V ) I U(V ), V 6. U(V ) : U(V ) = d Z U(V ) d. 6 ( ) [FZ92] V.

9 PRINCIPAL AFFINE W -ALGEBRAS: AN OVERVIEW 9 U(V ) 0 U(V ), U(V ) 0 Zh(V ) (40) Zh(V ) = U(V ) 0 / p>0 U(V ) p U(V ) p, V Zhu 7. C A, Zh(V ) = A V A (, V unique ) (4) (42) U(V k (g)) = Ũk(g aff ), Zh(V k (g)) = U(g)., Ũk(g aff ) U k (g aff ) = U(g aff )/ K k standard degreewise completion. (Ũk(g aff ) ad D. ) V k (g) U(g). V -Mod M = d C M d graded V. C d,..., d r, d i d i Z 0 M d = 0. V -Mod V positive energy representation ( admissible representation). Zh(V ). 3. (Zhu[Zhu96]). V -Mod Zh(V ). V k (g) g aff V k (g),. k Z 0, Zh(V k (g)) = U(g)/ e k+ θ. Open Problem. k 8, Zh(V k (g)) standard filtration. C 2 (V ) a ( 2) b (a, b V ) V. V/C 2 (V ) ([Zhu96]). (43) (44) ā b = a ( ) b, {ā, b} = a (0) b V/C 2 (V ), V 20., V field. V C 2 (V k (g)) = g[t ]t 2 V k (g). V k (g)/c 2 (V k (g)) = S(g t ) = S(g) = C[g ] V. 7 Zhu[Zhu96] original, ([FZ92, NT05]) 8 k Q>0 \Z >0 9 sl2 ( ). 20.

10 0 TOMOYUKI ARAKAWA (i) V (OPE 0). (ii) a V, a (n) = 0 (n 0). 3.3 V (45) Y (a, z) = n a (n) z n (End V )[[z]]., V. (46) a b = a ( ) b. T,. 3.4 ([Li04]). V (47) F p V = span{a ( n )... ar ( n r ) ; n i, a + + a r p}., {F p V } V quasi-commutative filtration. gr V., standard filtration V compatible, (48) V = F V F V F V = F V /F V gr V V/C 2 (V ). 0, gr V V/C 2 (V ). (49) C[(Spec V/C 2 (V )) ] gr V V k (g) = U(g[t ]t ), V k (g) standard filtration U(g[t ]t ) standard filtration. (50) gr V k (g) = S(g[t ]t ) = C[g ]. (49). 4. Feigin-Frenkel [FBZ04, Fre07]. 4.. BRST Z(ḡ) Whittaker. e g, sl 2 {e, h, f}. g j = {x g; [h, x] = 2jx}, n + = j>0 g j, h = g 0, n = j<0 ḡj, g = n h n + g. b ± = n ± h. N n (Kostant [Kos78]).. N (f + g e ) f + b +.

11 PRINCIPAL AFFINE W -ALGEBRAS: AN OVERVIEW, (5) µ : g = g n + = n, µ N. χ = (f?) n + χ n +. χ N. µ (χ) = f + b +, Hamiltonian reduction f + g e = (f + b + )/N reduced Poisson variety ([GG02] )., C[g] G C[f + g e ] = C[f + b + ] N. C[g] G = C[f + g e ], C[g] G BRST [KS87]. C[g] U(g). Cl. ( ) : ψ α (α ), : [ψ α, ψ β ] = δ α+β,0. g. +, +, ψ α (α ± ) Cl Λ(n ± ), Cl = Λ(n ) Λ(n + ). U(g) purely even, U(g) Cl. (.) U(g) Cl odd Q. (52) Q = (x α + χ(x α ))ψ α c γ α,β 2 ψ αψ β ψ γ α + α,β,γ +, x α α, c γ α,β. (53) Q 2 = 0. Q odd, ( ) (54) (ad Q) 2 = 0., deg u = 0 (u U(g)), deg ψ α = (α ), deg ψ α = (α + ) U(g) Cl, (U(g) Cl, ad Q). (55) H (U(g) Cl, ad Q) = i Z H i (U(g) Cl, ad Q). 4.3 ([Kos78, KS87]). (i) H i 0 (U(g) Cl, ad Q) = 0. (ii) Z(g) H 0 (U(g) Cl, ad Q).

12 2 TOMOYUKI ARAKAWA 4.2. W : Whittaker. k C, V k (g) U(g). OPE odd field ψ α (α ) ( ) 2 +. (56) (57) (58) ψ α (z)ψ β (w) δ α+β,0 z w. ψ α (z) = n Z ψ α (n)z n (α + ), ψ α (z) = n Z ψ α (n)z n (α ) (59) [ψ α (m), ψ α (n)] = δ α+β,0 δ m+n,0. odd ψ α (n) (α, n Z) (59) 2 Cl aff. + 2 Cl aff. + [H, ψ α (n)] = nψ α (n), H = 0., H, deg = 0, deg ψ α (n) = (α ), deg ψ α (n) = (α + ) : 2 + = 2 +i. i Z 4.4. U( 2 + ) = Cl aff, Zh( 2 + ) = Cl., Cl aff Cl aff standard degreewise completion. V k (g), 2 +, V k (g) U(V k (g) 2 + ) = Uk (g aff ) Cl aff, Zh(V k (g) 2 + ) = U(g) Cl., Uk (g aff ) Cl aff U k (g aff ) Cl aff standard degreewise completion. (60) V k (g) 2 + field Q(z), Q(z) = α (x α (z) + χ(x α ))ψ α (z) 2 α,β,γ c γ α,β ψ α(z)ψ β (z)ψ γ (z). State-field correspondence, Q(z) = Y (Q ( ), z).. (6) Q(z)Q(w) 0. Q(z) odd field, (6). (62) Q 2 (0) = 0, [Q (m), Q (n) ] = 0 for all m, n Z. Q (0) V k (g) 2 +i V k (g) 2 +i+. (V k (g) 2 +, Q (0) ). (63) [Q (0), Y (a, z)] = Y (Q (0) a, v)

13 PRINCIPAL AFFINE W -ALGEBRAS: AN OVERVIEW 3, H (V k (g) 2 +, Q (0) )., (64) W k (g) := H 0 (V k (g) 2 +, Q (0) ), H (V k (g) 2 +, Q (0) ) (purely even ). W k (g) g ( ) k ( ) W Clasical Hamiltonian reduction. C = V k (g) 2 +. C /C 2 (C ) (C, Q (0) ), Q (0) C /C 2 (C ) Q ( )., (65) C /C 2 (C ) = C[g ] Λ(n +) Λ(n + ), C /C 2 (C ) H 0 (C /C 2 (C ), Q (0) ) (BRST ) (5) Hamiltonian reduction ([Kos78, KS87]). (i) H i 0 (C /C 2 (C ), Q (0) ) = 0, (ii) C[g ] G H 0 (C /C 2 (C ), Q (0) )., Feigin-Frenkel, Frenkel-Ben-Zvi. Q (0) Uk (g aff ) Cl aff. Q (0) = x α ( n)ψ α (n) c γ α,β 2 ψ α( k)ψ β ( l)ψ γ (k + l) α + n Z α,β,γ + k,l Z + α χ(x α )ψ α (), Q (0) V k (g) 2 +. H new [H new, x α (n)] = (n ht α)x α (n), [H new, x α (n)] = (n + ht α)x α (n) (α + ), [H new, J(n)] = nj(n) (J h), [H new, ψ α (n)] = (n ht α)ψ α (n), [H new, ψ α (n)] = (n + ht α)ψ α (n) (α + ), H new = 0, H new Q (0) V k (g) 2 +., H new W k (g) V k (g) 2 + : 4.8 (Feigin-Frenkel[FF90], Frenkel-Ben-Zvi [FBZ04]). k C. (i) H i 0 (V k (g) 2 +, Q (0) ) = 0. (ii) W k (g)/c 2 (W k (g)) = H i 0 (V k (g)/c 2 (V k (g)), Q (0) ) = C[g] G. (iii) W k (g) = 0 ( < 0)., gr W k (g) = C[g ] G.

14 4 TOMOYUKI ARAKAWA W i P i (mod C 2 (W k (g))) W k (g) W i, 4.8 gr W k (g) = C[T j Wj ; j =, 2,..., l, j 0]. W k (g) l W (z), W 2 (z),... W l (z). W i d i W : W (z) = S(z) + 2(k + h )( α + : z ψ α (z)ψ α (z) : + z ρ (z)),,. k h, ρ (z) = ρ (z) + W ( ) S ( ) L(z) = α + ht α : ψ α (z)ψ α (z) :. (mod C 2 (V k (g))) 2(k + h ) W (z) c(k) = l 2(κ ρ 2 2 ρ, ρ + ρ 2 /κ), κ = k + h Virasoro, L(0) = H, L( ) = T. W k (g). W k (sl 2 ) c(k) 2 Virasoro W. V Z(V ) Z(V ) = {a V : [a (m), b (n) ] = 0 for all m, n Z, b V }. Z(V ) V. 4.0 (Feigin-Frenkel [FF92]). (i) k h Z(V k (g)) = C. (ii) Z(V h (g)) W h (g) W Langlands. Feigin-Frenkel [FF92] k generic. 4.. k h. W k (g) = W Lk ( L g)., L g g Langlands, r (k + h )( L k + L h ) =. 4. k, Feigin-Frenkel Drinfeld. (66) C[Op G (D)](= W (g)) = Z(V h ( L g))., Op G (D) Disk D oper [BD05] ([FBZ04] ). 2 sl2 k + 2 = p/q c(k) = 6(p q) 2 /pq

15 PRINCIPAL AFFINE W -ALGEBRAS: AN OVERVIEW 5 5. BRST W M V k (g). M 2 + V k (g) 2 +., (67) H (M 2 +, Q (0) ) W k (g).,, (68) H (M 2 +, Q (0) ) = H 2 + (n + [t, t ], M C χaff )., Feigin [Feĭ84] semi-infinite, χ aff n + [t, t ]., (69) χ aff (x(n)) = δ n, χ(x) M H 2 +0 (L n +, M C χaff ) V k (g) W k (g) g aff. h aff = h CK CD g aff Cartan., O k g aff k BGG. k λ h aff, M(λ), L(λ) λ g aff Verma,. (4), O k V k (g). O KL k D M d M, O k. λ λ h aff h, L(λ) O k Ok KL, λ P + = {λ h ; λ, α Z 0 α + }. + - k + h Q >0 O KL k. 5. (A., to appear). k + h Q >0, M O KL k O KL k H 2 +i (n + [t, t ], M C χ+ ) = 0 i 0., W k (g) -Mod, M H 2 +0 (n + [t, t ], M C χ+ )., g aff., 4.0, W. 5.2 (A., to appear). O KL h L(λ), dim H 2 +0 (n + [t, t ], L(λ) C χaff ) =. 5., 5.2 ( ). 5.3 ([Ara07a]). O h KL. ch L(λ) =, re aff,+ g aff. L(λ), ch L(λ) w W ( )l(w) e w λ α + ( e λ+ρ,α δ ) α ( e α ). re aff,+

16 6 TOMOYUKI ARAKAWA k + h Q >0 Lie (, sl 2, [Ara05] ). Frenkel-Kac-Wakimoto [FKW92], W k (g) Zhu. Uk (g aff ) Cl aff Q aff. Q aff = x α ( n)ψ α (n) c γ α,β 2 ψ α( k)ψ β ( l)ψ γ (k + l) α n Z α,β,γ k,l Z + α χ(x α )ψ α (0). (Q aff = w 0 t ρ (Q (0) )., w 0 W, t ρ ρ extended Weyl )., (70) Q 2 aff = 0, (ad Q aff ) 2 = 0. Q aff Uk (g aff ) Cl aff ( ) ([Ara07b]). k C. (i) U(W k (g)) = H 0 ( Uk (g aff ) Cl aff, ad Q aff ) (ii) Zh(W k (g)) = H 0 (U(g) Cl, ad Q) = Z(g). 5.4 (ii) W k (g) Z(g)., 3., W k (g) positive energy representation Z(g). γ W k (g) L(γ). k = h L(γ),, L(γ) M O k aff M 2 + Uk (g aff ) Cl aff, (7) Q aff (M 2 +i ) M 2 +i, Q 2 aff = 0., 5.4 (i), (72) H (M 2 +, Q aff ) W k (g).,, (73) 24., χ aff H (M 2 +, Q aff ) = H 2 + (n [t, t ], M C χ ) aff χ aff (x α(n)) = δ n,0 χ(x α ) n [t, t ]. M H 2 + (n [t, t ], M C χ ) aff Oaff k W k (g) -Mod.. +, D. 23, Q(0). 24 semi-infinite cohomology semi-infinite homology grading.

17 PRINCIPAL AFFINE W -ALGEBRAS: AN OVERVIEW W k (g). λ h, M g (λ) g Verma, γ λ : Z(g) C M g (λ) evaluation. 5.5 ([Ara07b]). k C. (i) O k aff M, H 2 +i (n [t, t ], M C χ ) = 0 (i 0). aff (ii) k λ h aff H 2 +i (n [t, t ], M C χ ) = aff { L(γ λ) λ anti-dominant λ g anti-dominant, λ g aff generic (!) ( 5.7 ). γ Z(g), γ = γ λ anti-dominant λ h. λ = λ+kλ 0, 5.5 (iii) L(γ λ) = H 2 +0 (n [t, t ], L(λ) C χ ) aff. W k (g). L(λ) (74) ch L(λ) = µ h [L(λ) : M(µ))] ch M(µ), [L(λ) : M(µ))] Z, Euler-Poincare, 5.5 (i) (75) ch L(γ λ) = i ( qi ) l [L(λ) : M(µ)]q µ,d µ h. ch L(γ) = tr L(γ) q H new. k h, [L(λ) : M(µ)] (Kazhdan-Lusztig ) ([KT00]). (75) W k (g). 5.7., (75) [Hay88] Lie Kac-Kazhdan [KK79] ([Ara06]) 5.7. Frenkel-Kac-Wakimoto.,. Lie g aff,., 5.5,. Kac-Wakimoto. Kac-Wakimoto SL 2 (Z), ([KW89]) λ h aff,. (i) λ regular dominant., λ + ρ aff, α 0,, 2,..., ( α re aff,+ ). (ii) λ integral root system (λ) g root system : (λ) = {α re aff; λ + ρ aff, α Z} = re aff.

18 8 TOMOYUKI ARAKAWA,. Kac-Wakimoto [KW89], k (76) k + h = q p Q >0, p, q, (p, q) =, p h, (q, r ) =. λ anti-dominant, (76) (77). λ, (78) ch L(λ) = w W (λ) q h = g Coxeter ( ) l(w) e w λ α aff ( e α ) dim(g aff ) α, λ integral Weyl group W (λ) = s α ; α (λ) g aff W aff., SL 2 (Z). (75,78), λ anti-dominant λ, (79) ch L(γ λ) = w W (λ) ( )l(w) q w λ,d i ( qi ) l, SL 2 (Z). Frenkel-Kac-Wakimoto[FKW92], λ H 2 +i ( n [t, t ], L(λ) C χ ) = 0 (i 0) H aff 2 +0 ( n [t, t ], L(λ) C χ ) aff, SL 2 (Z) W k (g) sl 2 ( ) Virasoro W., W g O. W k (g) O W. O, e O, {e, h, f} sl 2, W W k (g, O) (80) gr W k (g, O) = C[(f + g e ) ]. O ([Ara05] ). g 26. Richardson, [Mat90],., W. W A ([BK05]), W. ( ). Richardson, ( )., W ([Pre06, Los07]),. 26 [Ara05] Lie [GK07].

19 PRINCIPAL AFFINE W -ALGEBRAS: AN OVERVIEW 9 References [Ara05] Tomoyuki Arakawa. Representation theory of superconformal algebras and the Kac- Roan-Wakimoto conjecture. Duke Math. J., 30(3): , [Ara06] Tomoyuki Arakawa. A new proof of the Kac-Kazhdan conjecture. Int. Math. Res. Not., pages Art. ID 2709, 5, [Ara07a] Tomoyuki Arakawa. Characters of representations of affine Kac-Moody Lie algebras at the critical level. preprint, arxiv: v2[math.aq]. [Ara07b] Tomoyuki Arakawa. Representation theory of W -algebras. Invent. Math., 69(2):29 320, [BD] A. Beilison and V. Drinfeld. Quantization of Hitchin s integral system and hecke eigensheaves. preprint. [BD05] Alexander Beilinson and Vladimir Drinfeld. Opers. preprint, arxiv:math/050398v [math.ag]. [BK05] Jonathan Brundan and Alexander Kleshchev. Representations of shifted Yangians and finite W -algebras. preprint, math.rt/ , to appear in Mem. Amer. Math. Soc. [BK06] Jonathan Brundan and Alexander Kleshchev. Shifted Yangians and finite W -algebras. Adv. Math., 200():36 95, [BMP96] Peter Bouwknegt, Jim McCarthy, and Krzysztof Pilch. The W 3 algebra, volume 42 of Lecture Notes in Physics. New Series m: Monographs. Springer-Verlag, Berlin, 996. Modules, semi-infinite cohomology and BV algebras. [Bor86] Richard E. Borcherds. Vertex algebras, Kac-Moody algebras, and the Monster. Proc. Nat. Acad. Sci. U.S.A., 83(0): , 986. [BS95] P. Bouwknegt and K. Schoutens, editors. W-symmetry, volume 22 of Advanced Series in Mathematical Physics. World Scientific Publishing Co. Inc., River Edge, NJ, 995. [dbt93] Jan de Boer and Tjark Tjin. Quantization and representation theory of finite W algebras. Comm. Math. Phys., 58(3):485 56, 993. [DSK06] Alberto De Sole and Victor G. Kac. Finite vs affine W -algebras. Japan. J. Math., ():37 26, [FBZ04] Edward Frenkel and David Ben-Zvi. Vertex algebras and algebraic curves, volume 88 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, second edition, [Feĭ84] B. L. Feĭgin. Semi-infinite homology of Lie, Kac-Moody and Virasoro algebras. Uspekhi Mat. Nauk, 39(2(236)):95 96, 984. [FF90] Boris Feigin and Edward Frenkel. Quantization of the Drinfel d-sokolov reduction. Phys. [FF92] Lett. B, 246(-2):75 8, 990. Boris Feigin and Edward Frenkel. Affine Kac-Moody algebras at the critical level and Gel fand-dikiĭ algebras. In Infinite analysis, Part A, B (Kyoto, 99), volume 6 of Adv. Ser. Math. Phys., pages World Sci. Publ., River Edge, NJ, 992. [FKW92] Edward Frenkel, Victor Kac, and Minoru Wakimoto. Characters and fusion rules for W -algebras via quantized Drinfel d-sokolov reduction. Comm. Math. Phys., 47(2): , 992. [FL88] [Fre07] [FZ92] [GG02] [GK07] [Hay88] [Kac98] V. A. Fateev and S. L. Lykyanov. The models of two-dimensional conformal quantum field theory with Z bn symmetry. Internat. J. Modern Phys. A, 3(2): , 988. Edward Frenkel. Langlands correspondence for loop groups, volume 03 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, Igor B. Frenkel and Yongchang Zhu. Vertex operator algebras associated to representations of affine and Virasoro algebras. Duke Math. J., 66():23 68, 992. Wee Liang Gan and Victor Ginzburg. Quantization of Slodowy slices. Int. Math. Res. Not., (5): , Maria Gorelik and Victor Kac. On simplicity of vacuum modules. Adv. Math., 2(2):62 677, Takahiro Hayashi. Sugawara operators and Kac-Kazhdan conjecture. Invent. Math., 94():3 52, 988. Victor Kac. Vertex algebras for beginners, volume 0 of University Lecture Series. American Mathematical Society, Providence, RI, second edition, 998.

20 20 TOMOYUKI ARAKAWA [KK79] V. G. Kac and D. A. Kazhdan. Structure of representations with highest weight of infinite-dimensional Lie algebras. Adv. in Math., 34():97 08, 979. [Kos78] Bertram Kostant. On Whittaker vectors and representation theory. Invent. Math., 48(2):0 84, 978. [KRW03] Victor Kac, Shi-Shyr Roan, and Minoru Wakimoto. Quantum reduction for affine superalgebras. Comm. Math. Phys., 24(2-3): , [KS87] Bertram Kostant and Shlomo Sternberg. Symplectic reduction, BRS cohomology, and infinite-dimensional Clifford algebras. Ann. Physics, 76():49 3, 987. [KT00] Masaki Kashiwara and Toshiyuki Tanisaki. Characters of irreducible modules with noncritical highest weights over affine Lie algebras. In Representations and quantizations (Shanghai, 998), pages China High. Educ. Press, Beijing, [KW89] V. G. Kac and M. Wakimoto. Classification of modular invariant representations of affine algebras. In Infinite-dimensional Lie algebras and groups (Luminy-Marseille, 988), volume 7 of Adv. Ser. Math. Phys., pages World Sci. Publ., Teaneck, NJ, 989. [Li96] Hai-Sheng Li. Local systems of vertex operators, vertex superalgebras and modules. J. Pure Appl. Algebra, 09(2):43 95, 996. [Li04] Haisheng Li. Vertex algebras and vertex Poisson algebras. Commun. Contemp. Math., 6():6 0, [Los07] Ivan V. Losev. Quantized symplectic actions and W-algebras. preprint, arxiv: v2[math.rt]. [Lyn79] T. E. Lynch. Generalized Whittaker vectors and representation theory. PhD thesis, M.I.T., 979. [Mat90] Hisayosi Matumoto. Whittaker modules associated with highest weight modules. Duke Math. J., 60():59 3, 990. [MN99] Atsushi Matsuo and Kiyokazu Nagatomo. Axioms for a vertex algebra and the locality of quantum fields, volume 4 of MSJ Memoirs. Mathematical Society of Japan, Tokyo, 999. [MNT05] Atsushi Matsuo, Kiyokazu Nagatomo, and Akihiro Tsuchiya. Quasi-finite algebras graded by Hamiltonian and vertex operator algebras. math.qa/050507, [NT05] Kiyokazu Nagatomo and Akihiro Tsuchiya. Conformal field theories associated to regular chiral vertex operator algebras. I. Theories over the projective line. Duke Math. J., 28(3):393 47, [Pre02] Alexander Premet. Special transverse slices and their enveloping algebras. Adv. Math., 70(): 55, With an appendix by Serge Skryabin. [Pre06] Alexander Premet. Primitive ideals, non-restricted representations and finite W- algebras. preprint, arxiv:math/062465v2[math.rt]. [Zam85] A. B. Zamolodchikov. Infinite extra symmetries in two-dimensional conformal quantum field theory. Teoret. Mat. Fiz., 65(3): , 985. [Zhu96] Yongchang Zhu. Modular invariance of characters of vertex operator algebras. J. Amer. Math. Soc., 9(): , 996.

, 0 = U 1 (g) U 0 (g) U 1 (g)..., U(g) = p U p (g) U p (g)u q (g) U p+q (g), [U p (g), U q (g)] U p+q 1 (g). U(g) PBW,. Associated graded algebra gr U

, 0 = U 1 (g) U 0 (g) U 1 (g)..., U(g) = p U p (g) U p (g)u q (g) U p+q (g), [U p (g), U q (g)] U p+q 1 (g). U(g) PBW,. Associated graded algebra gr U W ( ) 1. ( )W Kac-Moody Virasoro,,,,, 4, Langlands.,, W., W, W ([A1, A2, A3, A7]). Premet[Pre] W ( )W, Kostant[Kos]. W Slodowy, primitive ideal. Premet Losev[Los2]. primitive ideal. W. ( )W Losev. Kac-Moody

More information

1 Affine Lie 1.1 Affine Lie g Lie, 2h A B = tr g ad A ad B A, B g Killig form., h g daul Coxeter number., g = sl n C h = n., g long root 2 2., ρ half

1 Affine Lie 1.1 Affine Lie g Lie, 2h A B = tr g ad A ad B A, B g Killig form., h g daul Coxeter number., g = sl n C h = n., g long root 2 2., ρ half Wess-Zumino-Witten 1999 3 18 Wess-Zumino-Witten., Knizhnik-Zamolodchikov-Bernard,,. 1 Affine Lie 2 1.1 Affine Lie.............................. 2 1.2..................................... 3 2 WZW 4 3 Knizhnik-Zamolodchikov-Bernard

More information

平成 15 年度 ( 第 25 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 15 月年 78 日開催月 4 日 ) X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = (

平成 15 年度 ( 第 25 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 15 月年 78 日開催月 4 日 ) X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = ( 1 1.1 X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = (X 1,..., X n ) ( ) X 1,..., X n f 1,..., f r A T X + XA XBR 1 B T X + C T QC = O X 1.2 X 1,..., X n X i X j X j X i = 0, P i

More information

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. R-space ( ) Version 1.1 (2012/02/29) i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. ii 1 Lie 1 1.1 Killing................................

More information

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c GL 2 1 Lie SL(2, R) GL(2, A) Gelbart [Ge] 1 3 [Ge] Jacquet-Langlands [JL] Bump [Bu] Borel([Bo]) ([Ko]) ([Mo]) [Mo] 2 2.1 H = {z C Im(z) > 0} Γ SL(2, Z) Γ N N Γ (N) = {γ SL(2, Z) γ = 1 2 mod N} g SL(2,

More information

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t e-mail: koyama@math.keio.ac.jp 0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo type: diffeo universal Teichmuller modular I. I-. Weyl

More information

1

1 1 Borel1956 Groupes linéaire algébriques, Ann. of Math. 64 (1956), 20 82. Chevalley1956/58 Sur la classification des groupes de Lie algébriques, Sém. Chevalley 1956/58, E.N.S., Paris. Tits1959 Sur la classification

More information

R R P N (C) 7 C Riemann R K ( ) C R C K 8 (R ) R C K 9 Riemann /C /C Riemann 10 C k 11 k C/k 12 Riemann k Riemann C/k k(c)/k R k F q Riemann 15

R R P N (C) 7 C Riemann R K ( ) C R C K 8 (R ) R C K 9 Riemann /C /C Riemann 10 C k 11 k C/k 12 Riemann k Riemann C/k k(c)/k R k F q Riemann 15 (Gen KUROKI) 1 1 : Riemann Spec Z 2? 3 : 4 2 Riemann Riemann Riemann 1 C 5 Riemann Riemann R compact R K C ( C(x) ) K C(R) Riemann R 6 (E-mail address: kuroki@math.tohoku.ac.jp) 1 1 ( 5 ) 2 ( Q ) Spec

More information

. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2

. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2 2014 6 30. 2014 3 1 6 (Hopf algebra) (group) Andruskiewitsch-Santos [AFS09] 1980 Drinfeld (quantum group) Lie Lie (ribbon Hopf algebra) (ribbon category) Turaev [Tur94] Kassel [Kas95] (PD) x12005i@math.nagoya-u.ac.jp

More information

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara 80 1963 Sp(2, R) p L holomorphic discrete series Eichler Brandt Eichler

More information

2 2 Belavin Polyakov Zamolodchikov (BPZ) 1984 [13] 2 BPZ BPZ Virasoro [16][18] [20], [30], [47] [1][6] [8][10], [11], [12] Affine [6],GKO [2] W

2 2 Belavin Polyakov Zamolodchikov (BPZ) 1984 [13] 2 BPZ BPZ Virasoro [16][18] [20], [30], [47] [1][6] [8][10], [11], [12] Affine [6],GKO [2] W SGC -83 2 2 Belavin Polyakov Zamolodchikov (BPZ) 1984 [13] 2 BPZ BPZ 1 3 4 Virasoro [16][18] [20], [30], [47] [1][6] [8][10], [11], [12] Affine [6],GKO [2] W [14] c = 1 CFT [8] Rational CFT [15], [56]

More information

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+ 1 SL 2 (R) γ(z) = az + b cz + d ( ) a b z h, γ = SL c d 2 (R) h 4 N Γ 0 (N) {( ) } a b Γ 0 (N) = SL c d 2 (Z) c 0 mod N θ(z) θ(z) = q n2 q = e 2π 1z, z h n Z Γ 0 (4) j(γ, z) ( ) a b θ(γ(z)) = j(γ, z)θ(z)

More information

数学メモアール 第4巻, (2004)

数学メモアール 第4巻, (2004) 6 9 7 i 2002 5 6 0, [TUY] Lie, P ŝl 2, 3 ) OPE) 2) 3) factorization property ), 2, 4 2) 4, 3) 7, 2, OPE 3, P n 3, 4, 5 6, 7 6, 7 factorization property,,, Lie Lie 2, [K] 5.2, 7.9 5.2 3.4, 7.9, 6.2, 6,

More information

1 Part I (warming up lecture). (,,...) 1.1 ( ) M = G/K :. M,. : : R-space. R-space..

1 Part I (warming up lecture). (,,...) 1.1 ( ) M = G/K :. M,. : : R-space. R-space.. ( ) ( ) 2012/07/14 1 Part I (warming up lecture). (,,...) 1.1 ( ) M = G/K :. M,. : : R-space. R-space.. 1.2 ( ) ( ): M,. : (Part II). 1 (Part III). : :,, austere,. :, Einstein, Ricci soliton,. 1.3 : (S,

More information

コホモロジー的AGT対応とK群類似

コホモロジー的AGT対応とK群類似 AGT K ( ) Encounter with Mathematics October 29, 2016 AGT L. F. Alday, D. Gaiotto, Y. Tachikawa, Liouville Correlation Functions from Four-dimensional Gauge Theories, Lett. Math. Phys. 91 (2010), arxiv:0906.3219.

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X 2 E 8 1, E 8, [6], II II, E 8, 2, E 8,,, 2 [14],, X/C, f : X P 1 2 3, f, (O), f X NS(X), (O) T ( 1), NS(X), T [15] : MWG(f) NS(X)/T, MWL(f) 0 (T ) NS(X), MWL(f) MWL(f) 0, : {f λ : X λ P 1 } λ Λ NS(X λ

More information

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, PC ( 4 5 )., 5, Milnor Milnor., ( 6 )., (I) Z modulo

More information

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo] 2 Hecke ( ) 0 1n J n =, Γ = Γ n = Sp(n, Z) = {γ GL(2n,

More information

2016 Course Description of Undergraduate Seminars (2015 12 16 ) 2016 12 16 ( ) 13:00 15:00 12 16 ( ) 1 21 ( ) 1 13 ( ) 17:00 1 14 ( ) 12:00 1 21 ( ) 15:00 1 27 ( ) 13:00 14:00 2 1 ( ) 17:00 2 3 ( ) 12

More information

1.2 (Kleppe, cf. [6]). C S 3 P 3 3 S 3. χ(p 3, I C (3)) 1 C, C P 3 ( ) 3 S 3( S 3 S 3 ). V 3 del Pezzo (cf. 2.1), S V, del Pezzo 1.1, V 3 del Pe

1.2 (Kleppe, cf. [6]). C S 3 P 3 3 S 3. χ(p 3, I C (3)) 1 C, C P 3 ( ) 3 S 3( S 3 S 3 ). V 3 del Pezzo (cf. 2.1), S V, del Pezzo 1.1, V 3 del Pe 3 del Pezzo (Hirokazu Nasu) 1 [10]. 3 V C C, V Hilbert scheme Hilb V [C]. C V C S V S. C S S V, C V. Hilbert schemes Hilb V Hilb S [S] [C] ( χ(s, N S/V ) χ(c, N C/S )), Hilb V [C] (generically non-reduced)

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona Macdonald, 2015.9.1 9.2.,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdonald,, q., Heckman Opdam q,, Macdonald., 1 ,,. Macdonald,

More information

²ÄÀÑʬΥ»¶ÈóÀþ·¿¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤ÎÁ²¶á²òÀÏ Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation

²ÄÀÑʬΥ»¶ÈóÀþ·¿¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤ÎÁ²¶á²òÀÏ  Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation ( ) ( ) 2016 12 17 1. Schrödinger focusing NLS iu t + u xx +2 u 2 u = 0 u(x, t) =2ηe 2iξx 4i(ξ2 η 2 )t+i(ψ 0 +π/2) sech(2ηx

More information

2018 : msjmeeting-2018mar-02i003 : Demazure ( ) 1. Macdonald Weyl Demazure. g, h Cartan., Q := i I Zα i h root lattice, Q + := i I Z 0α

2018 : msjmeeting-2018mar-02i003 : Demazure ( ) 1. Macdonald Weyl Demazure. g, h Cartan., Q := i I Zα i h root lattice, Q + := i I Z 0α 2018 : 2018 21 msjmeeting-2018mar-02i003 : Demazure ( ) 1. Macdonald 1.1. Weyl Demazure. g, h Cartan, Q := i I Zα i h root lattice, Q + := i I Z 0α i Q, P := i I Zϖ i h g weight lattice ;, ϖ i h, i I,

More information

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ Galois ) 0 1 1 2 2 4 3 10 4 12 5 14 16 0 Galois Galois Galois TaylorWiles Fermat [W][TW] Galois Galois Galois 1 Noether 2 1 Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R

More information

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n ( ), Jürgen Berndt,.,. 1, CH n.,,. 1.1 ([6]). CH n (n 2), : (i) CH k (k = 0,..., n 1) tube. (ii) RH n tube. (iii). (iv) ruled minimal, equidistant. (v) normally homogeneous submanifold F k tube. (vi) normally

More information

Dynkin Serre Weyl

Dynkin Serre Weyl Dynkin Naoya Enomoto 2003.3. paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie 4 1.1 Lie ( )................................ 4 1.2 Killing form...........................................

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ). 1.1. modular symbol., notation. H = z = x iy C y > 0, cusp H = H Q., Γ = PSL 2 (Z), G Γ [Γ : G]

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

D-brane K 1, 2 ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane

D-brane K 1, 2   ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane K 1, 2 E-mail: sugimoto@yukawa.kyoto-u.ac.jp (2004 12 16 ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane RR D-brane K D-brane K D-brane K K [2, 3]

More information

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi 1 Surveys in Geometry 1980 2 6, 7 Harmonic Map Plateau Eells-Sampson [5] Siu [19, 20] Kähler 6 Reports on Global Analysis [15] Sacks- Uhlenbeck [18] Siu-Yau [21] Frankel Siu Yau Frankel [13] 1 Surveys

More information

Step 2 O(3) Sym 0 (R 3 ), : a + := λ 1 λ 2 λ 3 a λ 1 λ 2 λ 3. a +. X a +, O(3).X. O(3).X = O(3)/O(3) X, O(3) X. 1.7 Step 3 O(3) Sym 0 (R 3 ),

Step 2 O(3) Sym 0 (R 3 ), : a + := λ 1 λ 2 λ 3 a λ 1 λ 2 λ 3. a +. X a +, O(3).X. O(3).X = O(3)/O(3) X, O(3) X. 1.7 Step 3 O(3) Sym 0 (R 3 ), 1 1 1.1,,. 1.1 1.2 O(2) R 2 O(2).p, {0} r > 0. O(3) R 3 O(3).p, {0} r > 0.,, O(n) ( SO(n), O(n) ): Sym 0 (R n ) := {X M(n, R) t X = X, tr(x) = 0}. 1.3 O(n) Sym 0 (R n ) : g.x := gxg 1 (g O(n), X Sym 0

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T 0 2 8 8 6 3 0 0 Young Young [F] 0.. Young λ n λ n λ = (λ,, λ l ) λ λ 2 λ l λ = ( m, 2 m 2, ) λ = n, l(λ) = l {λ n n 0} P λ = (λ, ), µ = (µ, ) n λ µ k k k λ i µ i λ µ λ = µ k i= i= i < k λ i = µ i λ k >

More information

_TZ_4797-haus-local

_TZ_4797-haus-local 1.1.................................... 3.3.................................. 4.4......................... 8.5... 10.6.................... 1.7... 14 3 16 3.1 ()........................... 16 3. 7... 17

More information

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,.

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,. 1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, 2015. webpage,.,,. 2 1 (1),, ( ). (2),,. (3),.,, : Hashinaga, T., Tamaru, H.: Three-dimensional solvsolitons and the

More information

16 B

16 B 16 B (1) 3 (2) (3) 5 ( ) 3 : 2 3 : 3 : () 3 19 ( ) 2 ax 2 + bx + c = 0 (a 0) x = b ± b 2 4ac 2a 3, 4 5 1824 5 Contents 1. 1 2. 7 3. 13 4. 18 5. 22 6. 25 7. 27 8. 31 9. 37 10. 46 11. 50 12. 56 i 1 1. 1.1..

More information

Gauss Fuchs rigid rigid rigid Nicholas Katz Rigid local systems [6] Fuchs Katz Crawley- Boevey[1] [7] Katz rigid rigid Katz middle convolu

Gauss Fuchs rigid rigid rigid Nicholas Katz Rigid local systems [6] Fuchs Katz Crawley- Boevey[1] [7] Katz rigid rigid Katz middle convolu rigidity 2014.9.1-2014.9.2 Fuchs 1 Introduction y + p(x)y + q(x)y = 0, y 2 p(x), q(x) p(x) q(x) Fuchs 19 Fuchs 83 Gauss Fuchs rigid rigid rigid 7 1970 1996 Nicholas Katz Rigid local systems [6] Fuchs Katz

More information

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 = 3 3.1 3.1.1 kg m s J = kg m 2 s 2 MeV MeV [1] 1MeV=1 6 ev = 1.62 176 462 (63) 1 13 J (3.1) [1] 1MeV/c 2 =1.782 661 731 (7) 1 3 kg (3.2) c =1 MeV (atomic mass unit) 12 C u = 1 12 M(12 C) (3.3) 41 42 3 u

More information

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1,

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, B 2, B 3 A i 1 B i+1 A i+1 B i 1 P i i = 1, 2, 3 3 3 P 1, P 2, P 3 1 *1 19 3 27 B 2 P m l (*) l P P l m m 1 P l m + m *1 A N

More information

2 5W1H = a) [ ]= (= ) : b) [ ] : c) [ ] = (to characterize the observed system) : d) [ ] (: ) 2

2 5W1H = a) [ ]= (= ) : b) [ ] : c) [ ] = (to characterize the observed system) : d) [ ] (: ) 2 1 vs. 90 mescoscopic physics 1 2 5W1H = a) [ ]= (= ) : b) [ ] : c) [ ] = (to characterize the observed system) : d) [ ] (: ) 2 (: ) [1]: 1. Newton =[( ) vs. ] (a) =0 x v ( p = mv) [ a), b), c)] (b) = :

More information

CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS, KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$:, Cape i,.,.,,,,.,,,.

CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS, KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$:, Cape i,.,.,,,,.,,,. 1508 2006 1-11 1 CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$: Cape i Capelli 1991 ( ) (1994 ; 1998 ) 100 Capelli Capelli Capelli ( ) (

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

2 Three-wave Painlevé VI 21 -Wilson three-wave Painlevé VI Gauss -Wilson [KK3] n 3 3 t = t 1 t 2 t 3 -Wilson W z; t := I + W 1 z + W 2 z 2 + z; t := 0

2 Three-wave Painlevé VI 21 -Wilson three-wave Painlevé VI Gauss -Wilson [KK3] n 3 3 t = t 1 t 2 t 3 -Wilson W z; t := I + W 1 z + W 2 z 2 + z; t := 0 1473 : de nouvelles perspectives 2006 2 pp 102 119 VI q 1 Tetsuya Kikuchi Sabro Kakei Drinfel d-sokolov Painlevé [KK1] [KK2] [KK3] [KIK] [ ] [ ] [KK3] three-wave equation Painlevé VI q q Drinfel d-sokolov

More information

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac +

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac + ALGEBRA II Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 7.1....................... 7 1 7.2........................... 7 4 8

More information

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1 014 5 4 compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) 1 1.1. a, Σ a {0} a 3 1 (1) a = span(σ). () α, β Σ s α β := β α,β α α Σ. (3) α, β

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

Chern-Simons Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q

Chern-Simons   Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q Chern-Simons E-mail: fuji@th.phys.nagoya-u.ac.jp Jones 3 Chern-Simons - Chern-Simons - Jones J(K; q) []Jones q J (K + ; q) qj (K ; q) = (q /2 q /2 )J (K 0 ; q), () J( ; q) =. (2) K Figure : K +, K, K 0

More information

Affine Hecke ( A ) Irreducible representations of affine Hecke algebras (survey talk with emphasis on type A) (Syu Kato) Recently, there are

Affine Hecke ( A ) Irreducible representations of affine Hecke algebras (survey talk with emphasis on type A) (Syu Kato) Recently, there are Affine Hecke ( A ) Irreducible representations of affine Hecke algebras (survey talk with emphasis on type A) (Syu Kato) 20 10 29 Recently, there are several successful attempts on the classification of

More information

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2 On the action of the Weil group on the l-adic cohomology of rigid spaces over local fields (Yoichi Mieda) Graduate School of Mathematical Sciences, The University of Tokyo 0 l Galois K F F q l q K, F K,

More information

sequentially Cohen Macaulay Herzog Cohen Macaulay 5 unmixed semi-unmixed 2 Semi-unmixed Semi-unmixed G V V (G) V G V G e (G) G F(G) (G) F(G) G dim G G

sequentially Cohen Macaulay Herzog Cohen Macaulay 5 unmixed semi-unmixed 2 Semi-unmixed Semi-unmixed G V V (G) V G V G e (G) G F(G) (G) F(G) G dim G G Semi-unmixed 1 K S K n K[X 1,..., X n ] G G G 2 G V (G) E(G) S G V (G) = {1,..., n} I(G) G S square-free I(G) = (X i X j {i, j} E(G)) I(G) G (edge ideal) 1990 Villarreal [11] S/I(G) Cohen Macaulay G 2005

More information

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,, 15, pp.1-13 1 1.1,. 1.1. C ( ) f = u + iv, (, u, v f ). 1 1. f f x = i f x u x = v y, u y = v x.., u, v u = v = 0 (, f = 2 f x + 2 f )., 2 y2 u = 0. u, u. 1,. 1.2. S, A S. (i) A φ S U φ C. (ii) φ A U φ

More information

Donaldson Seiberg-Witten [GNY] f U U C 1 f(z)dz = Res f(a) 2πi C a U U α = f(z)dz dα = 0 U f U U P 1 α 0 a P 1 Res a α = 0. P 1 Donaldson Seib

Donaldson Seiberg-Witten [GNY] f U U C 1 f(z)dz = Res f(a) 2πi C a U U α = f(z)dz dα = 0 U f U U P 1 α 0 a P 1 Res a α = 0. P 1 Donaldson Seib ( ) Donaldson Seiberg-Witten Witten Göttsche [GNY] L. Göttsche, H. Nakajima and K. Yoshioka, Donaldson = Seiberg-Witten from Mochizuki s formula and instanton counting, Publ. of RIMS, to appear Donaldson

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

1 (VOA) Frenkel- Lepowsky-Meurman [25] VOA V Leech lattice Λ VOA V Λ 2 V + Λ Dong Lam 2 Frenkel-Lepowsky-Meurman [25] Lepowsky-Li [37] (vertex

1 (VOA) Frenkel- Lepowsky-Meurman [25] VOA V Leech lattice Λ VOA V Λ 2 V + Λ Dong Lam 2 Frenkel-Lepowsky-Meurman [25] Lepowsky-Li [37] (vertex 1 (VOA Frenkel- Lepowsky-Meurman [25] VOA V Leech lattce Λ VOA V Λ 2 V + Λ 2 3 4 5 Dong Lam 2 Frenkel-Lepowsky-Meurman [25] Lepowsky-L [37] (vertex operator algebra, VOA Z-graded C V = n Z V n v V n Z

More information

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2 1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2 hara@math.kyushu-u.ac.jp 1 1 1.1............................................... 2 1.2............................................. 3 2 3 3 5 3.1............................................. 6 3.2...................................

More information

(check matrices and minimum distances) H : a check matrix of C the minimum distance d = (the minimum # of column vectors of H which are linearly depen

(check matrices and minimum distances) H : a check matrix of C the minimum distance d = (the minimum # of column vectors of H which are linearly depen Hamming (Hamming codes) c 1 # of the lines in F q c through the origin n = qc 1 q 1 Choose a direction vector h i for each line. No two vectors are colinear. A linearly dependent system of h i s consists

More information

( ) (, ) ( )

( ) (, ) ( ) ( ) (, ) ( ) 1 2 2 2 2.1......................... 2 2.2.............................. 3 2.3............................... 4 2.4.............................. 5 2.5.............................. 6 2.6..........................

More information

等質空間の幾何学入門

等質空間の幾何学入門 2006/12/04 08 tamaru@math.sci.hiroshima-u.ac.jp i, 2006/12/04 08. 2006, 4.,,.,,.,.,.,,.,,,.,.,,.,,,.,. ii 1 1 1.1 :................................... 1 1.2........................................ 2 1.3......................................

More information

p.2/76

p.2/76 kino@info.kanagawa-u.ac.jp p.1/76 p.2/76 ( ) (2001). (2006). (2002). p.3/76 N n, n {1, 2,...N} 0 K k, k {1, 2,...,K} M M, m {1, 2,...,M} p.4/76 R =(r ij ), r ij = i j ( ): k s r(k, s) r(k, 1),r(k, 2),...,r(k,

More information

R C Gunning, Lectures on Riemann Surfaces, Princeton Math Notes, Princeton Univ Press 1966,, (4),,, Gunning, Schwarz Schwarz Schwarz, {z; x}, [z; x] =

R C Gunning, Lectures on Riemann Surfaces, Princeton Math Notes, Princeton Univ Press 1966,, (4),,, Gunning, Schwarz Schwarz Schwarz, {z; x}, [z; x] = Schwarz 1, x z = z(x) {z; x} {z; x} = z z 1 2 z z, = d/dx (1) a 0, b {az; x} = {z; x}, {z + b; x} = {z; x} {1/z; x} = {z; x} (2) ad bc 0 a, b, c, d 2 { az + b cz + d ; x } = {z; x} (3) z(x) = (ax + b)/(cx

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

( ),.,,., C A (2008, ). 1,, (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,, (M, g) p M, s p : M M p, : (1) p s p, (

( ),.,,., C A (2008, ). 1,, (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,, (M, g) p M, s p : M M p, : (1) p s p, ( ( ),.,,., C A (2008, ). 1,,. 1.1. (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,,. 1.2. (M, g) p M, s p : M M p, : (1) p s p, (2) s 2 p = id ( id ), (3) s p ( )., p ( s p (p) = p),,

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) h

( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) h 2011 9 5 1 Lie 1 2 2.1 (category) (object) a, b, c, a b (arrow, morphism) f : a b (2.1) f a b (2.2) ( 1) f : a b g : b c (composite) g f : a c ( 2) f f a b g f g c g h (2.3) a b c d (2.4) h (g f) = (h

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

(a) (b) (c) (d) 1: (a) (b) (c) (d) (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4

(a) (b) (c) (d) 1: (a) (b) (c) (d) (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4 1 vertex edge 1(a) 1(b) 1(c) 1(d) 2 (a) (b) (c) (d) 1: (a) (b) (c) (d) 1 2 6 1 2 6 1 2 6 3 5 3 5 3 5 4 4 (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4 1: Zachary [11] [12] [13] World-Wide

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

untitled

untitled Lie L ( Introduction L Rankin-Selberg, Hecke L (,,, Rankin, Selberg L (GL( GL( L, L. Rankin-Selberg, Fourier, (=Fourier (= Basic identity.,,.,, L.,,,,., ( Lie G (=G, G.., 5, Sp(, R,. L., GL(n, R Whittaker

More information

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3. 5 S 2 tot = S 2 T (y, t) + S 2 (y) = const. Z 2 (4.22) σ 2 /4 y = y z y t = T/T 1 2 (3.9) (3.15) s 2 = A(y, t) B(y) (5.1) A(y, t) = x d 1+α dx ln u 1 ] 2u ψ(u), u = x(y + x 2 )/t s 2 T A 3T d S 2 tot S

More information

.,.,..,? 2.,.?.,...,...,.,.,.,.,,..,..,,.,,.,.,..,..,....,.,.,.,?,...,,.... Dr.Hener, i

.,.,..,? 2.,.?.,...,...,.,.,.,.,,..,..,,.,,.,.,..,..,....,.,.,.,?,...,,.... Dr.Hener, i 2006 D r. H e n e r 18 4 1 .,.,..,? 2.,.?.,...,...,.,.,.,.,,..,..,,.,,.,.,..,..,....,.,.,.,?,...,,.... Dr.Hener, i 1 2 1 1.1 2 10..................................... 1 1.2 2......................................

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

09 8 9 3 Chebyshev 5................................. 5........................................ 5.3............................. 6.4....................................... 8.4...................................

More information

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008)

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008) ,, 23 4 30 (i) (ii) (i) (ii) Negishi (1960) 2010 (2010) ( ) ( ) (2010) E-mail:fujii@econ.kobe-u.ac.jp E-mail:082e527e@stu.kobe-u.ac.jp E-mail:iritani@econ.kobe-u.ac.jp 1 1 16 (2004 ) 2 (A) (B) (C) 3 (1987)

More information

1 Slodowy 005 3 9 3 1 ADE ADE (0) ADE (1) SL(, C), R 3 (), (3) ADE, II 1 (4) SL(, Z)- (5) F 4, B, M McKay E 6, E 7, E 8 4 A n 5 5 5... 5 5 5 D n 5 5 5... 5 5 5 E 6 5 5 5 5 5 5 E 7 5 5 5 5 5 5 5 E 8 5

More information

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1) φ 4 Minimal subtraction scheme 2-loop ε 28 University of Tokyo Atsuo Kuniba version 2/Apr/28 Formulas Γ n + ɛ = n n! ɛ + ψn + + Oɛ n =,, 2, ψn + = + 2 + + γ, 2 n ψ = γ =.5772... Euler const, log + ax x

More information

prime number theorem

prime number theorem For Tutor MeBio ζ Eite by kamei MeBio 7.8.3 : Bernoulli Bernoulli 4 Bernoulli....................................................................................... 4 Bernoulli............................................................................

More information

0. Intro ( K CohFT etc CohFT 5.IKKT 6.

0. Intro ( K CohFT etc CohFT 5.IKKT 6. E-mail: sako@math.keio.ac.jp 0. Intro ( K 1. 2. CohFT etc 3. 4. CohFT 5.IKKT 6. 1 µ, ν : d (x 0,x 1,,x d 1 ) t = x 0 ( t τ ) x i i, j, :, α, β, SO(D) ( x µ g µν x µ µ g µν x ν (1) g µν g µν vector x µ,y

More information

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like () 10 9 30 1 Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [], [13]) Poincaré e m Poincaré e m Kähler-like Kähler-like Kähler M g M X, Y, Z (.1) Xg(Y, Z) = g( X Y, Z) + g(y, XZ)

More information

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w S = 4π dτ dσ gg ij i X µ j X ν η µν η µν g ij g ij = g ij = ( 0 0 ) τ, σ (+, +) τ τ = iτ ds ds = dτ + dσ ds = dτ + dσ δ ij ( ) a =, a = τ b = σ g ij δ ab g g ( +, +,... ) S = 4π S = 4π ( i) = i 4π dτ dσ

More information

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull Feynman Encounter with Mathematics 52, 200 9 [] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull. Sci. Math. vol. 28 (2004) 97 25. [2] D. Fujiwara and

More information

I = [a, b] R γ : I C γ(a) = γ(b) z C \ γ(i) 1(4) γ z winding number index Ind γ (z) = φ(b, z) φ(a, z) φ 1(1) (i)(ii) 1 1 c C \ {0} B(c; c ) L c z B(c;

I = [a, b] R γ : I C γ(a) = γ(b) z C \ γ(i) 1(4) γ z winding number index Ind γ (z) = φ(b, z) φ(a, z) φ 1(1) (i)(ii) 1 1 c C \ {0} B(c; c ) L c z B(c; 21 1 http://www.ozawa.phys.waseda.ac.jp/index2.html ( ) 1. I = [a, b] R γ : I C γ γ(i) z 0 C \ γ(i) (1) ε > 0 φ : I B(z 0 ; ε) C (i) B(z 0 ; ε) γ(i) = (ii) (t, z) I B(z 0 ; ε) exp(φ(t, z)) = γ(t) z (2)

More information

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A 2 1 2 1 2 3 α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 4 P, Q R n = {(x 1, x 2,, x n ) ; x 1, x 2,, x n R}

More information

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha 63 KdV KP Lax pair L, B L L L / W LW / x W t, t, t 3, ψ t n / B nψ KdV B n L n/ KP B n L n KdV KP Lax W Lax τ KP L ψ τ τ Chapter 7 An Introduction to the Sato Theory Masayui OIKAWA, Faculty of Engneering,

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

『共形場理論』

『共形場理論』 T (z) SL(2, C) T (z) SU(2) S 1 /Z 2 SU(2) (ŜU(2) k ŜU(2) 1)/ŜU(2) k+1 ŜU(2)/Û(1) G H N =1 N =1 N =1 N =1 N =2 N =2 N =2 N =2 ĉ>1 N =2 N =2 N =4 N =4 1 2 2 z=x 1 +ix 2 z f(z) f(z) 1 1 4 4 N =4 1 = = 1.3

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

( ) Lemma 2.2. X ultra filter (1) X = X 1 X 2 X 1 X 2 (2) X = X 1 X 2 X 3... X N X 1, X 2,..., X N (3) disjoint union X j Definition 2.3. X ultra filt

( ) Lemma 2.2. X ultra filter (1) X = X 1 X 2 X 1 X 2 (2) X = X 1 X 2 X 3... X N X 1, X 2,..., X N (3) disjoint union X j Definition 2.3. X ultra filt NON COMMTATIVE ALGEBRAIC SPACE OF FINITE ARITHMETIC TYPE ( ) 1. Introduction (1) (2) universality C ( ) R (1) (2) ultra filter 0 (1) (1) ( ) (2) (2) (3) 2. ultra filter Definition 2.1. X F filter (1) F

More information

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices Grand Unification M.Dine, Supersymmetry And String Theory: Beyond the Standard Model 6 2009 2 24 by Standard Model Coupling constant θ-parameter 8 Charge quantization. hypercharge charge Gauge group. simple

More information

2010 ( )

2010 ( ) 2010 (2010 1 8 2010 1 13 ( 1 29 ( 17:00 2 3 ( e-mail (1 3 (2 (3 (1 (4 2010 1 2 3 4 5 6 7 8 9 10 11 Hesselholt, Lars 12 13 i 1 ( 2 3 Cohen-Macaulay Auslander-Reiten [1] [2] 5 [1], :,, 2002 [2] I Assem,

More information