p.2/76

Size: px
Start display at page:

Download "p.2/76"

Transcription

1 p.1/76

2 p.2/76

3 ( ) (2001). (2006). (2002). p.3/76

4 N n, n {1, 2,...N} 0 K k, k {1, 2,...,K} M M, m {1, 2,...,M} p.4/76

5 R =(r ij ), r ij = i j ( ): k s r(k, s) r(k, 1),r(k, 2),...,r(k, S(k)) 0:5 0:5 p.5/76

6 N =3,K =3,M = : F1(x) =1 e μ 1 x ( ) 2 : F2(x) =1 e μ 2 x ( ) 3 : F3(x) =1 e 2μ 3 x (1 + 2μ3x) ( ) p.6/76

7 p.7/76

8 P (c, y) = P (c)p (y c) P (c) = CΛ(m)Φ(u) N j=1 τ j (c j ) τ j (c j ) = θ j(m jl,k jl ) µ kl c N P (y c) = µ jl (1 F kjl (y jl )) j=1 c =(c 1, c 2,...,c N ): y =(y 1, y 1,...,y 1 ): l p.8/76

9 1 0 0 P (c y)dy =1 P (c) = CΛ(m)Φ(u) τ j (c j ) = θ j(m jl,k jl ) µ kl N j=1 τ j (c j ) m = ( m m (c) ) M : m m=1 m(c) c m u = ( ((ujmk (c)) K k=1 ) M m=1) N m, k j=1 : u jmk (c) c j p.9/76

10 2 C : µ jl : j l k jl : j l θ j (m jl,k jl ): j Λ(m): λ m (m) = Λ(m + e m) Λ(m) Φ(u): γ j (l, c) = Φ(u e j(m jl,k jl )) Φ(u) β j (l, c) p.10/76

11 : µ k (insensitive ) θ j (m, k) m u (c) (y) p.11/76

12 Λ(m) Φ(u) p.12/76

13 M/G p.13/76

14 M/G Poisson K k S k F k (x) =P (S k x), f k (x) E(S k )= 1 : k µ k p.14/76

15 (n ) n y1 y2 y3 yn c2 c3 cn c1 : (c; y) =(c1; c2; :::;cn) ; y =(y1; y2; :::;yn) c c l : l, c l {1, 2,...,K} y l : l, 0 <y l c =(c 1,c 2,...,c n ), y =(y 1,y 2...,y n ) (c, y): c c p.15/76

16 c λ k (c): k, k =1, 2,...,K γ(l, c) = d dt y l: c l dt γ(l, c)dt y l + dy l = y l γ(l, c) p.16/76

17 cn k c ffi(`; c) c1 c` 1 c` c`+1 cn c1 c` 1 k c` cn 1 δ(l, c): l ( ) n+1 l=1 δ(l, c) =1 p.17/76

18 (global barance equation) = c { λcl (c [l] ) δ(l, c [l] ) f c l (y l ) P (c [l], y [l] )+ P (c, y)γ(l, c) } y l l=1 K { λk (c)p (c, y) k=1 c +1 l=1 γ(l, c + [l(k)] )P ( c + [l(k)], y+ [l(0)] )} p.18/76

19 P (c, y) = P (c)p (y c) P (c) = CΛ(w)Φ(w)τ(c) τ(c) = P (y c) = c l=1 c l=1 1 µ cl µ cl ( 1 Fcl (y l ) ) w =(w 1,w 2,...,w K ), w k : c k p.19/76

20 Λ(w) (w ) λ k (w) = Λ(w + e k) Λ(w) Φ(w) (w ) γ(l, c) = Φ(w e(c l)) Φ(w) β(l, c) β(l, c): c l c β(l, c) =1 l=1 p.20/76

21 c δ(l, c [l])=β(l, c) l =1, 2,..., c c [l] =(c 1,c 2,...,c l 1,c l+1,...,c c ) c l=1 Φ(w e(c l )) Φ(w) µ cl { δ(l, c [l] ) β(l, c)} =0 p.21/76

22 (symmetric queue) δ(l, c [l])=β(l, c) l c c l β(l, c) =δ(l, c [l] )= 1 c LCFS-PR : β(1, c) =δ(1, c [l])=1, 0 p.22/76

23 δ(l, c [l]) β(l, c) (K) c l=1 Φ(w e(c l )) Φ(w) µ cl { δ(l, c [l] ) β(l, c)} =0 FCFS: µ 1 = µ 2 = = µ K δ(l, c) = { 1 l = c +1 0, β(l, c) = { 1, l =1 0, p.23/76

24 Λ(w) k : λ k (w) = Λ(w + e k) Λ(w) Λ(w) =λ w 1 1 λw λw K K S Λ(w) = { λ c, c S 1 0, S c λ k(w) =λ k λ k (w) = { λ, c S 0, S < c p.24/76

25 Φ(w) c l γ(l, c) = Φ(w e(c l)) Φ(w) β(l, c) Φ(w) =Φ( w )(= Φ( c )) Φ(n) = { n ν( c ) = Φ( c 1) Φ( c ) s=1, c =1, 2,... ν(s) } 1, n =1, 2,..., Φ(0) = 1 p.25/76

26 w z c1 c2 c` c n ffl $ ν(n) β(l, c) ν(n) fi(1;c) fi(n;c) fi(2;c) fi(`;c) ν(n) Φ(n) Φ(w) p.26/76

27 p.27/76

28 = c l=1 { λcl (c [l] ) δ(l, c [l] ) f c l (y l ) P (c [l], y [l] )+ y l P (c, y)γ(l, c) } K { λk (c)p (c, y) k=1 c +1 l=1 γ(l, c + [l(k)] )P ( c + [l(k)], y+ [l(0)] )} =0, =0 p.28/76

29 ( ) (1) c l=1 {λ cl (c [l] ) δ(l, c [l] ) f c l (y l ) P (c [l], y [l] )+ y l P (c, y)γ(l, c)} =0 k =1, 2,...,K (2) λ k (c)p (c, y) c +1 l=1 γ(l, c + [l(k)] )P ( c + [l(k)], y+ [l(0)]) =0 (local balance equation) p.29/76

30 (2) (1) (3) c l=1 Φ(w e(c l )) Φ(w) f cl (y l ) { δ(l, c 1 F cl (y l ) [l] ) β(l, c)} =0 (3) (3) p.30/76

31 (3) c (4) δ(l, c [l]) β(l, c) =0, l =1, 2,..., c (4) p.31/76

32 δ(l, c [l] ) β(l, c) (3) 0 <y l f cl (y l ) 1 F cl (y l ) = (3) c l=1 Φ(w e(c l )) Φ(w) µ cl { δ(l, c [l] ) β(l, c)} =0 p.32/76

33 S:, q(x, x ): (x x ), π(x): x π(x) x S q(x, x )= x S π(x )q(x, x), x S S = S 1 S 2 S n S i π(x) q(x, x )= x S i π(x )q(x, x), x S i x S i p.33/76

34 X(t) X( t) X(t) X( t) ( ) X(t) π(x)q(x, x )=π(x )q(x, x), x, x S (detailed balance equation) M/M/1 p.34/76

35 M M x(t): K t (quasi-reversible) x(t 0 ) t 0 k x(t 0 ) t 0 k M M M M Poisson Poisson M M p.35/76

36 ) p.36/76

37 p.37/76

38 c j =(c j1 ; c j2 ;:::;c jn ) c j` =(mj`;kj`) j : (c j ; y j ) 1 2 n c j` yj1 yj2 yjn (mj1;kj1) (mj2;kj2) (mjn;kjn) (mj`;kj`) =( `, ` ) c =(c 1, c 2,...,c N ) y =(y 1, y 2,...,y N ) (c, y) p.38/76

39 P (c, y) = P (c)p (y c) P (c) = CΛ(m)Φ(u) τ j (c j ) = c j l=1 N j=1 σ j (m jl,k jl ) σ j (m jl,k jl ) = θ j(m jl,k jl ) µ kjl τ j (c j ) P (y c) = N c j j=1 l=1 µ kjl ( 1 Fkjl (y jl ) ). p.39/76

40 (1) m jl : j, l k jl : j, l θ j (m jl,k jl ): (m jl,k jl ) m θ m =(θ m1, θ m2,...,θ mn ) θ mi = ( θ i (m, 1),θ i (m, 2),...,θ i (m, K) ), i =1, 2,...,N θ i (m, k): i m, k p.40/76

41 (2) r m ( (i, k), (j, h) ) : i k m j h m R(m) = R m (1, 1) R m (1, 2)... R m (1,N) R m (2, 1) R m (2, 2)... R m (2,N) f... R m (N,1) R m (N,2)... R m (N,N) m θ m = θ m R(m) 0 (1, θ m )=(1, θ m )R(m) p.41/76

42 j (m; h) from node i (3) rm(0; (j; h)) 1 out of the network i(m; k) j i i(m; k) i(m; k) rm((i; k); (j; h)) N p.42/76

43 m m λ m (m) = Λ(m + e(m)) Λ(m) Λ(m) =Λ 1 (m 1 )Λ 2 (m 2 )...Λ M (m M ) u jmk : j m, k x jm : j m u = ( ((ujmk ) K k=1 ) M m=1) N j=1, x = ( (x jm ) M m=1 ) N j=1 Φ(u) =Φ 1 (u 1 )Φ 2 (u 2 ) Φ N (u N ) u Φ(x) =Φ 1 (x 1 )Φ 2 (x 2 ) Φ N (x N ) x p.43/76

44 (c, y) x =(x 1, x 2,...,x N ), x j =(x j1,x j2,...,x jm ) x jm : j m M p.44/76

45 x =(x 1,x 2,...,x n ), ρ =(ρ 1,ρ 2,...,ρ n ) x = n, x = x 1 + x x n x! =x 1!x 2! x n! ρ x = ρ x 1 1 ρx 2 2 ρx n n (a 1 + a a n ) m = x 1 +x 2 + +x n =m m! x 1!x 2! x n! ax 1 1 ax 2 2 ax n n a m = x =m x! a x x! p.45/76

46 (1) x =(x 1, x 2,...,x N ) x j =(x j1,x j2,...,x jm ), j =1, 2,...,N x jm : j m K =(K 1,K 2,...,K M ), K m : m ( ) Φ(x) =Φ 1 ( x 1 )Φ 2 ( x 2 ) Φ N ( x N ) j n ν j (n) = Φ j(n 1) Φ j (n) Φ j (n) = 1 ν j (1)ν j (2) ν j (n), Φ j(0) = 1 p.46/76

47 (2) ν j (n) =ν j (1), n =1, 2,... ν j (n) =nν j (1), n =1, 2,... (S j ): ν j (n) = : ρ =(ρ 1, ρ 2,...,ρ N ) { nν j (1), n S j S j ν j (1), S j <n ρ j =(ρ j1,ρ j2,...,ρ jm ), j =1, 2,...,N K ρ jm = σ j (m, k), σ j (m, k) = θ j(m, k) µ k k=1 p.47/76

48 (3) ( ) P (x) = 1 G(K) N Φ j (x j )ϕ j (x j ), j=1 ϕ j (x j )= x j! ρ x j j x j! G(K): G(K) = x 1 +x 2 + +x N =K N j=1 Φ j (x j )ϕ j (x j ) G(K) x P (x) =1 N =10, M =3, K =(5, 5, 5) 80 p.48/76

49 ( ) P (x) = 1 G(K) N j=1 q j (x j ) q j (x j ) = Φ j ( x j ) x j! x j! G(K): ρ x j j λxo j = Φ j ( x c j + x o j ) ( xc j + xo j )! x c j! xo j! (ρ c j) xc j (ρ o j ) xo o j λ xj p.49/76

50 (convolution). MVA(Mean Value Analysis): p.50/76

51 G(K) (over flow/under flow) p.51/76

52 x =(x 1,x 2,,x n ): a(x) b(x) : x c(x) =(a b)(x): a, b c(x) = (a b)(x) = a(x i) b(i) = 0 i x x 1 i 1 =0 x 2 i 2 =0 x n i n =0 a(x 1 i 1,x 2 i 2,,x n i n ) b(i 1,i 2,,i n ) (a b)(x) =(b a)(x), ((a b) c)(x) =(a (b c))(x) (a 1 a 2 a n )(x): a 1,a 2,...,a n p.52/76

53 M K P (x) = 1 G(K) N j=1 q j (x j ), q j (x j )=Φ j ( x j ) x j! x j! ρ x j j G(K) = x 1 +x 2 + +x N =K N j=1 q j (x j ) G(K) =(q 1 q 2 q N )(K) p.53/76

54 i- i : i 0 i x [i] =(x 1,...,x i 1, x i+1...,x N ) : i- i- P (x [i] )= 1 G [i] (K) N q j (x j ), j=1 j i q j (x j )=Φ j ( x j ) x j! x j! ρ x j j G(K) = x 1 + x i 1 +x i+1 + +x N =K N q j (x j ) j=1 j i (i 1,i 2,...,i m )- p.54/76

55 x 1 : G(K) = q 1 (x 1 ) N q j (x j ) 0 x 1 K x 2 + +x N =K x 1 j=2 N G [1] (K x 1 )= q j (x j ) x 2 + +x N =K x 1 j=2 1- q 1 G(K) = q 1 (x 1 )G [1] (K x 1 )=(q 1 G [1] )(K) 0 x 1 K G(K) =(q 1 q 2 G [1,2] )(K) = =(q 1 q 2 q N )(K) p.55/76

56 A A1: : 0 x K x =(x 1,x 2,...,x M ) G(x) { 1 x = 0 0 x 0 A2: j =1, 2,,N A3, A4, A5 A3: q j (x j ) : 0 x K x q(x) Φ j ( x ) x! x! A4: : k = K,, 1, 0 A5 A5: x = k, 0 x K x G(x) 0 y x ρ x j G(y)q(x y). p.56/76

57 A G(x) =G [j] (x)+ M m=1 ρ jm G(x e(m)) S A3,A4,A5 S S1: k =1, 2,, K S2 S2: x = k, 0 x K x G(x) G(x)+ M m=1 ρ jm G(x e(m)). p.57/76

58 K 2 h j1 h j2 K 1 G(x) ψ G [j](x) +h j1 G(x e(1)) + h j2 G(x e(2)) :G [j](x) :G(x) p.58/76

59 j G [j] (x),0 x K j G [j] (x) G(x) G(x) G [j] (x) p.59/76

60 p.60/76

61 I/O ( ) ( ) ( ) p.61/76

62 M OU %27 &-ÎÐÑÑ OU &$ÎÐÑÑ.QIÔÎÏÖ Ç}Ì OU 4GCF 4GCF 9TKVG OU OU OU OU 9TKVG (CPU,DB,Log)=(30,90,15)=ρ p.62/76

63 ÐÖÏÎ Ò Ò Ñ f ÐÖÏÎ Ò Ð Ó %27 &- &- ÐÖÏÎ Ò Ò Ñs f ÐÖÏÎ Ò ÐÏÐÖÑÏÕ CPU 15 #2 &- &-... I/O s Ð Ó v Clients Server System p.63/76

64 I/O p.64/76

65 1987/2/ /7/18. C/S 1994/8/ C/S 19996/9/16. p.65/76

66 SE IT p.66/76

67 ( ) SE p.67/76

68 70 ÒÖ ÐÐÑÕ Ñ ÐÖÔÖÔÎÏÖ ÐÖÏÎ ÒÐ ÓÕÒÖ 15 #2 &- &- %27 &- &- %27 &- &- ENKGPVU UGTXGT p.68/76

69 QM-X) p.69/76

70 PC, WS p.70/76

71 Tiny Topaz QM-Open ªªª ªªª ªªª ªªª h h h h ªªª ªªª ªªª ªªª ªªªª ªªªª ªªªª ªªªª ªªª ª ªªª ª ªªª ª ªªª ª hv hv hv hv ªªªª ªªªª ªªªª ªªªª ª ªªªªªª ªªªª ªªªªªª ªªªªªªªªª ªªªªªªªª ªªªªªªªª ªªªªªªªª ªªª ª ªªª ª ªªª ª ªªª ª ªªªªª ªªªª ªªªª ªªªª Ð Ó u u u u ««ªªª ªªª ªªªª vƒ 5QHVYCTG 5QHVYCTG 5QHVYCTG 5QHVYCTG RTQDG RTQDG RTQDG RTQDG p.71/76

72 Tiny Topaz ªªª EWS «ªªªªªª «TinyTOPAZ «All in one «Dynamic Hook Opal p.72/76

73 Tiny Topaz p.73/76

74 ρ ρ ρ ªªªª world s world ρ s u s p.74/76

75 NEC) p.75/76

76 I thank you for your attention. p.76/76

fm

fm ÁÔÖÐÖÕ Ð +1 f ª ª ª ª ««««ªªª f ª ªª ª ªª ª ªª ª f ªªª ªª ª ªªª f ªª ª f f ªª ª ª ª ~ &'(556#46 &'(5#761 &'(5/#0 &'(5/#0 &'(5%;%.' &'(5/+)+ &'(5*++ &'(12+0 &'(1*#0&&90 &'(1*#0&/#' &'(12+072 &'(1#+4

More information

Microsoft Word - 99

Microsoft Word - 99 一般国道 205 号 針尾バイパス ÓÏÓÑÊu ÊËu ÊÍÍÊ yêéêééuê Ê ÊÊ ~ Êd ÔÖÑÏÐÒÊ ~Ê ~~{ËÊÎÐÑÑ Ê Ê y ÊvÊu eêu ÊvÂwÊÆÍ vêu uvêèív ~{ ÓÏÓÑÊu Êu ÿj~êâ ÎzÉÈÂ ÊiÍ MOÊud~{ÉÆÍÂÿj~ÉÈÉ ÓÒÒÖ ÐÎÈÂÊÂÂÂÂuÊ iîíéuê{déæíâ ÇÊÆÉÂÓÏÓÑÊÂui ~É~ÈÊ

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

『共形場理論』

『共形場理論』 T (z) SL(2, C) T (z) SU(2) S 1 /Z 2 SU(2) (ŜU(2) k ŜU(2) 1)/ŜU(2) k+1 ŜU(2)/Û(1) G H N =1 N =1 N =1 N =1 N =2 N =2 N =2 N =2 ĉ>1 N =2 N =2 N =4 N =4 1 2 2 z=x 1 +ix 2 z f(z) f(z) 1 1 4 4 N =4 1 = = 1.3

More information

<4D F736F F D F8DE98BCA8CA797A78FAC8E9988E397C3835A E815B82CC8A E646F63>

<4D F736F F D F8DE98BCA8CA797A78FAC8E9988E397C3835A E815B82CC8A E646F63> ˆ Ñ Ñ vìéê d Ê ÍÉÂÊÊÊ ÆÂ Æ Ç ÇÂÊ ~ÌÈÉ ÇÉÂÿ Â ss ÊÌ Ë sê~ Ê ÆÂ ~ÌÊÎÌÈÊÈÌÂ ÊÂ Ê ~ÊÉÆÉÊÂ ÇÉÉ ÇÈÂ Â Â Â xâîööð ÊÇÈÍÉÊÉÉÂÇÊÉÌÂÉÌÊÉÌÊÂ Ê Ê u Ç ÌÉÉÇÉÂ Ã ÃÊ ÈÂ ÊÆÇÍÃw ÃÎ v Êv ÊÑ Ñ vêî Í}ÌÂ Ã ÃÇÍÂ Ê vê u Ç ÇÆÉÊÎ

More information

Microsoft Word - TR4_Effort.doc

Microsoft Word - TR4_Effort.doc ÔÖÑÑÎÉÈÍ ODC ÎÆÉ ÿ js ÊÈÌÊ ÑÔÒÏÏÎ ÊÆÇÍ ÓÐ ÊÊ ÐÑÒ~Ì~ÊÊÿÉÉÆÍ ÈÇÉ ÌhÇÉ ÊÎwË ÈÊÉÊ ÎÍÇÊÈÍÌ ÇÈÍÉÆÍ ÊÇÊ t~ ÉÈÉ ÕÑ Í Ð ÒÏ ÐÕÑÊÊ ÇÍÈÍÇ 1&%1TVJQIQPCN &GHGEV%NCUUKHKECVKQP Š=?Ê ÊÉÆÉ Î ÆÇÉÇÊŠÊŠÈ ŠÊ ÊÍÊÎ Ìh ÉwËÍÇÉÉ

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

<4D F736F F D F8DE98BCA8CA797A78FAC8E9988E397C3835A E815B82CC8A E646F63>

<4D F736F F D F8DE98BCA8CA797A78FAC8E9988E397C3835A E815B82CC8A E646F63> s tâââoçæ #NQPIICRŠ~ ÊÈÍŠ~ Í d ÊÍÍhh Š~Š~ Ñ Ñ Â s tââoçæíâ u gzsîæg~ Â Ñ Ñ s Ê Â tââoçæíâ Â Ñ Ñ ÊÉ Ñ ÔÑÏÕ Â tâââoçæ NQPIICRŠ~ ÊÈÍKPVGTPCN u Í VTCEVKQPÎÆÉhh s dâ Ñ Ñ ÿ Ñ Ñ ÂÂys ~ÎsÈÉ gsh hg ÂÂoÇÆÍÂt

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

B

B B YES NO 5 7 6 1 4 3 2 BB BB BB AA AA BB 510J B B A 510J B A A A A A A 510J B A 510J B A A A A A 510J M = σ Z Z = M σ AAA π T T = a ZP ZP = a AAA π B M + M 2 +T 2 M T Me = = 1 + 1 + 2 2 M σ Te = M 2 +T

More information

untitled

untitled .. 3. 3 3. 3 4 3. 5 6 3 7 3.3 9 4. 9 0 6 3 7 0705 φ c d φ d., φ cd, φd. ) O x s + b l cos s s c l / q taφ / q taφ / c l / X + X E + C l w q B s E q q ul q q ul w w q q E E + E E + ul X X + (a) (b) (c)

More information

Γ Ec Γ V BIAS THBV3_0401JA THBV3_0402JAa THBV3_0402JAb 1000 800 600 400 50 % 25 % 200 100 80 60 40 20 10 8 6 4 10 % 2.5 % 0.5 % 0.25 % 2 1.0 0.8 0.6 0.4 0.2 0.1 200 300 400 500 600 700 800 1000 1200 14001600

More information

量子力学A

量子力学A c 1 1 1.1....................................... 1 1............................................ 4 1.3.............................. 6 10.1.................................. 10......................................

More information

untitled

untitled (a) (b) (c) (d) Wunderlich 2.5.1 = = =90 2 1 (hkl) {hkl} [hkl] L tan 2θ = r L nλ = 2dsinθ dhkl ( ) = 1 2 2 2 h k l + + a b c c l=2 l=1 l=0 Polanyi nλ = I sinφ I: B A a 110 B c 110 b b 110 µ a 110

More information

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law I (Radom Walks ad Percolatios) 3 4 7 ( -2 ) (Preface),.,,,...,,.,,,,.,.,,.,,. (,.) (Basic of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-7 O1-8 O1-9 O1-10 O1-11 O1-12 O1-13 O1-14 O1-15 O1-16 O1-17 O1-18 O1-19 O1-20 O1-21 O1-22 O1-23 O1-24 O1-25 O1-26 O1-27 O1-28 O1-29 O1-30 O1-31 O1-32 O1-33 O1-34 O1-35

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

Microsoft Word _Rev01-jp.doc

Microsoft Word _Rev01-jp.doc ユーザーマニュアル 日本語 APC Smart-UPS 1000/750VA 230/120/100VAC 単一ユニットラックマウント式無停電電源装置 990-1319 09/02 はじめに American Power Conversion Corporation APC Ê ƒê teâ tñïòòâ ÑÔ ÒÏÏÎÂÈÊ Ê ~ ÊÆÇÍ ~ Êt~ ÉÈÉ É ÈÉÆÌÈ ÊÓÑÓ Ñ

More information

213 2 katurada AT meiji.ac.jp http://nalab.mind.meiji.ac.jp/~mk/pde/ 213 9, 216 11 3 6.1....................................... 6.2............................. 8.3................................... 9.4.....................................

More information

橡博論表紙.PDF

橡博論表紙.PDF Study on Retaining Wall Design For Circular Deep Shaft Undergoing Lateral Pressure During Construction 2003 3 Study on Retaining Wall Design For Circular Deep Shaft Undergoing Lateral Pressure During Construction

More information

学習内容と日常生活との関連性の研究-第2部-第6章

学習内容と日常生活との関連性の研究-第2部-第6章 378 379 10% 10%10% 10% 100% 380 381 2000 BSE CJD 5700 18 1996 2001 100 CJD 1 310-7 10-12 10-6 CJD 100 1 10 100 100 1 1 100 1 10-6 1 1 10-6 382 2002 14 5 1014 10 10.4 1014 100 110-6 1 383 384 385 2002 4

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

nsg02-13/ky045059301600033210

nsg02-13/ky045059301600033210 φ φ φ φ κ κ α α μ μ α α μ χ et al Neurosci. Res. Trpv J Physiol μ μ α α α β in vivo β β β β β β β β in vitro β γ μ δ μδ δ δ α θ α θ α In Biomechanics at Micro- and Nanoscale Levels, Volume I W W v W

More information

ï ñ ö ò ô ó õ ú ù n n ú ù ö ò ô ñ ó õ ï

ï ñ ö ò ô ó õ ú ù n n ú ù ö ò ô ñ ó õ ï ï ñ ö ò ô ó õ ú ù n n ú ù ö ò ô ñ ó õ ï B A C Z E ^ N U M G F Q T H L Y D V R I J [ R _ T Z S Y ^ X ] [ V \ W U D E F G H I J K O _ K W ] \ L M N X P S O P Q @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ r r @ @

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

17 3 31 1 1 3 2 5 3 9 4 10 5 15 6 21 7 29 8 31 9 35 10 38 11 41 12 43 13 46 14 48 2 15 Radon CT 49 16 50 17 53 A 55 1 (oscillation phenomena) e iθ = cos θ + i sin θ, cos θ = eiθ + e iθ 2, sin θ = eiθ e

More information

nsg04-28/ky208684356100043077

nsg04-28/ky208684356100043077 δ!!! μ μ μ γ UBE3A Ube3a Ube3a δ !!!! α α α α α α α α α α μ μ α β α β β !!!!!!!! μ! Suncus murinus μ Ω! π μ Ω in vivo! μ μ μ!!! ! in situ! in vivo δ δ !!!!!!!!!! ! in vivo Orexin-Arch Orexin-Arch !!

More information

* 1 2014 7 8 *1 iii 1. Newton 1 1.1 Newton........................... 1 1.2............................. 4 1.3................................. 5 2. 9 2.1......................... 9 2.2........................

More information

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B 9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A

More information

I 1 V ( x) = V (x), V ( x) = V ( x ) SO(3) x = R x: R SO(3) Lorentz R t JR = J: J = diag(1, 1, 1, 1) x = x + a Poincarré ( ) 2

I 1 V ( x) = V (x), V ( x) = V ( x ) SO(3) x = R x: R SO(3) Lorentz R t JR = J: J = diag(1, 1, 1, 1) x = x + a Poincarré ( ) 2 III 1 2005 Jan 30th, 2006 I : II : I : [ I ] 12 13 9 (Landau and Lifshitz, Quantum Mechanics chapter 12, 13, 9: Pergamon Pr.) [ ] ( ) (H. Georgi, Lie algebra in particle physics, Perseus Books) [ ] II

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi I (Basics of Probability Theory ad Radom Walks) 25 4 5 ( 4 ) (Preface),.,,,.,,,...,,.,.,,.,,. (,.) (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios,

More information

- 1 -

- 1 - - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - - 20 - - 21 - - 22 - - 23 - - 24 - - 25 - - 26 - EC NEC - 27 - NEC - 28 - R NEC

More information

34号 目 次

34号 目 次 1932 35 1939 π 36 37 1937 12 28 1998 2002 1937 20 ª 1937 2004 1937 12 º 1937 38 11 Ω 1937 1943 1941 39 æ 1936 1936 1936 10 1938 25 35 40 2004 4800 40 ø 41 1936 17 1935 1936 1938 1937 15 2003 28 42 1857

More information

202mk5_OM-J_RevD

202mk5_OM-J_RevD D01053901D 202@^ Double Auto Reverse Cassette Deck 2 TASCAM 202MKV á á á è í ì ì ó í í è ì ó í á TASCAM 202MKV 3 @V @V 4 TASCAM 202MKV TASCAM 202MKV 5 6 TASCAM 202MKV 1 2 3 4 5 6 7 8 9 0 q w e r ø t º

More information

10:30 12:00 P.G. vs vs vs 2

10:30 12:00 P.G. vs vs vs 2 1 10:30 12:00 P.G. vs vs vs 2 LOGIT PROBIT TOBIT mean median mode CV 3 4 5 0.5 1000 6 45 7 P(A B) = P(A) + P(B) - P(A B) P(B A)=P(A B)/P(A) P(A B)=P(B A) P(A) P(A B) P(A) P(B A) P(B) P(A B) P(A) P(B) P(B

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 単純適応制御 SAC サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/091961 このサンプルページの内容は, 初版 1 刷発行当時のものです. 1 2 3 4 5 9 10 12 14 15 A B F 6 8 11 13 E 7 C D URL http://www.morikita.co.jp/support

More information

On a branched Zp-cover of Q-homology 3-spheres

On a branched Zp-cover of Q-homology 3-spheres Zp 拡大と分岐 Zp 被覆 GL1 表現の変形理論としての岩澤理論 SL2 表現の変形理論 On a branched Zp -cover of Q-homology 3-spheres 植木 潤 九州大学大学院数理学府 D2 December 23, 2014 植木 潤 九州大学大学院数理学府 D2 On a branched Zp -cover of Q-homology 3-spheres

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

3/4/8:9 { } { } β β β α β α β β

3/4/8:9 { } { } β β β α β α β β α β : α β β α β α, [ ] [ ] V, [ ] α α β [ ] β 3/4/8:9 3/4/8:9 { } { } β β β α β α β β [] β [] β β β β α ( ( ( ( ( ( [ ] [ ] [ β ] [ α β β ] [ α ( β β ] [ α] [ ( β β ] [] α [ β β ] ( / α α [ β β ] [ ] 3

More information

研修コーナー

研修コーナー l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l

More information

CVMに基づくNi-Al合金の

CVMに基づくNi-Al合金の CV N-A (-' by T.Koyama ennard-jones fcc α, β, γ, δ β α γ δ = or α, β. γ, δ α β γ ( αβγ w = = k k k ( αβγ w = ( αβγ ( αβγ w = w = ( αβγ w = ( αβγ w = ( αβγ w = ( αβγ w = ( αβγ w = ( βγδ w = = k k k ( αγδ

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980 % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2006.11.20 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

第86回日本感染症学会総会学術集会後抄録(I)

第86回日本感染症学会総会学術集会後抄録(I) κ κ κ κ κ κ μ μ β β β γ α α β β γ α β α α α γ α β β γ μ β β μ μ α ββ β β β β β β β β β β β β β β β β β β γ β μ μ μ μμ μ μ μ μ β β μ μ μ μ μ μ μ μ μ μ μ μ μ μ β

More information

176 B B.1: ( ) ( ) ( ) (2 2 ) ( ) ( ) ( ) (quantitative nondestructive evaluation:qnde) (1) X X X X CT(computed tomography)

176 B B.1: ( ) ( ) ( ) (2 2 ) ( ) ( ) ( ) (quantitative nondestructive evaluation:qnde) (1) X X X X CT(computed tomography) B 1) B.1 B.1.1 ( ) B.1 1 50 100 m B.1.2 (nondestructive testing:ndt) (nondestructive inspection:ndi) (nondestructive evaluation:nde) 175 176 B B.1: ( ) ( ) ( ) (2 2 ) ( ) ( ) ( ) (quantitative nondestructive

More information

大学等における社会人の受け入れ状況調査

大学等における社会人の受け入れ状況調査 1 1 2 3 4 - - - - - - 6 8 6 2001 30 7 6 3 30 8 6 1 4 3,6,9,12 4 1 1 E 1 3 13 15 4 3 1 ( ) 8. 6 14 8 6 2002 8 8 3 7 60 1 4 4 32 100 12

More information

2 94.3 91.3 5.1 7.5 0.0 0.0 0.1 0.5 0.6 0.1 0.1 0.4 21.4% 15.8% 14.8% 15.0% 16.0% 16.5% 0.5% 16.1% 15.2% 16.9% 15.7% 17.1% 18.6% 0.4% 21.4% 15.8% 14.8

2 94.3 91.3 5.1 7.5 0.0 0.0 0.1 0.5 0.6 0.1 0.1 0.4 21.4% 15.8% 14.8% 15.0% 16.0% 16.5% 0.5% 16.1% 15.2% 16.9% 15.7% 17.1% 18.6% 0.4% 21.4% 15.8% 14.8 15 7 8,000 15 4 1 0 5 15 4 2 15 10 1 15 4 1 6 11 4,500 3,500 16 26 35 27 34 16 2 19 16 2 24 16 3 15 1 2 94.3 91.3 5.1 7.5 0.0 0.0 0.1 0.5 0.6 0.1 0.1 0.4 21.4% 15.8% 14.8% 15.0% 16.0% 16.5% 0.5% 16.1%

More information

œ 2 É É

œ 2 É É 2 œ 4 10 20 ò 32 É 36 40 43 48 51 53 É QA 57 59 œ 2 É É Bio BioBio JubJub PichPich É É IEAFO É The KINGYO É ACEPÉ 3 É DIY É ÉÉÉ É É 4 É É É 5 ÉDIY É IC IC IC IC IC IC IC IC É ò 6 7 Á Å ÅÅ É Á Èh Èh Èh

More information

applets.book

applets.book BEAWebLogic Server WebLogic Server ªªª ª ªªªªª ª BEA WebLogic Server ªªª ª ª 7.0 ªª ª ª : 2002 6 u : 2002 6 28 m Copyright 2002 BEA Systems, Inc. All Rights Reserved. ªª ª ªªª ª BEA Systems, Inc. ªª ª

More information

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3 13 2 13.0 2 ( ) ( ) 2 13.1 ( ) ax 2 + bx + c > 0 ( a, b, c ) ( ) 275 > > 2 2 13.3 x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D >

More information

(I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) : 2 Typeset by Akio Namba usig Powerdot. 2 / 47

(I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) : 2 Typeset by Akio Namba usig Powerdot. 2 / 47 4 Typeset by Akio Namba usig Powerdot. / 47 (I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) : 2 Typeset by Akio Namba usig Powerdot. 2 / 47 (I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) : 2 (radom variable):

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

populatio sample II, B II? [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2

populatio sample II, B II?  [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2 (2015 ) 1 NHK 2012 5 28 2013 7 3 2014 9 17 2015 4 8!? New York Times 2009 8 5 For Today s Graduate, Just Oe Word: Statistics Google Hal Varia I keep sayig that the sexy job i the ext 10 years will be statisticias.

More information

2

2 1 2 3 4 23 26 1.821.42 5 6 7 8 9 10 11 (kw) 50.0 10.0 5.5 20.0 20.0 50.0 5.0 32.0 22.0 10.2 224.7 12 13 m3 14 15 16 17 18 19 20 21 22 23 24 25 12 26 27 L=50m 28 29 30 31 32 33 34 35 36 37 kl/ 年 kl/ 年 kl/

More information

BB.2

BB.2 2 J U RN K EDOK T ER N G U ST U S 2 0 2 2 EI 5 9 V O 20 N 0 I SS N : 0 8 5 4 D FT R I S { + 0 K $ > 2 S P } C > > ß S 7 K F7 I N P C 2 II C >$ K > > JH Y Ä N V 0 5 4 06 2 > H U = w N H P S K Pf! >! T {

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi II (Basics of Probability Theory ad Radom Walks) (Preface),.,,,.,,,...,,.,.,,.,,. (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

PRML pdf PRML (http://critter.sakura.ne.jp) N x t y(x, w) = w 0 + w 1 x + w 2 x w M x m = M w j x j (1.1) j=0 E(w) = 1 {y(x n, w) t n } 2

PRML pdf PRML (http://critter.sakura.ne.jp) N x t y(x, w) = w 0 + w 1 x + w 2 x w M x m = M w j x j (1.1) j=0 E(w) = 1 {y(x n, w) t n } 2 critter twitter ( PRML) PRML PRML PRML PRML 1. 2. 3. PRML PRML 110 PRML 700 1 PRML pdf PRML (http://critter.sakura.ne.jp) 1 1.1 N x t y(x, w) = w 0 + w 1 x + w 2 x 2 + + w M x m = M w j x j (1.1) j=0 E(w)

More information

本文EPS再版用-cs.indd

本文EPS再版用-cs.indd 愛知大学経営総合科学研究所叢書 40 愛知県における廃棄物処理の 10 年間の推移 有澤 健治 冨増 和彦 吉本 理沙 著 愛知大学経営総合科学研究所 i 1 10 20 ( ) 2010 2011 2 ( ) ii () : : R UpLaTeX R UpLaTeX 1 1 1.1... 1 1.2... 2 1.2.1... 3 1.2.2... 3 1.2.3... 4 1.2.4... 4

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

09基礎分析講習会

09基礎分析講習会 データ解析の意味を理解しないでパソコンで計算して 序論 誤差解析 何のために も意味がない 以下の本でちゃんと勉強しよう R. A. Millikan ミリカン 水滴の蒸発 大学院生H. Fletcher 水滴を油滴に 博士論文単名 140の観測のうち49個除外 データ削除 実験データを正しく扱うために 化学同人編集部編 油滴実験 Regener がもともとThompsonの実験室(Cambridge

More information

(2) N elec = D p,q p,q χ q χ p dr = p,q D p,q S q,p Mulliken PA D Mull p = p = group A D p,p 1 + D p,q S q,p p q p [ r A D Mull p ] group χ p G Mull A

(2) N elec = D p,q p,q χ q χ p dr = p,q D p,q S q,p Mulliken PA D Mull p = p = group A D p,p 1 + D p,q S q,p p q p [ r A D Mull p ] group χ p G Mull A 7 - (Electron-Donor Acceptor) : Charge-Transfer ( CT) ( (Charge-Transfer) - (electron donor-electron acceptor) [1][2][3][4] Van der Waals CT [5] Population Analysis population analysis ( ), observable

More information