p.2/76

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "p.2/76"

Transcription

1 p.1/76

2 p.2/76

3 ( ) (2001). (2006). (2002). p.3/76

4 N n, n {1, 2,...N} 0 K k, k {1, 2,...,K} M M, m {1, 2,...,M} p.4/76

5 R =(r ij ), r ij = i j ( ): k s r(k, s) r(k, 1),r(k, 2),...,r(k, S(k)) 0:5 0:5 p.5/76

6 N =3,K =3,M = : F1(x) =1 e μ 1 x ( ) 2 : F2(x) =1 e μ 2 x ( ) 3 : F3(x) =1 e 2μ 3 x (1 + 2μ3x) ( ) p.6/76

7 p.7/76

8 P (c, y) = P (c)p (y c) P (c) = CΛ(m)Φ(u) N j=1 τ j (c j ) τ j (c j ) = θ j(m jl,k jl ) µ kl c N P (y c) = µ jl (1 F kjl (y jl )) j=1 c =(c 1, c 2,...,c N ): y =(y 1, y 1,...,y 1 ): l p.8/76

9 1 0 0 P (c y)dy =1 P (c) = CΛ(m)Φ(u) τ j (c j ) = θ j(m jl,k jl ) µ kl N j=1 τ j (c j ) m = ( m m (c) ) M : m m=1 m(c) c m u = ( ((ujmk (c)) K k=1 ) M m=1) N m, k j=1 : u jmk (c) c j p.9/76

10 2 C : µ jl : j l k jl : j l θ j (m jl,k jl ): j Λ(m): λ m (m) = Λ(m + e m) Λ(m) Φ(u): γ j (l, c) = Φ(u e j(m jl,k jl )) Φ(u) β j (l, c) p.10/76

11 : µ k (insensitive ) θ j (m, k) m u (c) (y) p.11/76

12 Λ(m) Φ(u) p.12/76

13 M/G p.13/76

14 M/G Poisson K k S k F k (x) =P (S k x), f k (x) E(S k )= 1 : k µ k p.14/76

15 (n ) n y1 y2 y3 yn c2 c3 cn c1 : (c; y) =(c1; c2; :::;cn) ; y =(y1; y2; :::;yn) c c l : l, c l {1, 2,...,K} y l : l, 0 <y l c =(c 1,c 2,...,c n ), y =(y 1,y 2...,y n ) (c, y): c c p.15/76

16 c λ k (c): k, k =1, 2,...,K γ(l, c) = d dt y l: c l dt γ(l, c)dt y l + dy l = y l γ(l, c) p.16/76

17 cn k c ffi(`; c) c1 c` 1 c` c`+1 cn c1 c` 1 k c` cn 1 δ(l, c): l ( ) n+1 l=1 δ(l, c) =1 p.17/76

18 (global barance equation) = c { λcl (c [l] ) δ(l, c [l] ) f c l (y l ) P (c [l], y [l] )+ P (c, y)γ(l, c) } y l l=1 K { λk (c)p (c, y) k=1 c +1 l=1 γ(l, c + [l(k)] )P ( c + [l(k)], y+ [l(0)] )} p.18/76

19 P (c, y) = P (c)p (y c) P (c) = CΛ(w)Φ(w)τ(c) τ(c) = P (y c) = c l=1 c l=1 1 µ cl µ cl ( 1 Fcl (y l ) ) w =(w 1,w 2,...,w K ), w k : c k p.19/76

20 Λ(w) (w ) λ k (w) = Λ(w + e k) Λ(w) Φ(w) (w ) γ(l, c) = Φ(w e(c l)) Φ(w) β(l, c) β(l, c): c l c β(l, c) =1 l=1 p.20/76

21 c δ(l, c [l])=β(l, c) l =1, 2,..., c c [l] =(c 1,c 2,...,c l 1,c l+1,...,c c ) c l=1 Φ(w e(c l )) Φ(w) µ cl { δ(l, c [l] ) β(l, c)} =0 p.21/76

22 (symmetric queue) δ(l, c [l])=β(l, c) l c c l β(l, c) =δ(l, c [l] )= 1 c LCFS-PR : β(1, c) =δ(1, c [l])=1, 0 p.22/76

23 δ(l, c [l]) β(l, c) (K) c l=1 Φ(w e(c l )) Φ(w) µ cl { δ(l, c [l] ) β(l, c)} =0 FCFS: µ 1 = µ 2 = = µ K δ(l, c) = { 1 l = c +1 0, β(l, c) = { 1, l =1 0, p.23/76

24 Λ(w) k : λ k (w) = Λ(w + e k) Λ(w) Λ(w) =λ w 1 1 λw λw K K S Λ(w) = { λ c, c S 1 0, S c λ k(w) =λ k λ k (w) = { λ, c S 0, S < c p.24/76

25 Φ(w) c l γ(l, c) = Φ(w e(c l)) Φ(w) β(l, c) Φ(w) =Φ( w )(= Φ( c )) Φ(n) = { n ν( c ) = Φ( c 1) Φ( c ) s=1, c =1, 2,... ν(s) } 1, n =1, 2,..., Φ(0) = 1 p.25/76

26 w z c1 c2 c` c n ffl $ ν(n) β(l, c) ν(n) fi(1;c) fi(n;c) fi(2;c) fi(`;c) ν(n) Φ(n) Φ(w) p.26/76

27 p.27/76

28 = c l=1 { λcl (c [l] ) δ(l, c [l] ) f c l (y l ) P (c [l], y [l] )+ y l P (c, y)γ(l, c) } K { λk (c)p (c, y) k=1 c +1 l=1 γ(l, c + [l(k)] )P ( c + [l(k)], y+ [l(0)] )} =0, =0 p.28/76

29 ( ) (1) c l=1 {λ cl (c [l] ) δ(l, c [l] ) f c l (y l ) P (c [l], y [l] )+ y l P (c, y)γ(l, c)} =0 k =1, 2,...,K (2) λ k (c)p (c, y) c +1 l=1 γ(l, c + [l(k)] )P ( c + [l(k)], y+ [l(0)]) =0 (local balance equation) p.29/76

30 (2) (1) (3) c l=1 Φ(w e(c l )) Φ(w) f cl (y l ) { δ(l, c 1 F cl (y l ) [l] ) β(l, c)} =0 (3) (3) p.30/76

31 (3) c (4) δ(l, c [l]) β(l, c) =0, l =1, 2,..., c (4) p.31/76

32 δ(l, c [l] ) β(l, c) (3) 0 <y l f cl (y l ) 1 F cl (y l ) = (3) c l=1 Φ(w e(c l )) Φ(w) µ cl { δ(l, c [l] ) β(l, c)} =0 p.32/76

33 S:, q(x, x ): (x x ), π(x): x π(x) x S q(x, x )= x S π(x )q(x, x), x S S = S 1 S 2 S n S i π(x) q(x, x )= x S i π(x )q(x, x), x S i x S i p.33/76

34 X(t) X( t) X(t) X( t) ( ) X(t) π(x)q(x, x )=π(x )q(x, x), x, x S (detailed balance equation) M/M/1 p.34/76

35 M M x(t): K t (quasi-reversible) x(t 0 ) t 0 k x(t 0 ) t 0 k M M M M Poisson Poisson M M p.35/76

36 ) p.36/76

37 p.37/76

38 c j =(c j1 ; c j2 ;:::;c jn ) c j` =(mj`;kj`) j : (c j ; y j ) 1 2 n c j` yj1 yj2 yjn (mj1;kj1) (mj2;kj2) (mjn;kjn) (mj`;kj`) =( `, ` ) c =(c 1, c 2,...,c N ) y =(y 1, y 2,...,y N ) (c, y) p.38/76

39 P (c, y) = P (c)p (y c) P (c) = CΛ(m)Φ(u) τ j (c j ) = c j l=1 N j=1 σ j (m jl,k jl ) σ j (m jl,k jl ) = θ j(m jl,k jl ) µ kjl τ j (c j ) P (y c) = N c j j=1 l=1 µ kjl ( 1 Fkjl (y jl ) ). p.39/76

40 (1) m jl : j, l k jl : j, l θ j (m jl,k jl ): (m jl,k jl ) m θ m =(θ m1, θ m2,...,θ mn ) θ mi = ( θ i (m, 1),θ i (m, 2),...,θ i (m, K) ), i =1, 2,...,N θ i (m, k): i m, k p.40/76

41 (2) r m ( (i, k), (j, h) ) : i k m j h m R(m) = R m (1, 1) R m (1, 2)... R m (1,N) R m (2, 1) R m (2, 2)... R m (2,N) f... R m (N,1) R m (N,2)... R m (N,N) m θ m = θ m R(m) 0 (1, θ m )=(1, θ m )R(m) p.41/76

42 j (m; h) from node i (3) rm(0; (j; h)) 1 out of the network i(m; k) j i i(m; k) i(m; k) rm((i; k); (j; h)) N p.42/76

43 m m λ m (m) = Λ(m + e(m)) Λ(m) Λ(m) =Λ 1 (m 1 )Λ 2 (m 2 )...Λ M (m M ) u jmk : j m, k x jm : j m u = ( ((ujmk ) K k=1 ) M m=1) N j=1, x = ( (x jm ) M m=1 ) N j=1 Φ(u) =Φ 1 (u 1 )Φ 2 (u 2 ) Φ N (u N ) u Φ(x) =Φ 1 (x 1 )Φ 2 (x 2 ) Φ N (x N ) x p.43/76

44 (c, y) x =(x 1, x 2,...,x N ), x j =(x j1,x j2,...,x jm ) x jm : j m M p.44/76

45 x =(x 1,x 2,...,x n ), ρ =(ρ 1,ρ 2,...,ρ n ) x = n, x = x 1 + x x n x! =x 1!x 2! x n! ρ x = ρ x 1 1 ρx 2 2 ρx n n (a 1 + a a n ) m = x 1 +x 2 + +x n =m m! x 1!x 2! x n! ax 1 1 ax 2 2 ax n n a m = x =m x! a x x! p.45/76

46 (1) x =(x 1, x 2,...,x N ) x j =(x j1,x j2,...,x jm ), j =1, 2,...,N x jm : j m K =(K 1,K 2,...,K M ), K m : m ( ) Φ(x) =Φ 1 ( x 1 )Φ 2 ( x 2 ) Φ N ( x N ) j n ν j (n) = Φ j(n 1) Φ j (n) Φ j (n) = 1 ν j (1)ν j (2) ν j (n), Φ j(0) = 1 p.46/76

47 (2) ν j (n) =ν j (1), n =1, 2,... ν j (n) =nν j (1), n =1, 2,... (S j ): ν j (n) = : ρ =(ρ 1, ρ 2,...,ρ N ) { nν j (1), n S j S j ν j (1), S j <n ρ j =(ρ j1,ρ j2,...,ρ jm ), j =1, 2,...,N K ρ jm = σ j (m, k), σ j (m, k) = θ j(m, k) µ k k=1 p.47/76

48 (3) ( ) P (x) = 1 G(K) N Φ j (x j )ϕ j (x j ), j=1 ϕ j (x j )= x j! ρ x j j x j! G(K): G(K) = x 1 +x 2 + +x N =K N j=1 Φ j (x j )ϕ j (x j ) G(K) x P (x) =1 N =10, M =3, K =(5, 5, 5) 80 p.48/76

49 ( ) P (x) = 1 G(K) N j=1 q j (x j ) q j (x j ) = Φ j ( x j ) x j! x j! G(K): ρ x j j λxo j = Φ j ( x c j + x o j ) ( xc j + xo j )! x c j! xo j! (ρ c j) xc j (ρ o j ) xo o j λ xj p.49/76

50 (convolution). MVA(Mean Value Analysis): p.50/76

51 G(K) (over flow/under flow) p.51/76

52 x =(x 1,x 2,,x n ): a(x) b(x) : x c(x) =(a b)(x): a, b c(x) = (a b)(x) = a(x i) b(i) = 0 i x x 1 i 1 =0 x 2 i 2 =0 x n i n =0 a(x 1 i 1,x 2 i 2,,x n i n ) b(i 1,i 2,,i n ) (a b)(x) =(b a)(x), ((a b) c)(x) =(a (b c))(x) (a 1 a 2 a n )(x): a 1,a 2,...,a n p.52/76

53 M K P (x) = 1 G(K) N j=1 q j (x j ), q j (x j )=Φ j ( x j ) x j! x j! ρ x j j G(K) = x 1 +x 2 + +x N =K N j=1 q j (x j ) G(K) =(q 1 q 2 q N )(K) p.53/76

54 i- i : i 0 i x [i] =(x 1,...,x i 1, x i+1...,x N ) : i- i- P (x [i] )= 1 G [i] (K) N q j (x j ), j=1 j i q j (x j )=Φ j ( x j ) x j! x j! ρ x j j G(K) = x 1 + x i 1 +x i+1 + +x N =K N q j (x j ) j=1 j i (i 1,i 2,...,i m )- p.54/76

55 x 1 : G(K) = q 1 (x 1 ) N q j (x j ) 0 x 1 K x 2 + +x N =K x 1 j=2 N G [1] (K x 1 )= q j (x j ) x 2 + +x N =K x 1 j=2 1- q 1 G(K) = q 1 (x 1 )G [1] (K x 1 )=(q 1 G [1] )(K) 0 x 1 K G(K) =(q 1 q 2 G [1,2] )(K) = =(q 1 q 2 q N )(K) p.55/76

56 A A1: : 0 x K x =(x 1,x 2,...,x M ) G(x) { 1 x = 0 0 x 0 A2: j =1, 2,,N A3, A4, A5 A3: q j (x j ) : 0 x K x q(x) Φ j ( x ) x! x! A4: : k = K,, 1, 0 A5 A5: x = k, 0 x K x G(x) 0 y x ρ x j G(y)q(x y). p.56/76

57 A G(x) =G [j] (x)+ M m=1 ρ jm G(x e(m)) S A3,A4,A5 S S1: k =1, 2,, K S2 S2: x = k, 0 x K x G(x) G(x)+ M m=1 ρ jm G(x e(m)). p.57/76

58 K 2 h j1 h j2 K 1 G(x) ψ G [j](x) +h j1 G(x e(1)) + h j2 G(x e(2)) :G [j](x) :G(x) p.58/76

59 j G [j] (x),0 x K j G [j] (x) G(x) G(x) G [j] (x) p.59/76

60 p.60/76

61 I/O ( ) ( ) ( ) p.61/76

62 M OU %27 &-ÎÐÑÑ OU &$ÎÐÑÑ.QIÔÎÏÖ Ç}Ì OU 4GCF 4GCF 9TKVG OU OU OU OU 9TKVG (CPU,DB,Log)=(30,90,15)=ρ p.62/76

63 ÐÖÏÎ Ò Ò Ñ f ÐÖÏÎ Ò Ð Ó %27 &- &- ÐÖÏÎ Ò Ò Ñs f ÐÖÏÎ Ò ÐÏÐÖÑÏÕ CPU 15 #2 &- &-... I/O s Ð Ó v Clients Server System p.63/76

64 I/O p.64/76

65 1987/2/ /7/18. C/S 1994/8/ C/S 19996/9/16. p.65/76

66 SE IT p.66/76

67 ( ) SE p.67/76

68 70 ÒÖ ÐÐÑÕ Ñ ÐÖÔÖÔÎÏÖ ÐÖÏÎ ÒÐ ÓÕÒÖ 15 #2 &- &- %27 &- &- %27 &- &- ENKGPVU UGTXGT p.68/76

69 QM-X) p.69/76

70 PC, WS p.70/76

71 Tiny Topaz QM-Open ªªª ªªª ªªª ªªª h h h h ªªª ªªª ªªª ªªª ªªªª ªªªª ªªªª ªªªª ªªª ª ªªª ª ªªª ª ªªª ª hv hv hv hv ªªªª ªªªª ªªªª ªªªª ª ªªªªªª ªªªª ªªªªªª ªªªªªªªªª ªªªªªªªª ªªªªªªªª ªªªªªªªª ªªª ª ªªª ª ªªª ª ªªª ª ªªªªª ªªªª ªªªª ªªªª Ð Ó u u u u ««ªªª ªªª ªªªª vƒ 5QHVYCTG 5QHVYCTG 5QHVYCTG 5QHVYCTG RTQDG RTQDG RTQDG RTQDG p.71/76

72 Tiny Topaz ªªª EWS «ªªªªªª «TinyTOPAZ «All in one «Dynamic Hook Opal p.72/76

73 Tiny Topaz p.73/76

74 ρ ρ ρ ªªªª world s world ρ s u s p.74/76

75 NEC) p.75/76

76 I thank you for your attention. p.76/76

fm

fm ÁÔÖÐÖÕ Ð +1 f ª ª ª ª ««««ªªª f ª ªª ª ªª ª ªª ª f ªªª ªª ª ªªª f ªª ª f f ªª ª ª ª ~ &'(556#46 &'(5#761 &'(5/#0 &'(5/#0 &'(5%;%.' &'(5/+)+ &'(5*+&#4+ &'(12+0 &'(1*#0&&90 &'(1*#0&/#' &'(12+072 &'(1#+4

More information

ÊÈÌÊ fêôöôï Ö É É ~ Œ ~ Œ ÈÍÉÆÍ s Ê É Â Ê ÉÉÆÍÇÉ Ê Ê É Ê ÈÍv ÈÍ É ÈÍ Â ÇÍ vèé Ê Ê É ÈÉËÈÆ ÊÌÉ Ê~Æ Ê Ê ÈÍfÆ Ê ÊÉÆÉÊ Ê Ê ÈÍ Ê ÈÉËÈÆ

ÊÈÌÊ fêôöôï Ö É É ~ Œ ~ Œ ÈÍÉÆÍ s Ê É Â Ê ÉÉÆÍÇÉ Ê Ê É Ê ÈÍv ÈÍ É ÈÍ Â ÇÍ vèé Ê Ê É ÈÉËÈÆ ÊÌÉ Ê~Æ Ê Ê ÈÍfÆ Ê ÊÉÆÉÊ Ê Ê ÈÍ Ê ÈÉËÈÆ Ê È Ì Ê 12 ~ (4 Â9 )ÊÍÍ ÿj fd 5.837 Ê Â Ð ÓÑ (TCSA) Ê fç 2.924 É Ê ÎzÆÉÆÌÈ Âÿj Ê sê 9  sê 5 Î ÉyÉÉÆÍÉÆÍÍÉÆÌÈ 13 Ê TCSA ÉsÊÉÉ w ÊÍÍÉ 53 Ê ƒ Êd ÊÂ11.700 ÉÊÉÉÆÌÈ ÆÌÌ s ÊÉÉÉ ÇÈÇÉÊÉÇÊÆ Ê ÉÈÇ ÉÆÆg É ÈÊÌÊÊÉÆÉÊÿj

More information

Microsoft Word - 99

Microsoft Word - 99 一般国道 205 号 針尾バイパス ÓÏÓÑÊu ÊËu ÊÍÍÊ yêéêééuê Ê ÊÊ ~ Êd ÔÖÑÏÐÒÊ ~Ê ~~{ËÊÎÐÑÑ Ê Ê y ÊvÊu eêu ÊvÂwÊÆÍ vêu uvêèív ~{ ÓÏÓÑÊu Êu ÿj~êâ ÎzÉÈÂ ÊiÍ MOÊud~{ÉÆÍÂÿj~ÉÈÉ ÓÒÒÖ ÐÎÈÂÊÂÂÂÂuÊ iîíéuê{déæíâ ÇÊÆÉÂÓÏÓÑÊÂui ~É~ÈÊ

More information

fm

fm ÁÔÖÐÖÕ +1 ÔÖÒÑÑÐ /2% Ê Éte u ªªªªª f ªªª ª«ªªª ª ~ ªª ª ª ª ªªª ªª ª ªªª ª ªª ª «ªª ª ª ª ª ª ª ª ªªªª ª ª ª ª ª ª ªªªª «««s ª ª ª ª ªªª v ªª ª ª ª ªv l Ð ÔÎ 59Ö Ð ~ 59 59 59 59 Ð ÔÎ 59Ö Ð ~ ª ª ª ««10

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

『共形場理論』

『共形場理論』 T (z) SL(2, C) T (z) SU(2) S 1 /Z 2 SU(2) (ŜU(2) k ŜU(2) 1)/ŜU(2) k+1 ŜU(2)/Û(1) G H N =1 N =1 N =1 N =1 N =2 N =2 N =2 N =2 ĉ>1 N =2 N =2 N =4 N =4 1 2 2 z=x 1 +ix 2 z f(z) f(z) 1 1 4 4 N =4 1 = = 1.3

More information

(WP)

(WP) 1998 0 a b v g d je jo z i j k l m n o à á â ƒ ã ä å Ý Þ æ ç ˆ è é Š ê ë Œ ì í Ž î 1 ï p ð r ñ s ò t ó u ô f õ x ö ts t' ø ù ' ' š ú û y œ ü ' ý e ž þ ju Ÿ ß ja à, ê, ì, î, ò á, ã, ä, æ, é, ë, ï, ô, ö,,

More information

<4D F736F F D F8DE98BCA8CA797A78FAC8E9988E397C3835A E815B82CC8A E646F63>

<4D F736F F D F8DE98BCA8CA797A78FAC8E9988E397C3835A E815B82CC8A E646F63> ˆ Ñ Ñ vìéê d Ê ÍÉÂÊÊÊ ÆÂ Æ Ç ÇÂÊ ~ÌÈÉ ÇÉÂÿ Â ss ÊÌ Ë sê~ Ê ÆÂ ~ÌÊÎÌÈÊÈÌÂ ÊÂ Ê ~ÊÉÆÉÊÂ ÇÉÉ ÇÈÂ Â Â Â xâîööð ÊÇÈÍÉÊÉÉÂÇÊÉÌÂÉÌÊÉÌÊÂ Ê Ê u Ç ÌÉÉÇÉÂ Ã ÃÊ ÈÂ ÊÆÇÍÃw ÃÎ v Êv ÊÑ Ñ vêî Í}ÌÂ Ã ÃÇÍÂ Ê vê u Ç ÇÆÉÊÎ

More information

ロシア語ハラショー

ロシア語ハラショー 1999 èìñß ïî-ðóññêè 25 26 26 29 30 31 32 33 35 36 10 10 11 36 37 38 39 12 14 40 41 16 16 18 19 21 21 22 22 23 24 1 à á â ƒ ã ä å Ý Þ æ ç ˆ è a b v g d je jo z i é j Š ê k ë l Œ ì m í n Ž î o 2 ï p ð r

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

Microsoft Word - TR4_Effort.doc

Microsoft Word - TR4_Effort.doc ÔÖÑÑÎÉÈÍ ODC ÎÆÉ ÿ js ÊÈÌÊ ÑÔÒÏÏÎ ÊÆÇÍ ÓÐ ÊÊ ÐÑÒ~Ì~ÊÊÿÉÉÆÍ ÈÇÉ ÌhÇÉ ÊÎwË ÈÊÉÊ ÎÍÇÊÈÍÌ ÇÈÍÉÆÍ ÊÇÊ t~ ÉÈÉ ÕÑ Í Ð ÒÏ ÐÕÑÊÊ ÇÍÈÍÇ 1&%1TVJQIQPCN &GHGEV%NCUUKHKECVKQP Š=?Ê ÊÉÆÉ Î ÆÇÉÇÊŠÊŠÈ ŠÊ ÊÍÊÎ Ìh ÉwËÍÇÉÉ

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

‰IŠv9802 (WP)

‰IŠv9802 (WP) 30 197954 22001983 ìåëóéþåóëéå ÍÉÎÉÍÕÍÙ ÓÏ ÒÅÍÅÎÎÏÇÏ ÒÕÓÓËÏÇÏ ÑÚÙËÁ, ÒÅÄ...íÏÒËÏ ËÉÎÁ, "òõóóëéê ÑÚÙË", íïóë Á, 1985 ëáòôéîîï-óéôõáôé ÎÙÊ ÓÌÏ ÁÒØ ÒÕÓÓËÏÇÏ ÑÚÙËÁ, à.. ÁÎÎÉËÏ É ÄÒ., "òõóóëéê ÑÚÙË", íïóë Á,

More information

„¤‰ƒ‰IŠv‚æ‡S−ª†{“Å‘IB5-97

„¤‰ƒ‰IŠv‚æ‡S−ª†{“Å‘IB5-97 ÊÒÏ Ò Ð ÑÐÖÔÒÊ ÈÍ Ê ÊÆÇÍà xê ÃÊ g ÐÖÏ ÖÎÖÓ ÕÓÕÒÒÖÐ Ê w Ê ÇÍÌÍÉÂ Ê Êà x ÃÇ ÆÉ ÈÍÉÆÍ Â2+5# Â Â Â Ê w ÊÍÍÉÂ Ê ~É ÇÉ ÎsÆÇÉÇ uéæíçéç ÈÍÉ Â Ê 2+5# ÊÊÊw Ê Î Ê f u ÉÊà x hêf É f s Êg ÊÓÖ ÑÎ u ÈÍÇÉÃÎ ÇÉÆÍ ÂÌÉÂ

More information

<4D F736F F D F8DE98BCA8CA797A78FAC8E9988E397C3835A E815B82CC8A E646F63>

<4D F736F F D F8DE98BCA8CA797A78FAC8E9988E397C3835A E815B82CC8A E646F63> s tâââoçæ #NQPIICRŠ~ ÊÈÍŠ~ Í d ÊÍÍhh Š~Š~ Ñ Ñ Â s tââoçæíâ u gzsîæg~ Â Ñ Ñ s Ê Â tââoçæíâ Â Ñ Ñ ÊÉ Ñ ÔÑÏÕ Â tâââoçæ NQPIICRŠ~ ÊÈÍKPVGTPCN u Í VTCEVKQPÎÆÉhh s dâ Ñ Ñ ÿ Ñ Ñ ÂÂys ~ÎsÈÉ gsh hg ÂÂoÇÆÍÂt

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

B

B B YES NO 5 7 6 1 4 3 2 BB BB BB AA AA BB 510J B B A 510J B A A A A A A 510J B A 510J B A A A A A 510J M = σ Z Z = M σ AAA π T T = a ZP ZP = a AAA π B M + M 2 +T 2 M T Me = = 1 + 1 + 2 2 M σ Te = M 2 +T

More information

untitled

untitled .. 3. 3 3. 3 4 3. 5 6 3 7 3.3 9 4. 9 0 6 3 7 0705 φ c d φ d., φ cd, φd. ) O x s + b l cos s s c l / q taφ / q taφ / c l / X + X E + C l w q B s E q q ul q q ul w w q q E E + E E + ul X X + (a) (b) (c)

More information

Γ Ec Γ V BIAS THBV3_0401JA THBV3_0402JAa THBV3_0402JAb 1000 800 600 400 50 % 25 % 200 100 80 60 40 20 10 8 6 4 10 % 2.5 % 0.5 % 0.25 % 2 1.0 0.8 0.6 0.4 0.2 0.1 200 300 400 500 600 700 800 1000 1200 14001600

More information

量子力学A

量子力学A c 1 1 1.1....................................... 1 1............................................ 4 1.3.............................. 6 10.1.................................. 10......................................

More information

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1 1 1.1......... 1............. 1.3... 1.4......... 1.5.............. 1.6................ Bownian Motion.1.......... Einstein.............. 3.3 Einstein........ 3.4..... 3.5 Langevin Eq.... 3.6................

More information

untitled

untitled (a) (b) (c) (d) Wunderlich 2.5.1 = = =90 2 1 (hkl) {hkl} [hkl] L tan 2θ = r L nλ = 2dsinθ dhkl ( ) = 1 2 2 2 h k l + + a b c c l=2 l=1 l=0 Polanyi nλ = I sinφ I: B A a 110 B c 110 b b 110 µ a 110

More information

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law I (Radom Walks ad Percolatios) 3 4 7 ( -2 ) (Preface),.,,,...,,.,,,,.,.,,.,,. (,.) (Basic of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-7 O1-8 O1-9 O1-10 O1-11 O1-12 O1-13 O1-14 O1-15 O1-16 O1-17 O1-18 O1-19 O1-20 O1-21 O1-22 O1-23 O1-24 O1-25 O1-26 O1-27 O1-28 O1-29 O1-30 O1-31 O1-32 O1-33 O1-34 O1-35

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

body.dvi

body.dvi ..1 f(x) n = 1 b n = 1 f f(x) cos nx dx, n =, 1,,... f(x) sin nx dx, n =1,, 3,... f(x) = + ( n cos nx + b n sin nx) n=1 1 1 5 1.1........................... 5 1.......................... 14 1.3...........................

More information

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t 1 1.1 sin 2π [rad] 3 ft 3 sin 2t π 4 3.1 2 1.1: sin θ 2.2 sin θ ft t t [sec] t sin 2t π 4 [rad] sin 3.1 3 sin θ θ t θ 2t π 4 3.2 3.1 3.4 3.4: 2.2: sin θ θ θ [rad] 2.3 0 [rad] 4 sin θ sin 2t π 4 sin 1 1

More information

Microsoft Word - C.....u.K...doc

Microsoft Word - C.....u.K...doc C uwêííôöðöõ Ð C ÔÖÐÖÕ ÐÊÉÌÊ C ÔÖÐÖÕÊ C ÔÖÐÖÕÊ Ç Ê Æ ~ if eíè ~ for ÒÑÒ ÌÆÊÉÉÊ ~ switch ÉeÍÈ ~ while ÒÑÒ ÊÍÍÔÖÐÖÕÊ ~ 1 C ÔÖÐÖÕ ÐÊÉÌÊ uê~ ÏÒÏÑ Ð ÓÏÖ CUI Ô ÑÊ ÏÒÏÑ ÔÖÐÖÕÎ d ÈÍÉÇÊ ÆÒ Ö ÒÐÑÒ ÊÔÎÏÖÎ d ÉÇÍÊ

More information

Microsoft Word _Rev01-jp.doc

Microsoft Word _Rev01-jp.doc ユーザーマニュアル 日本語 APC Smart-UPS 1000/750VA 230/120/100VAC 単一ユニットラックマウント式無停電電源装置 990-1319 09/02 はじめに American Power Conversion Corporation APC Ê ƒê teâ tñïòòâ ÑÔ ÒÏÏÎÂÈÊ Ê ~ ÊÆÇÍ ~ Êt~ ÉÈÉ É ÈÉÆÌÈ ÊÓÑÓ Ñ

More information

213 2 katurada AT meiji.ac.jp http://nalab.mind.meiji.ac.jp/~mk/pde/ 213 9, 216 11 3 6.1....................................... 6.2............................. 8.3................................... 9.4.....................................

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

学習内容と日常生活との関連性の研究-第2部-第6章

学習内容と日常生活との関連性の研究-第2部-第6章 378 379 10% 10%10% 10% 100% 380 381 2000 BSE CJD 5700 18 1996 2001 100 CJD 1 310-7 10-12 10-6 CJD 100 1 10 100 100 1 1 100 1 10-6 1 1 10-6 382 2002 14 5 1014 10 10.4 1014 100 110-6 1 383 384 385 2002 4

More information

橡博論表紙.PDF

橡博論表紙.PDF Study on Retaining Wall Design For Circular Deep Shaft Undergoing Lateral Pressure During Construction 2003 3 Study on Retaining Wall Design For Circular Deep Shaft Undergoing Lateral Pressure During Construction

More information

untitled

untitled . 96. 99. ( 000 SIC SIC N88 SIC for Windows95 6 6 3 0 . amano No.008 6. 6.. z σ v σ v γ z (6. σ 0 (a (b 6. (b 0 0 0 6. σ σ v σ σ 0 / v σ v γ z σ σ 0 σ v 0γ z σ / σ ν /( ν, ν ( 0 0.5 0.0 0 v sinφ, φ 0 (6.

More information

nsg02-13/ky045059301600033210

nsg02-13/ky045059301600033210 φ φ φ φ κ κ α α μ μ α α μ χ et al Neurosci. Res. Trpv J Physiol μ μ α α α β in vivo β β β β β β β β in vitro β γ μ δ μδ δ δ α θ α θ α In Biomechanics at Micro- and Nanoscale Levels, Volume I W W v W

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

ï ñ ö ò ô ó õ ú ù n n ú ù ö ò ô ñ ó õ ï

ï ñ ö ò ô ó õ ú ù n n ú ù ö ò ô ñ ó õ ï ï ñ ö ò ô ó õ ú ù n n ú ù ö ò ô ñ ó õ ï B A C Z E ^ N U M G F Q T H L Y D V R I J [ R _ T Z S Y ^ X ] [ V \ W U D E F G H I J K O _ K W ] \ L M N X P S O P Q @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ r r @ @

More information

17 3 31 1 1 3 2 5 3 9 4 10 5 15 6 21 7 29 8 31 9 35 10 38 11 41 12 43 13 46 14 48 2 15 Radon CT 49 16 50 17 53 A 55 1 (oscillation phenomena) e iθ = cos θ + i sin θ, cos θ = eiθ + e iθ 2, sin θ = eiθ e

More information

<4D F736F F D F8DE98BCA8CA797A78FAC8E9988E397C3835A E815B82CC8A E646F63>

<4D F736F F D F8DE98BCA8CA797A78FAC8E9988E397C3835A E815B82CC8A E646F63> Â Â Ê fd Ê ÂÆÉ fê ÉÆÉÉÂ Ê ËÉd ÉÊ Â Ê ÈÉÂ fd Ê ÉÂ ÍÍ ÈÉÂ f Ê É ÍÍ ÈÉÂ fâd sâ u sê Ês Ê ÇÉÆÉÉÂ Ê ÍÍ ÊÆ É Ê É ÍÍ ÈÉÂ Ê fê ÉÂ É ~u ÊECTT[QXGTÊ ÂÆÍÆÊ Ñ Ñ É ÎsÆËÇ Ê ÉÆÉÉÂ fêæéâd fê ÌÍ Ê ÉÆÍ É ÇÊ ÊÊÇÉÉÂ Ê fê

More information

nsg04-28/ky208684356100043077

nsg04-28/ky208684356100043077 δ!!! μ μ μ γ UBE3A Ube3a Ube3a δ !!!! α α α α α α α α α α μ μ α β α β β !!!!!!!! μ! Suncus murinus μ Ω! π μ Ω in vivo! μ μ μ!!! ! in situ! in vivo δ δ !!!!!!!!!! ! in vivo Orexin-Arch Orexin-Arch !!

More information

* 1 2014 7 8 *1 iii 1. Newton 1 1.1 Newton........................... 1 1.2............................. 4 1.3................................. 5 2. 9 2.1......................... 9 2.2........................

More information

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B 9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A

More information

統計学のポイント整理

統計学のポイント整理 .. September 17, 2012 1 / 55 n! = n (n 1) (n 2) 1 0! = 1 10! = 10 9 8 1 = 3628800 n k np k np k = n! (n k)! (1) 5 3 5 P 3 = 5! = 5 4 3 = 60 (5 3)! n k n C k nc k = npk k! = n! k!(n k)! (2) 5 3 5C 3 = 5!

More information

- 1 -

- 1 - - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - - 20 - - 21 - - 22 - - 23 - - 24 - - 25 - - 26 - EC NEC - 27 - NEC - 28 - R NEC

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi I (Basics of Probability Theory ad Radom Walks) 25 4 5 ( 4 ) (Preface),.,,,.,,,...,,.,.,,.,,. (,.) (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios,

More information

I 1 V ( x) = V (x), V ( x) = V ( x ) SO(3) x = R x: R SO(3) Lorentz R t JR = J: J = diag(1, 1, 1, 1) x = x + a Poincarré ( ) 2

I 1 V ( x) = V (x), V ( x) = V ( x ) SO(3) x = R x: R SO(3) Lorentz R t JR = J: J = diag(1, 1, 1, 1) x = x + a Poincarré ( ) 2 III 1 2005 Jan 30th, 2006 I : II : I : [ I ] 12 13 9 (Landau and Lifshitz, Quantum Mechanics chapter 12, 13, 9: Pergamon Pr.) [ ] ( ) (H. Georgi, Lie algebra in particle physics, Perseus Books) [ ] II

More information

86 6 r (6) y y d y = y 3 (64) y r y r y r ϕ(x, y, y,, y r ) n dy = f(x, y) (6) 6 Lipschitz 6 dy = y x c R y(x) y(x) = c exp(x) x x = x y(x ) = y (init

86 6 r (6) y y d y = y 3 (64) y r y r y r ϕ(x, y, y,, y r ) n dy = f(x, y) (6) 6 Lipschitz 6 dy = y x c R y(x) y(x) = c exp(x) x x = x y(x ) = y (init 8 6 ( ) ( ) 6 ( ϕ x, y, dy ), d y,, dr y r = (x R, y R n ) (6) n r y(x) (explicit) d r ( y r = ϕ x, y, dy ), d y,, dr y r y y y r (6) dy = f (x, y) (63) = y dy/ d r y/ r 86 6 r (6) y y d y = y 3 (64) y

More information

34号 目 次

34号 目 次 1932 35 1939 π 36 37 1937 12 28 1998 2002 1937 20 ª 1937 2004 1937 12 º 1937 38 11 Ω 1937 1943 1941 39 æ 1936 1936 1936 10 1938 25 35 40 2004 4800 40 ø 41 1936 17 1935 1936 1938 1937 15 2003 28 42 1857

More information

1. 2. C2

1. 2. C2 2000 7 6 (I) (II) ( 47, 1999) C1 1. 2. C2 1 ˆk AIC T C3 1.1 ( : 3 ) Y N ( µ(x a,x b,x c ),σ 2) µ(x a,x b,x c )=β 0 + β a x a + β b x b + β c x c x a,x b,x c α α {a, b, c} Θ α = {(σ, β) σ >0,β i =0,i α

More information

202mk5_OM-J_RevD

202mk5_OM-J_RevD D01053901D 202@^ Double Auto Reverse Cassette Deck 2 TASCAM 202MKV á á á è í ì ì ó í í è ì ó í á TASCAM 202MKV 3 @V @V 4 TASCAM 202MKV TASCAM 202MKV 5 6 TASCAM 202MKV 1 2 3 4 5 6 7 8 9 0 q w e r ø t º

More information

10:30 12:00 P.G. vs vs vs 2

10:30 12:00 P.G. vs vs vs 2 1 10:30 12:00 P.G. vs vs vs 2 LOGIT PROBIT TOBIT mean median mode CV 3 4 5 0.5 1000 6 45 7 P(A B) = P(A) + P(B) - P(A B) P(B A)=P(A B)/P(A) P(A B)=P(B A) P(A) P(A B) P(A) P(B A) P(B) P(A B) P(A) P(B) P(B

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 単純適応制御 SAC サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/091961 このサンプルページの内容は, 初版 1 刷発行当時のものです. 1 2 3 4 5 9 10 12 14 15 A B F 6 8 11 13 E 7 C D URL http://www.morikita.co.jp/support

More information

On a branched Zp-cover of Q-homology 3-spheres

On a branched Zp-cover of Q-homology 3-spheres Zp 拡大と分岐 Zp 被覆 GL1 表現の変形理論としての岩澤理論 SL2 表現の変形理論 On a branched Zp -cover of Q-homology 3-spheres 植木 潤 九州大学大学院数理学府 D2 December 23, 2014 植木 潤 九州大学大学院数理学府 D2 On a branched Zp -cover of Q-homology 3-spheres

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

1

1 016 017 6 16 1 1 5 1.1............................................... 5 1................................................... 5 1.3................................................ 5 1.4...............................................

More information

2 σ γ l σ ο 4..5 cos 5 D c D u U b { } l + b σ l r l + r { r m+ m } b + l + + l l + 4..0 D b0 + r l r m + m + r 4..7 4..0 998 ble4.. ble4.. 8 0Z Fig.4.. 0Z 0Z Fig.4.. ble4.. 00Z 4 00 0Z Fig.4.. MO S 999

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 通信方式第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/072662 このサンプルページの内容は, 第 2 版発行当時のものです. i 2 2 2 2012 5 ii,.,,,,,,.,.,,,,,.,,.,,..,,,,.,,.,.,,.,,.. 1990 5 iii 1 1

More information

untitled

untitled .m 5m :.45.4m.m 3.m.6m (N/mm ).8.6 σ.4 h.m. h.68m h(m) b.35m θ4..5.5.5 -. σ ta.n/mm c 3kN/m 3 w 9.8kN/m 3 -.4 ck 6N/mm -.6 σ -.8 3 () :. 4 5 3.75m :. 7.m :. 874mm 4 865mm mm/ :. 7.m 4.m 4.m 6 7 4. 3.5

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

3/4/8:9 { } { } β β β α β α β β

3/4/8:9 { } { } β β β α β α β β α β : α β β α β α, [ ] [ ] V, [ ] α α β [ ] β 3/4/8:9 3/4/8:9 { } { } β β β α β α β β [] β [] β β β β α ( ( ( ( ( ( [ ] [ ] [ β ] [ α β β ] [ α ( β β ] [ α] [ ( β β ] [] α [ β β ] ( / α α [ β β ] [ ] 3

More information

研修コーナー

研修コーナー l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l

More information

CVMに基づくNi-Al合金の

CVMに基づくNi-Al合金の CV N-A (-' by T.Koyama ennard-jones fcc α, β, γ, δ β α γ δ = or α, β. γ, δ α β γ ( αβγ w = = k k k ( αβγ w = ( αβγ ( αβγ w = w = ( αβγ w = ( αβγ w = ( αβγ w = ( αβγ w = ( αβγ w = ( βγδ w = = k k k ( αγδ

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980 % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2006.11.20 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

mains.dvi

mains.dvi 8 Λ MRI.COM 8.1 Mellor and Yamada (198) level.5 8. Noh and Kim (1999) 8.3 Large et al. (1994) K-profile parameterization 8.1 8.1: (MRI.COM ) Mellor and Yamada Noh and Kim KPP (avdsl) K H K B K x (avm)

More information

CKY CKY CKY 4 Kerr CKY

CKY CKY CKY 4 Kerr CKY ( ) 1. (I) Hidden Symmetry and Exact Solutions in Einstein Gravity Houri-Y.Y: Progress Supplement (2011) (II) Generalized Hidden Symmetries and Kerr-Sen Black Hole Houri-Kubiznak-Warnick-Y.Y: JHEP (2010)

More information

<45532D C8D5CEC4B0E6CBB5C3F7CAE92E504446>

<45532D C8D5CEC4B0E6CBB5C3F7CAE92E504446> ES-800II ES-800sII ÊÈÌÊ ÉÆÇÈÆÌÈÂ ÇÊÉËÊÑÑ zsi (6V,, ÎÆyÆÇ ÌÈÉwÊÆÍÇ ÇÊwÊÊÂÊhÉÊÇÊÊÊÉÆÉv ÈÉÆÍÌÈÂ ÊÉ~ÈÉÇÍiÊÎÈÂÐ ÔÎÊÊÂÊÊ ~ÈÍÇÉÎÊvvÈÍÉÌÊÉÈÂ ÊhÎÊÇuÆÉÉÇÂÍÍÊÇÆÉÉÇÉÌÊÎÌÉ ÆwÌÇÉÈÆÂÆwÌÊÊÉÉÊÂÊ}ÇÊÈÉÇÉÈÆÂ ÇÊwÊÂÑÏÔÉÈÂÏÔÑÕ

More information

第86回日本感染症学会総会学術集会後抄録(I)

第86回日本感染症学会総会学術集会後抄録(I) κ κ κ κ κ κ μ μ β β β γ α α β β γ α β α α α γ α β β γ μ β β μ μ α ββ β β β β β β β β β β β β β β β β β β γ β μ μ μ μμ μ μ μ μ β β μ μ μ μ μ μ μ μ μ μ μ μ μ μ β

More information

大学等における社会人の受け入れ状況調査

大学等における社会人の受け入れ状況調査 1 1 2 3 4 - - - - - - 6 8 6 2001 30 7 6 3 30 8 6 1 4 3,6,9,12 4 1 1 E 1 3 13 15 4 3 1 ( ) 8. 6 14 8 6 2002 8 8 3 7 60 1 4 4 32 100 12

More information

2 94.3 91.3 5.1 7.5 0.0 0.0 0.1 0.5 0.6 0.1 0.1 0.4 21.4% 15.8% 14.8% 15.0% 16.0% 16.5% 0.5% 16.1% 15.2% 16.9% 15.7% 17.1% 18.6% 0.4% 21.4% 15.8% 14.8

2 94.3 91.3 5.1 7.5 0.0 0.0 0.1 0.5 0.6 0.1 0.1 0.4 21.4% 15.8% 14.8% 15.0% 16.0% 16.5% 0.5% 16.1% 15.2% 16.9% 15.7% 17.1% 18.6% 0.4% 21.4% 15.8% 14.8 15 7 8,000 15 4 1 0 5 15 4 2 15 10 1 15 4 1 6 11 4,500 3,500 16 26 35 27 34 16 2 19 16 2 24 16 3 15 1 2 94.3 91.3 5.1 7.5 0.0 0.0 0.1 0.5 0.6 0.1 0.1 0.4 21.4% 15.8% 14.8% 15.0% 16.0% 16.5% 0.5% 16.1%

More information

,, Mellor 1973),, Mellor and Yamada 1974) Mellor 1973), Mellor and Yamada 1974) 4 2 3, 2 4,

,, Mellor 1973),, Mellor and Yamada 1974) Mellor 1973), Mellor and Yamada 1974) 4 2 3, 2 4, Mellor and Yamada1974) The Turbulence Closure Model of Mellor and Yamada 1974) Kitamori Taichi 2004/01/30 ,, Mellor 1973),, Mellor and Yamada 1974) Mellor 1973), 4 1 4 Mellor and Yamada 1974) 4 2 3, 2

More information

176 B B.1: ( ) ( ) ( ) (2 2 ) ( ) ( ) ( ) (quantitative nondestructive evaluation:qnde) (1) X X X X CT(computed tomography)

176 B B.1: ( ) ( ) ( ) (2 2 ) ( ) ( ) ( ) (quantitative nondestructive evaluation:qnde) (1) X X X X CT(computed tomography) B 1) B.1 B.1.1 ( ) B.1 1 50 100 m B.1.2 (nondestructive testing:ndt) (nondestructive inspection:ndi) (nondestructive evaluation:nde) 175 176 B B.1: ( ) ( ) ( ) (2 2 ) ( ) ( ) ( ) (quantitative nondestructive

More information

œ 2 É É

œ 2 É É 2 œ 4 10 20 ò 32 É 36 40 43 48 51 53 É QA 57 59 œ 2 É É Bio BioBio JubJub PichPich É É IEAFO É The KINGYO É ACEPÉ 3 É DIY É ÉÉÉ É É 4 É É É 5 ÉDIY É IC IC IC IC IC IC IC IC É ò 6 7 Á Å ÅÅ É Á Èh Èh Èh

More information