3 6 I f x si f x = x cos x + x x = x = /π =,,... x f x = f f x = f..4. [a, b] f a, b fb fa b a c.4 = f c, a < c < b.5. f a a + h θ fa + h = fa + f a +

Size: px
Start display at page:

Download "3 6 I f x si f x = x cos x + x x = x = /π =,,... x f x = f f x = f..4. [a, b] f a, b fb fa b a c.4 = f c, a < c < b.5. f a a + h θ fa + h = fa + f a +"

Transcription

1 I 6 I. I. f a I 3. fx = fa I a. fx fx 45 + I f I I I I f I a 6 fx fa. x a f a f a I I 7.. f a f a F, G F x = α, Gx = β F x ± Gx = α ± β, F xgx = αβ * 5 /5 5 5 a iterval; a ope a closed iterval. a fuctio. 3 cotiuous; a cotiuous fuctio. 4 it; right-had it; left-had it. 5 IV 6 differetiable; the differetial coefficiet; the derivative. 7 a theorem; a corollary; a propositio; a lemma; a proof. 8 fx fa fx fa = x a fx fa = x a fx = fx fa + fa x a x a = f a =. = fx fa + fa = + fa = fa.... x x fx = x = x x <, gx = 3 x f g I f I x x f f x f : I x f x R f 9.3. I f x si fx = x + x x x =. 8 IV 9 derivative.

2 3 6 I f x si f x = x cos x + x x = x = /π =,,... x f x = f f x = f..4. [a, b] f a, b fb fa b a c.4 = f c, a < c < b.5. f a a + h θ fa + h = fa + f a + θhh, < θ <. h = θ h > f [a, a + h]..4 b = a + h fa + h = fa + f ch a < c < a + h c θ = c a/h a < c < a + h < θ < the mea value theorem I 6 4 h < [a + h, a].4 fa fa + h a a + h = fa + h fa h = f c a + h < c < a c h < c = a + θh < θ <.6. fx = x a = 9, b = = c c c > 9 = 3 +, 9 < c < c < = < 3.7. c < > 3 + > = > = < < 3.7 3, I I f x = f I I a a x I fx = fa x > a [a, x].4 fx fa x a = f c, a < c < x the square root. a approximatio. 3 a decimal fractio; the first decimal place.

3 5 6 I c a x I c I f c = fx = fa x < a [x, a].8. I F, G f 4 Gx = F x + C C F, G f F x = G x = fx Hx = Gx F x I H x =.7 I.9. a, b f a, b f a, b 5 a, b x, x x < x [x, x ].4 fx fx x x = f c a <x < c < x < b c f c > f c < x x > fx fx > fx fx < x < x fx < fx fx > fx f.. f f 6 f c 7 f c > c I f I f f c > c I f x > I IV 4 a primitive; a costat. 5 mootoe icreasig decreasig; positive; egative. 6 C - 7 c f I f c f c > c f.3 f f = / > I f.4 I-4.. [a, b] f c b a fx dx = b afc, a < c < b..4 IV.3. [a, b] f [a, b] I f c I 8 x I fx fc fx fc f I c I I c I 9 c I I = [a, b] c a, b I a, b I.4. I f I c f c f c = c I δ c δ, c + δ I f c 8 the maximum; the miimum. 9 a iterior poit f c = h fc + h fc h

4 7 6 I f c h < δ h fc + h fc fc + h fc h { < h < δ δ < h < h f c.5. [a, b] F a, b F a = F b F c =, c a < c < b F [a, b].3 c, c [a, b] F c c c, c a, b F c = F c F a, b F = c, c a, b c.4 F c =.4. F x = fx fa fb fa x a b a.5.6. [a, b] f, g a, b ga gb a, b g x c fb fa gb ga = f c g c, a < c < b. Michel Rolle 65-79; Fr; Rolle s theorem. Augusti Louis Cauchy , Fr;.4 ; Joseph-Louis Lagrage , It. I 6 8 F x = fx fa.5 I. fb fa gx ga gb ga I R f f f f f f 3 k k k I f k k f k k k f k f k x, d k dx k fx, d k y dx k. y = fx y.7. fx = x f k x =... k + x k k > f k x = fx = e x k f k x = e x. 3 fx = cos x k f k x = k cos x, f k+ x = k+ si x m f m x = cosx + mπ.8. I f I f C - 3 the secod derivative; k the k-th derivative.

5 9 6 I I f f C - I k f k f k C k - k C k - C f a I + a + h I h. fa + h = fa + f ah + f ah + +! f ah + R + h = j= j! f j ah j + R + h, R + h = θ 5 [, ] f k a + th F t := t k h k k! h+ +! f + a + θh, < θ < + t + fa + h f k a h k k! F = F = fa+h.5 I-9.. fx = x a = 9, h =, =.9 = , < θ < 9 + θ 4 Sir Brook Taylor , E 5. j = h h = I 6 θ θ, < = = = > = = = < < 3.64 = , 4,... I-.9.. f a, b I +.3 fb = fa + f ab a + f ab a ! f ab a + R +, a b c R + = b a+ f + c +!

6 6 I I I- 5. si., ta.. radia? I- IC 346.8km IC km I-3. I-4. I-5.3,, [, ] I I-7 6 fx, gx [a, a + h a, a + h g x a < x < a + h fa = ga = f x + g x I-8 si x x x ta x x, x + 5 x 3 x x fx + gx 5 x 3 x,. x + x I 6 I- α k α αα... α k + =, k k! α = α 7 k + x = + x + x + + x = k fx f k = k =,,..., fx I-. fx = x, a =, =. fx = e x, a =, = ;. fx = e x, a,. fx = cos x, a =, = ; = k k fx = si x, a =, = 3; = k k fx = ta x, a =, = 3. fx = ta x, a =, = 4 fx = log + x, a =, = 3; fx = + x α, a =, = 3; α I-. 3 I-3. fx = x a =, h =., =.9 R 3 h R 3 h. = 3 x k I Guillaume Fracois Atoie, Marquis de l Hôpital, 66 74, Fr; l Hospital 7 biomial coefficiets

7 II 6 4 II. II..9 R + h. I-, I-3.. fx a C + -. fa + h = fa + f ah + +! f ah + R + h R + h h h =....9 h. h h. f I := a δ, a + δ δ > C + - h < δ h a + h I f I C + - f + I.8.3 f + I I := [a δ, a + δ ] m m M := max{ m, m }.9 h I R + h := fa + h k! f k ah k = h+ +! f + a + θ h h θ h < θ h < a + θ h h I R + h h+ M, R + h +! h M h +! M h +! R +h h M h +!. h * 5 8 / remaider the pricipal terms max{a, b} a b.3. e x a bx x x a, b. fx = e x, a =, h = x, = e x = + x + R 3 x x + R 3 x, x x = e x a bx x = a x + b x + + R 3x x x X := a x + b = a + x b x x x a X x a = X = b/x b = a = b = e x x x x = x + R 3x x =..4. f, g. fx gx =.3 fx = o gx x a o o 34 gx x a. fx gx.3 3 Edmud Gerorg Herma Ladau; , De. 4 Ladau s symbol; o O

8 5 6 II x a fx gx 5 fx gx = o hx x a.4 fx = gx + o hx x a..5 II-4. fx = o x a fx = m, x m = ox x m > cos x = + ox x.6. fx = o gx x a. o gx x = ox, x 3 = ox x x x 3 =..7. fx a C fa + h = k! f k ah k + oh h f a I + a + h I h.9 R + h.6 R + h = h+! 5 order u f + a + uh du. II 6 6 x = a + h fx fa = x a f t dt = x a t x f t dt = [ t xf t ] x t=x t xf t dt t=a a x = f ax a t x f t dt a [ t x = f ] t=x x ax a f t x t + f t dt t=a a = f x x a t x ax a + f 3 a + f t dt 6 =... = k! f k ax a k +! k= t = ua + ux II. R + h : =! = x a x a+! t x f + t dt a x u f + ua + ux du a t x f + t dt.. h h.9. fx = e x a =, h = x,.9.7 e x = + x +! x + +! x + R + x, R + x = +! eθ x x + < θ <

9 7 6 II θ f II-5 < θ < e x x e θx x < x < < e x = e x x R + x e x x + =,,,.... +!. x R +x =.7 x.8 e x = + x +! x + 3! x3 + =. II-6. x.9. cos x =! x + 4! x4 6! x = si x = x 3! x3 + 5! x5 7! x = k! xk k k! xk, k k +! xk+... fx = log + x < x.9 a =, h = x k f k x = k+ k! +x k.9 log + x = x x + 3 x3 + + x + R +, x + R + = + + θx + < θ < θ x. R + x II 6 8 < x <.8 h := x < h < R + x + u + ux u = h + uh + du = u h+ uh du uh = h+ + du s hs ds. s = u/ uh s hs h < h <. R + h + s h ds h + = + h + h...3 log + x = x x + x3 3 = k= k+ x k < x k.3 x > x x > x f a C -.8. R h I h R h = h I.4 fa + h = fa + f ah +! f ah + = k! f k ah k f a 6.4 a = the Taylor expasio. 7 the Maclauri expasio; Coli Maclauri , Scotlad. 8.9 fa + h h fa + h

10 9 6 II y x y = e /x x > ; x y = e /x x < ; x..3..8,.9,.,.3 e x, cos x, si x, log + x.. a C - f a I.4 f a 9 f f C ω - C -.3. f e /x x > fx = x. fh f h + h fh f h.3 h e /h = h + h = h h = f fh f = = h h = u + ue u =, y x II 6 f x = x e /x x > x.. f f C - k P k e /x x >.5 f k x = x x P k t t P t =, P k+ t = t P k t P kt k =,,,... II-9 f C - x fx = k! f k x k = k! xk =, x > x fx > C - ±. e x x < gx = x.4. α k α αα... α k + = k >, k k! α = 9 real aalytic; a aalytic fuctio. C ω - of class C-omega. the biomial coefficiet

11 6 II.5 II-8. =, =, =, =,..., = k. k = 6,.... =, = 8, 3.6. k k k > k =.7. α k α + α α = +. k k k α α + = k k = = αα... α k + k! + αα... α k + k! αα... α k + k + α k + k! α + αα... α + k + k! = α + k.8. α α α α + x α = + x + + x + ox x o.4 fx = + x α f k x = αα... α k + + x α k.7 C k k α α C k. II 6.8 x I- α I α + x α = + αx +.. II.3 + x = x k = k α x + = α x k < x <. k k x k < x <... x x /! = x N < x N N > N x! = xn N! = xn N! N + N x N N N... N + xn N! N + N N N N = C N + N + C := xn N! N N + < N/N + <.. P x P x x + e x =. N

12 3 6 II II 6 4 P x N.9 fx = e x, a =, h = x >, = N + e x = + x +! x + + θ < θ < N +! xn+ + eθx N +! xn+ N +! xn+. P x = p N x N + p N x N + + p x + p p N x > P x N +! P x e x = x N+ N +! x p N + pn + + p x + x x N.3. a I a I \{a} = {x I x a} f + fx = A II- II- fx = A, II fx = A fx x fx = fa + f ax a + +! f ax a = k! f k ax a k. fx = x 5 3x 3 + x x + 4 f + f. a =, a = e x x. x x x cos x + x x 4. x si x x x 3. x 3 ta x 3x x 3 x 5. II-3 II-4 II-5 II-6 II-7 II-8 II-9 log + x x + x. x x 3 x si x ta x x 3. si x x x ta 3 x. a, b.5 ta x a si x + bx. x x 5 e fx = e x.9 fx = e x, a =, h =, = e θ < e < θ <.6 < e < 3 3 e e = m/ m, 4.9 fx = e x,a =, h = 5! 6.9,. cos X, si X cosh x, sih x x =.5.3.5

13 III 6 6 III. III. I f a x fx fa fx fa 3.. fx = x 4 x = R C - k f k = e / x x fx = x = II.3 x = 3.3. f a ε f < x a < ε x fx < fa fx > fa a x fx < fa fx > fa 3.4. fx = x x = f x = x fx = x =. fx = x 3 3x x = x = * 6 5 /8 6 8 the maximum the miimum. a maximal; a local maxima; a miimal; a local miima: a extremal f x = a C - 3 A. fx x = a f a = B. A f a fx x = a C. f a =, f a > f a < fx x = a 3.6. fx = x 3 3x f x = 3x x + f x = x = x = 3.5 B, f f x = 6x f >, f < 3.5 C fx x =, x = A fx = x C B m = f a m >. m = f a R h fa + h = fa + mh + R h = h h R h h mh h fa + h fa mh h 4 m > h > h < h fa + h > fa h > ; fa + h < fa h < 3 A, B f a C f 4

14 7 6 III ε < h < ε fa+h > fa, < h < ε fa + h < fa f x = a 3.5 B m > R h/mh h δ h < δ m > R h mh < III 6 8 R 3 h h mh h fa + h fa mh h m > h h fa + h > fa fx x = a m < h < δ m h < R h < m h III. h < δ mh m h < fa + h fa < mh + m h < h < δ h = h fa + h fa > mh mh = mh >, > h > δ h = h fa + h fa < mh + m h = mh < ε h < ε fa + h fa 3.5 C m = f a m > f a =, f a = m fa + h = fa + mh + R 3 h h R 3 h h = R R := {x, y x, y } = {x, y x, y R} =. a, b R ε U ε a, b = {x, y R x a + y b < ε } a, b ε- 5 R U a, b A ε U ε a, b A R U 6 P, Q A U R ε- a ε-eighborhood a ope set. 6 coected; pathwise coectedess R 7 a domai.

15 9 6 III D R f a, b D ε x, y U ε a, b x, y a, b fx, y < fa, b fx, y > fa, b , f x, y = a, b C - 3. fa + h, b + k = fa, b + f f a, bh + a, bk x y + f x a, bh + f x y a, bhk + f a, bk + R y 3 h, k R 3 h, k h,k, h + k = a, b h, k F t = fa + th, b + tk F [, ] C - F.9 F = F + F + F + 3! F θ < θ < θ 8 F = fa + h, b + k = fa, b, F = f f a, bh + a, bk x y F = f x a, bh + f x y a, bhk + f a, bk y F θ = 3 f x 3 h f x y h k f x y hk + 3 f y 3 k3 8 the chai rule, 3., 4 III 6 3 a + θh, b + θk f C - f 3 f h,k, x a + θh, b + θk = 3 f a, b 3 x3 h, k = r cos t, r si t r > h, k, r 3 f x 3 a + θh, b + θk h 3 h + k F θ = 3 f x a + θh, b + θkr 3 cos3 t h,k, F θ/h + k = f 3. h, k 3. fa + h, b + k = fa, b + f f a, bh + x y a, bk + R h, k, h,k, R h, k h + k = h, k f f h h a, b, a, b = dfa, bh h = x y k k dfa, b = f x a, b, f y a, b a, b f 9 h, k fxx a, b f xy a, b h 3.3 h, k = t h Hess fa, bh, f yx a, b f yy a, b k fxx a, b f xy a, b Hess fa, b := f yx a, b f yy a, b 9 the total differetial 3

16 3 6 III t h h Hess fa, b f a, b 3.. R D C - f a, b D f x a, b = f a, b = y f a, b ε h +k < ε fa + h, b + k > fa, b h < ε fa + h, b > fa, b F h := fa + h, b h = 3.5 F = f x a, b Gk = fa, b + k f y a, b = 3.. R D C - f a, b D := f x a, f b y A := f a, b x f x a, b = f a, b = y f a, b a, b x y = det Hess fa, b, > A > fx, y x, y = a, b > A < fx, y x, y = a, b < fx, y x, y = a, b 3 a symmetric matrix. the Hessia matrix; Hesse, Ludwig Otto, 8 874, de. III h k φh, k := Ah + Bhk + Ck A, B, C h, k, φh, k > A > AC B > h, k, φh, k < A < AC B > φ AC B < AC B = φ φ = h, k, A h + B A k + AC B k A A φh, k = C k + B C h + AC B h C C Bhk A = C = fa + h, b + k fa, b = φh, k + R3h, k, R 3h, k h,k, h + k = A := f xxa, b, B := f xya, b, C := f yya, b φh, k := Ah + Bhk + Ck h + k R 3 h, k φh, k fa + h, b + k fh, k φh, k 3.3

17 33 6 III III.3 R D C - f x = t x,..., x fx fa + h = fa + dfah + t h Hess fah + R 3 h, f dfa = a,..., f a, x x f x a... f a x x Hess fa = f f a... x x x a R 3h h h = 3.4. f a dfa = dfa = Hess fa f a dfa = Hess fa f a x,..., x φx,..., x = a ij x i x j i,j= III 6 34 x i x j = x j x i a ij a ji φx,..., x = a ij x i x j, a ij = a ji. i,j= x = t x,..., x A = a ij 3.5 φx = t xax A A φ 3.5. A A P µ... t µ... P AP =.. t P P = E = µ µ,..., µ A 3.5 X = t X,..., X := t P x φ = µ X + + µ X N µ,..., µ x φx > 3.5

18 35 6 III µ,..., µ x φx < 3.5 µ,..., µ φx III III 6 36 x, y 3. fx, y x, y = /3, /3 /7 III- fx, y = ax + by e x y a, b 74 III- III-3 fx, y = x 4 + x y + y 4 x 3 + y 3 R D 3 f f xx D f D III- fx = x 4 x = 3. III- C - f x = a... f x = a 3. 3 fx = x x = 3.4 fx = x 4 x f III A B 3.7 III-4 III-5 III-6 III-7 III C 3.7 fx = x 4 + px 3 + qx p, q 3 f x = B m < 3.5 C 3.5 f a =, f a = R R, {x, y R y > }, {x, y R y }, {x, y R x + y }, {x, y R x + y < } III-9 III- 3.3 fx, y = x 3 xy + y 3 f xx, y =, f yx, y = x, y 3

19 IV 6 38 IV. IV. x x x = x, x < x = x x x x, y 4. x, x x, x = x, x = x, xy = x y a δ 4. x a < δ a δ < x < a + δ. 4.. x, y a x + y x + y, b x y x y. x, y =, x, y, 4. x + y x + y x + y + x + y = x + y x + y x + y + x + y > a a = x + x y + y x + y = xy xy x = y + x y y + x y, y = x + y x x + y x = x + x y b {a, a, a,... } {a } {a } 4.. {a } α ε N 3 N a α < ε * 6 4 /9 the triagle iequality. AB + BC AB + BC {a } α A sequece {a } coverges to α. diverge 3 a = α a α α {a } {a } 4.3. {a } 4 M N N a > M a < M a = {a } M a M 5 {a } α N N a α a 3 {a } {/a } : {a } α 4. ε N a α < N N M := max{ a, a,..., a N, α, α + } 6 M : 4. ε α/ > N a α < α/ N N 3: ε 4.3 M /ε N a > /ε N N /a < ε 4.5. c a = c {a } c {a } α {b } β a a a + b α + β, b a b αβ, c α b β β : ε N = N a c = c c = < ε a N, N N a α < ε N b β < ε N = max{n, N } N 4. 4 to diverge to the positive egative ifiity. 5 {a } 6 max{... } {... }

20 39 6 IV IV 6 4 a + b α + β = a α + b β IV. a α + b β < ε + ε = ε. b 4.4 a M M ε N a α < ε ε, b β < N β M β = a b αβ = a b a β + a β αβ = a b β + βa α c b /b /β 4.4 N N b β/ b β N b β < β ε/ N N = max{n, N } 4.6. {a }, {b } α, β a b α β {a }, {b }, {c } a c b {a }, {b } α c = α 3 {a } { a } {a } 4 {a }, {b } a b {a } {b } : β < α ε := α β/3 N a α < ε N b β < ε N, N N = max{n, N } ε α ε < a N b N < β + ε 3 α + β 3 3 β + α α β. 3 : a α c α b α c α max{ a α, b α } =,,,... {a }, {b } α ε N N a α < ε, b α < ε N N c α < ε 3: a a a 4: M N a > M N N N b a > M 7 R A R x A x M x M M 8 M A 4.7. A A 9 sup A if A 4.8. α A x A x α a < α a < x α x A α A α a A 4.9. A M A M A Q 4. A := {x Q x < } = ,.4,.45,.443,.44,... A Q 7 the set of real umbers. 8 bouded; bouded from above; bouded from below. 9 the supreimum, the ifimum. cotiuity of real umbers. a axiom

21 4 6 IV {a } {a } a j a j+ a j a j+ j =,,, {a } 4. {a } α a α 4.8 ε α ε < a N N 4.8 > N α ε < a N a α a α < ε {a } α 4.3. {} {} 4. α 4. ε N α < N α < < α + N M M < 4.5. = + = M 4.4, N > M N N M < N < {} I = [α, β] {p } < <... {p j } j= I Archimedes, B.C. 87 B.C.; Gr. 3 IV 6 4 k Q j := {p j, p j+,... } 4. q j := sup Q j Q j+ Q j q j+ q j Q j α q j α {q j} 4. γ {p } γ = j j Q j + q j + p m > q j + /j m m j + m j+ q j+ /j < p j γ {q j +} {q } γ j {p j } γ IV I a I f x a α ε δ < x a < δ x I fx α < ε fx = α fx α x a ε δ 5 < x a < δ x I fx α < ε x a f α fx = α + II a I a I \ {a} = {x I x a} f fx = α, + fx = α fx = α ε δ, δ < x a < δ fx α < ε δ < x a < fx α < ε δ = mi{δ, δ } < x a < δ fx α < ε 4 ε-δ Augusti Louis Cauchy, Fr

22 43 6 IV 4.9. I a f x a α δ < x a < δ x I fx > 4.7 ε = α/ < x a < δ x I fx α < α δ < x a < δ fx α > α, fx > α >. 4.. I a I f x a M δ < x a < δ x I fx > M fx = + fx + x a b, + f x + α fx = α x + ε m > b x > m x I fx α < ε 3 b, + f x + fx = + x + M m > b x > m x I fx > M x 4.. I a I I \ {a} f fx = α a = a, a I \ {a} =,,,... {a } fa = α fx α x a {a } fa α ε fx α < x a < δ fx α < ε δ a a δ N a a < δ IV 6 44 N a a N N < a a < δ fa α < ε ε fa α fx = α {a } fa α ε δ < x a < δ fx α ε x {a } fa α ε δ = / < a a < fa α ε a {a } fa α ε {fa } α f x a α {a } 6 IV.4 a = a, {fa } α I f I a fx = fa I I f a C -. f a > f I a I C - f x f x = f a > 4.9 < x a < δ f x > δ.9 f a δ, a + δ a {a } {fa } α {fa } α {a }

23 45 6 IV I = [α, β] f I f Y := {fx α x β} A y y Y y Y y = fx x [α, β] 4.6 {x j } γ [α, β] j y j = fx j j + j + 4. f fx j fγ f Y η := sup Y 4.8 x [α, β] fx η, η / < y = fx x [α, β] {x } γ [α, β] {x j } 4.6 η j η = j j fx j j η = η. fγ = j fx j = η f γ IV [α, β] f fα <, fβ > fγ =, α < γ < β γ Y := {x [α, β] fx } γ = sup Y γ x Y γ / < x γ {x } γ 4. fx fγ x Y fx < 4.6 fγ γ < β fγ < 4.9 f γ δ < x < γ + δ fx < δ γ x x Y γ fγ = 7 the itermediate value theorem. IV P, Q, R 9 P Q P Q P Q P Q P P P Q P Q 4.3 P Q P Q.. P Q P Q P Q P Q P Q P Q. x P x, Qx x P x x P x P x x x P x ad x P x or ad, or. x P x x P x x P x x P x. P = {a } α {a } α 4. P ε [ N { N a α < ε }] 8 de Morga s laws; Augustus de Morga, 86 87, 9 true; false P Q P ad Q; P Q P or Q; P ot P ; P Q P implies Q.

24 47 6 IV IV 6 48 IV- IV- IV-3 P ε [ N { N a α ε }] {a } α ε N N a α ε fx = α ε δ < x a < δ fx α ε x IV r {r } r > r = 3 < r < 4 r I- + = = 9 {p } a := p + p + p + + p = p k k =,,,... {a } p.p p p 3... IV-4 IV-5 IV-6 IV-7 IV-8 IV-9 IV- s { s } s > s = 3 s < {a } 4. a = + =,, 3,.... e I a I \ {a} f, g x a α, β fx fx + gx α + β, fxgx αβ, gx α β β α c f x α si x fx = x c x = f f 3 f α c = α c 4.6 c α f [a, b] Y := [fa, fb] y Y fx = y x [a, b] y fi R Y y fx = y x R f f f f fi 4.5 fγ = η = sup Y f γ

25 V 6 5 V. V. {a } 5. a + a + a + = s = a k = a + a + + a =,,,... {s } {s } {s } c 5. c = a + a + = {a } {p } q = p + =,,,... {q } V- 5. {s } {t = s +} c = c c = t s = t s = a + = a {a } 4 5. * 6 9 / a series; a ifiite series; 5. a j + 5. s a IV a a = s := = k= k m m m m s s m = k = l k k= l= k= l m l m l = l= k= l l= l l = m. m {s } r r r < r = r < r IV- r {r } 5.3 r < IV- r k = r+ r r. {a } a the harmoic progressio; a geometric progressio ; a arithmetic progressio. 7 a oegative-term series;

26 5 6 V 5.6. {a }, {b } a b b a a s := b a k, t := s t =,,,... : b β t β s t β {s } s : a {s } 4.6 {t } N a b 5.8. p 5.3 p = + p + 3 p = p 5.3 p < fx = x x : p p = / b k V 6 5 p : p k= p = =. kk = = < p < : p = q q, p+ p+ = q q = q + q.9 θ, + q = + q qq + + θ q + + q q q q = + q + < q <, p q p+ p+ p < k p+ k p+ = p+ q q q k= q q + q 8 9 p = = π Leohard Euler, , Sz. / 5.7 a alteratig series.

27 53 6 V 5.9. {q } a = q =,,,... a = q = q q + q q q = q > s := a j a j := s j, b j := s j b j a j = s j s j = j q j = q j > a j+ a j = s j+ s j = j+ q j+ + j q j = q j q j+ b j+ b j = s j+ s j = q j+ q j+, a < b b... b {a } 4. α {b } β β α = b a = b a = q = α = β ε N j N a j α = s j α < ε, b j α = s j α < ε N = N N s α < ε {s } α = +. =..3 x = log V-4 V = + = π. 4 {[a, b ]} V = 3 + VI V = 9 3π + 3 log. {a } A := {a, a +,... } = {a k k } =,,,..., a + := sup A, a := if A =,,, {a } a + = + =,,,... {a } {a + } 3 {a } {a } {a + } : {a,..., a } A A a + = + : {a } A a + A A + a + A + a + + a+ 3: {a } α α a a + α =,,,... {a + } {a } 5.. {a } 5.5 {a + } {a } + 4. sup a := a+, if a := a {a } 3 3 the it superior; the it iferior sup if

28 55 6 V 5.3. { + } { } 5.4. α {a } ε N N a < α + ε ε N m N α ε < a m m 5.5 {a + } α ε > N a + α < ε N a + N < α + ε N a sup A N = a + N ε N a + N = sup AN a+ N ε x x A N 4.8 A N 5.4 x = a m m N m α, ε > m N a + m α < ε/ N N N a + = sup A 4.8 a + ε/ < a m m m a + ε < a m α + ε, a+ α < ε α ε < a m m m a m A a m sup A = a + α ε < a m a + α a + < ε a + α < ε ε N a + α 5.5. {a } {a } α β β = α ε N N a α + ε a β < ε ε < a β α β + ε ε < α β. ε, N α ε < am m N α β ε < am β < ε α β < ε. α β < ε ε ε = /m m m α = β β α 5.4 ε > N N a α + ε, α ε a N N a α ε < ε {a } α V {a }, {b } a = α >, sup b = β supa b = αβ. {a b } αβ 5.4 {,. : ε ε ε = mi, } ε α+ β a α N a α < ε N β = sup b 5.4 N b < β + ε N N = max{n, N } N a b < α + ε β + ε αβ + α + β ε + ε αβ + ε. { } : ε ε ε = mi, ε, α N 4α β 3 a α < ε N 3 N 5.4 m max{n, N 3 } m β ε < b m αβ ε < a m b m α > a m b m αβ + ε a m β ε αβ + ε a m αβ a m ε + ε a m α β α + ε ε + ε ε β αε + ε > {p } 4 ε N m, N m, p m p < ε 5.8. {p } p ε N p p < ε N m, N p m p = p m p p p p m p + p p < ε + ε = ε. 4 a Cauchy sequece.

29 57 6 V 5.9. {p } 5.7 ε = m, N p m p < N m = N N p p N < k p k M M = max{ p, p,..., p N, p N + } V-7 5. {p } 5.9 α := if p, α + := sup p k m, N p m p < /3k N α N p < α + + /3k N m N α + /3k < p m m α N 3 p > α /3k N 3 m N 3 α + /3k > p m m N = max{n, N, N 3 } m, m N m, m α + < pm < α+ + 3k 3k, α 3k < p m < α + 3k p m p m < /3k α + α < k k α + = α 5.5 {p } 5.. a ε N N m +m a k < ε. k= 5. V a a a 5. N N m N N +m a k k= +m k= 5. a a k < ε. +m k= a k < ε a a a 5.6. {a }, {b } N a b N b a a {a } N a cr c r < r < a {a } N a c p c > p < a absolute covergece; to coverge absolutely. 5.4

30 59 6 V VI 5.9. {a } α := sup a α < a α > a α < ε := α/, r := +α < 5.4 N a α + ε = r N a r 5.7 a α > ε = α / >, r = + α/ > N N a > α ε = r a > {a } 5. a α = 5.8 α = V coditioal covergece; to coverge coditioally. V 6 6 V V- a a = a = a V- {p } c q = p + =,,,... {q } c 4. V V = = ta x V-5 r a = r =,,,... r < {a } r = /+h h > +h +h+ h. r {a } 3 a V-6 = + +, = log. V-7 V-8 {a } α = a +/a α < a α > a α = V-9 r < r > p r. p = α r. α

31 VI 6 6 VI. {a } x 6. a x = a + a x + a x +... x 6. I x I 6. fx = a x, x I = {x R 6. }. II x 6. f.4 fa + h h f a x = a+h.4 fx = a x a a 6. VI x = r x < r x 6. x = r x > r x 6. * 6 6 / 9 a power series, 5. a r N N a r < N a x = a r x r ρ ρ := x < r 5.7 a x x > r x x = r r := sup C, C := { x 6. } r r = + r r i ii x < r x > r 6. r = + x 6. r = x C, r i x < r r x = ε > 4.8 r ε < s s C s 6. x = r ε < s ii x > r x x + r/ > r r r i, ii ii r C i r C r = sup C the radius of covergece.

32 63 6 VI r sup a = r a x = x a sup a x = x sup a = x r. 5.9 α = x /r a = r a + r V a = x + x x 3 + = x. x x < x > a = sup a = sup =. 3 Cauchy, Augusti Louis, ; Hadamard, Jacques Salomo, d Alembert, Jea Le Rod; VI a = + = =. a + x + x x 3 + = x = + x x + x! + x3 3! + = x! x < 6.4 e x x +!x + 3!x 3 + =!x pt px 3 pt, qt p q x q x x3 3 + x5 5 x7 7 + = a = m= m x m+ m + = a x = m = m + ; m

33 65 6 VI a b + := sup{ k { } a k k } = sup k k, k k IV- sup a = b+ = = 6.4 s 3 s + 5 s + = m= m s m m s < s > s x x 6.5 x < x > ! x+,! x + si x, cos x. r 6. x = ±r 6. VI-3. x + x x 3 + = x x = ± x x + x3 3 x4 4 + = x x < x > x = log. x = 5.8 VI x = ± π 4 4 +x+ x + x3 3 + = x x = ± 5.8 VI I 6. I f f f 6.6 fx = f x x I; f x = a k x k r r, r J sup f f =. J J := [a, b] r, r δ := mi{r b, a r} > J [ r + δ, r δ] J J J = [ r + δ, r δ] x = r δ a r δ N a r δ N N x J f x fx = k=+ k=+ a k x k x r δ k=+ k ρ+ sup J f f a k x k = a k r δ k x k r δ k=+ ρ := x ρ r δ < 6.3. r 6. f r, r

34 67 6 VI α r, r fx = fα x α d := mi{r α, α + r} > α r + d, r d J := [ r + d, r d] ε 6. N N f x fx sup f f < ε J 3 N f N x α < δ f N x f N α < ε 3. δ δ x α < δ fx fα = fx f N x + f N x f N α + f N α fα f α x J. fx f N x + f N x f N α + f N α fα < ε 6., 3, 4 r r, r 6.3 α = ±r r x = r x = r 6. fx = fr fx = f r, fx := x r x r+ a x f r, r r > 6. f x r < x < r x ft dt = a x + a x + a a 3 x3 + = x. = 5 Abel, Niels Herik; VI f 6. x ft dt x x sup [ x,x] x f t dt = ft f t x dt ft f t dt ft f t dt sup ft f t x [ x,x] f x x x f t dt = k= a k k xk = = a x r > 6.6 f r, r 6.7 f x = a + a x + = 5.6 IV- sup + a + x r < x < r. a = sup a r g 6.5 x r, r x gt dt = a x = fx f f x = gx r < x < r = itegratio differetiatio by term ad term.

35 69 6 VI fx = x x3 3 + x5 5 x7 7 + =, x + + < x < f x = x + x 4 x 6 + = + x < x <. fx = x f t dt = x dt + t = ta x < x < x = = x + = + x ta x = π 4 x= 6.4 x r > x = rt r x = = r x = u u = 6.8. a x x = fx = X x {a } σ = fx := a x, X := a. a k = a + a + + a VI 6 7 {σ } 4.4 {σ X} 6.9 σ X A =,,,... A ε {σ } X M 6. M σ X < ε A 6. M 6. δ = ε 4M + A 6. M N > M + N a = σ σ < x < x N N N N a x = σ + σ σ x = σ + σ x σ x + = = N N = = x N σ x σ x + = N σ x x + + σ N x N = x N σ Xx + M = x σ Xx + N N =M+ Xx N + xx x + σ N x N M = x σ Xx + N =M+ σ x + σ N x N + σ N x N σ Xx σ Xx + X x xn x + σ N x N M N = x σ Xx + σ Xx =M+

36 7 6 VI + X + σ N Xx N. VI 6 7 VI < x < 6.9, 6., 6. N a x X M x σ X x + < xa M x + x N =M+ N =M+ σ X x ε 4 x + ε 4 xn xam + + x ε x N M 4 xm+ + ε x 4 x ε 4δ + ε 4 + ε 4. N fx X fx X ε 4 + x δ < x < < x < δ x + σ N X x N VI- VI- VI-3 VI-4 VI = = 5. 3 = x 3 + = dx + x = 3 9 3π + 3 log fx X 3 4 ε < ε ε > fx = X x

37 I I- fx = x, a = 4, b = = c, 4 < c < 5 c 5 = + c < + 4 = + 4 =.5, 5 > + 5 > +.5 = > + 5 =.. < 5 <.5 fx = si x, a =, b =..4 si. si. = cos c si. =. cos c < c <. c [, π] cos x si. =. cos c <. cos =., si. >. cos. =.. si. >.. =..99 >.99. < y < y > y.99 < si. <. si..9 fx = ta x, a =, b =..4 ta. si. = + ta c ta. =. + ta c < c <. c [, π] ta x ta. =. + ta c >. + ta =., si. <. + ta. <. +. =.. =... < ta. <. ta.. I- + x IC fxkm f I-3 x a/x a = / / /fa fa = / / / + X = X I-4 f [a, b] a x b x [a, x] x F x := ft dt a x b a F [a, b] b F x = fx, F a =, F b = fx dx a F.4 F b F a b a = F c a < c < b c c b fx dx = b afc a I-5 fx = x ; fx = x; fx = a < c < b. { x < x < x =, I-6.4 F x := fx fa fb fa x a f [a, b] b a a, b F F a = F b =.5 F c = a < c < b c c = F c = f fb fa c b a c.6 gb ga F x := fx fa fb fa gb ga gx ga f, g [a, b] a, b F F a = F b =.5 = F c = f c fb fa gb ga g c, a < c < b c g c c I-7 < u < h u f, g [a, a + u].6 f c u fa + u fa fa + u g = = c u ga + u ga ga + u, a < c u < a + u c u u + c u a + f x/g x + I-8, log 5 3, +.

38 I-9 t F F t := f k a + th t k h k k! + t + fa + h f k F F t : =. = = hf k+ a + th t k h k + k! f k a + th k t k h k k! + t fa + h f k+ a + th t k h k+ k! k= f k a + th t k h k k! + t fa + h f k+ a + th t k h k+ k! f k+ a + th t k h k+ k! + t fa + h = f + a + th t h +! + t fa + h f k a F = h k + fa + h k! F = fa + h f k a h k k! f k a h k k! f k a h k k! f k a h k k! f k a h k. k! f k a h k = fa + h k! F F θ =, < θ < θ θ F θ = + θ [ f + a + θh h + +! θ θ I- fx fx := + x k x k x = f = =. x = f x = + x f = m =,..., f m x =... m++x m k= ] f k a h k fa + h. k! k x k k = =. k=m f m =... m + mm... m kk... k m+ x k k m... m + =... m + m! =. m! f = f = = f = fx I- a + h = a + a h 8 a 3 h a+θh 5 h 3 < θ <. e h = + h + h + 6 eθh h 3 < θ <. e a+h = e a hk k! + ea+θh h + +! < θ <. cos h = k m m= m! hm + k h k cosθh < θ <. k! si h = k m m= m+! hm + k h k+ siθh < θ <. k+! ta h = h + h ϕθh < θ <. ϕt = t + t + 3t.

39 ta h = h h3 3 + θh +5θh 4 5+θh 5 < θ < log + h = h h + h3 3 h 4 4+θh 4 < θ < log + h = k+ h k k= + h + k ++θh + < θ < +h α = +αh+ αα h + αα α h αα α α 3h4 + 4 θh α 4 < θ < + h α = α k h k + α h + + θh + α < θ <. I- 3.6 I-3. = θ 8 6 5/ < θ < < R 3. < <. < II 3 II- k > f k x.9 fx = 8 + 5x + 64x + 37x 3 + x 4 + x 5 f + = , II- /;/; /6; /5; /3; /; /6 II-3 a =, b =, /6 II-7 cosh x = xk k!, sih x = xk+ k+!. III 35 III- x fx = x 4 = f f 3. e / x x > e / x x > fx := x =, gx := x =, e / x x < e / x x < f g C - x = f f g 3 x fx = x > = f III- x = ± x = III-3 A f a = f a fx = x 3 f = f C f a f a =, f a > fx = x 4 f f = f = III-4 9p 3q < III-5 p, q = x = 3p/4 9p 3q =, p x = 9p 3q >, p >, q > x = x = 8 3p 9p 3q x = 8 3p + 9p 3q 9p 3q >, p <, q > x = 8 3p 9p 3q x = 8 3p + 9p 3q x = 9p 3q >, q < x = 8 3p 9p 3q x = x = 8 3p + 9p 3q p = q = x = m = f a < m >. R h fa + h = fa + mh + R h = h h R h h mh h fa + h fa mh h m < h > h < h fa + h < fa h > ; fa + h > fa h < ε < h < ε fa + h > fa, < h < ε fa + h < fa f x = a III-6 f a = m > f a =. fa + h fa = m R 3 h h + R 3 h h h = h R 3 h/h δ < h < δ R 3 h h < m 4 δ δ, δ h fa + h fa = m h + R 4 h m h R 4 h > m h m 4 h = m 4 h4 >.

40 f f a = m <. fa + h fa = m h + R 3 h R 3 h h h = h R 3 h/h δ < h < δ R 3 h h < m 4 δ δ, δ h m < fa + h fa = m h + R 4 h m h + R 4 h < m h m 4 h = m 4 h4 <. f III-7 III-8 III-9 f k a = k =,,...,, f a. Yes/Yes/No/No/Yes. A h + B A k + AC B k A A φh, k = C k + B C h + AC B h C C Bhk A = C = A >, AC B > AC B /A > φh, k = A h + BA k + AC B k. A h + B/Ak = k = h, k =, h, k, φh, k > h, k, φh, k > A = h φh, = A h φh, = Ah > A > k φ B/Ak, k = AC B k /A > A > AC B > A <, AC B > AC B /A < φh, k = A h + BA k + AC B k A h, k =, h, k, φh, k < h, k, φh, k < A h φh, = Ah < A < k φ B/Ak, k = AC B k /A < A < AC B > AC B = A = C = B = A h + B A k A φh, k = C k + B C h C A = C = φh, k A φ B/Ak, k =, C φh, B/Ch =, A = C = h, k φh, k = AC B < A AC B /A A φh, k = A h + BA k AC B + k A φh, A φ B/Ak, k A C A = C = φh, k = Bhk AC B = B < B φt, t = Bt φt, t = Bt AC B φh, k 3 III- f xx, y = 3x y, f yx, y = x + 3y f x = f y = x, y =,, 3, 3 f x = f y =,, 3, f 3. 3 f xx = 6x, f xy =, f yy = 6y 3. x, y =, f xx f yy f xy = = < f x, y = 3, 3 fxxfyy fxy = = 3 > xx = > f f 3, 3 = 7 III- f x x, y = f y x, y = x, y =,, ±,,, ± a, b >, < a < b ±, a/e

41 < b < a, ± b/e III- f xx, y = f yx, y =, x, y =, 3 4, 3 4,,,,,, 3 4, 3, 7/56 4, 3., 3. fx, x = x 3 x 4 x =, x, y fx, y > f, fx, y < f, f, III-3 fx, y f xx + f yy = f yy = f xx f xx f xxf yy f xy = f xx f xy < 3. f xx IV 47 IV- h := r I- IV- r = + h = h k k + h + h + + h h r + r = 4.5 r 3 r = r = 4.5 r r < r < / r > IV- / r r r 4 fx = x {r } α {fr } fα = α fr = r r > IV- {fr } {r } {r } 4.3 M = N r > N r N > r < r N+ = r r N < {r } I- IV-3 + = = p + + a + = a + p + + a. {a } p 9 a 9 k = 9 / + / 9 = {a } 4. {a } IV M N a M N = N = s > M b M > N = M /s + N s N s = M /s + s > M /s s = M 4.3 s = s = 3 {/ s } IV-5 {a } a =, a = 9/4 > = a 3 α := + +, β := + α < β m m α m+ β m = α m + β m = α m β m αm + + = α βα m + α m β + + β m + αm + = + αm + α m β + + β m + αm + + mβm + αm + + βm + αm + = + αm β m.

42 a + a a + a > {a } {a } I- a = + = k k k... k + = k k! k = k! k. a + k= k = + {a } 3 4. {a }... k k! + = 3. IV-6 a I \ {a} {x } x a fx α gx β 4. fx = α, gx = β 4.5 fx + gx = α + β {x } 4. fx + gx = α + β IV-8 fx = x α x β β = max{α, } α = x = x β f = α <, fβ = { α α = αα > α > α > < α < fc = c < c < β IV-9 c = α, c = α c, c > c = c = α α = c c = c c c + c c + + c k, l c k cl > 6 9 y Y fa y fb y y = fa y = fb x fa < y < fb F x := fx y a x b x x fx = fx = y x < x fx < fx x x x > x fx > fx x x x = x y [fa, fb] f y x = f y ε > x := x ε, x + = x + ε y := fx, y + := fx + f y < y = fx < y + δ = mi{y + y, y y } y y δ, y + δ f y x ε, x + ε f IV- Y = {fx α x β} fγ = η η Y η = sup Y Y y y η Y y y = fx α x β x fx η = fγ f γ V 6 V- 5. a = / =,, V- ε {p } c N N p c < ε N = N N + N = N q c = p + c < ε V-3 p < p + < p x p x N N N N p = + p = + p dx = = = N N + x p dx = + x p dx = + = p + N p+ = + p + N p+ p + + p +.

43 V-4 N s N = N = p {s N } p {s N } 4. {s N } < p < p + > p x p x + N N N + p = + p dx = = N + N+ x p dx = x p dx = N + p+. = p + N p = x + x N = N+ dx = logn + x N. p p ++ = + N N = + ++ /4. N 3 N x x + x 4 + N x N = x N+ + x = + x x N+ + x. + x = x + x 4 + N x N + x N+ + x. [, X]. N+N+ ta X = X 3 X3 + + N X x N+ N + XN+ +R N X, R N X = + x dx. X x N+ R N X + x dx X X N ta X = x N+ dx = XN+ N +. + X+ X X X = π 4 = = +. V-5 r = / + h h > I- +h = +h+ h + + h +h+ h h. a = r = + h h = h. r a = r + {a } 3 r s := a k = kr k rs = kr k kr k+ + = kr k k r k k= = + kr k k r k r + k= k= = r + + k k r k = r + + r k k= = r + + r r r. r < r s = r r r + r r r. a = s = r r. k= s = r r + r+ r r + r r r r r r = + r + + r r r.

44 + r + + a r = s = a k = + + V-6 =,, 3,... = / log log 9 = log 3 log e =. log V-7 V-4 V-43 s π/4 5.8 {s } V-8 α < ε := α/ 4. N N + a α < ε N a + a < α + ε = + α r r < a + r a r a... r + N a N, A a Ar N. r < 5.7 α > ε = α / N N a + a α < ε N a + a > α ε = + α. r r > N a Ar N A a a 3 α = a = p α = 5.8 a V-9 a = p r a + a = + p r + p r = + p r r V-8 a = p r a + α a = + r + α r = αα... α +! α = r r + V-8 VI 7 VI- VI- a x! αα... α + r a /a + =!/ +! = / m pt = p m t m +p m t m + +p t+p p m p m N p N a a = p + p + = p m m + p m m + + p + p p m + m + p m + m + + p + + p s s 3! + s 5! = +! s s s = x x x 3! + x4 5! = x x x3 3! + x5 5! = +! x +! x+

45 x + VI x = ± 5. VI x =. log x = 5.8 p = x = x = 3 s / x = ± x = ± V-4 V x = ± 5.8 p = + x = x x + 3 x3... = 6.4 fx < x < 6.5 f x = x + x = x = + x f = < x < 6.4 x a = x 3+ /3 + a + a = x 3 x 3 V-8 x < x > x = 5.9 gx < x < 6.5 g x = x 3 + x 6 = g = x dt gx = + t 3 = x 3 = x dt 3 + t + x 6 x 3 = + x 3 < x < dt x + t + tdt t + t + 3 tdt t + t x dt t 3 + = 3 log + x + 6 log x + x + [ ta 3 t ] x 3 = 3 log + x + 6 log x + x + 3 ta x + π. 3 6 < x < x = = gx = x 3 log + π 3 3. x fx = x f t dt = dt = log + x < x < + t 5.9 x = = = fx = log + x = log. x x VI x3+ = x x4 4 + x7 7...

3 0407).3. I f x sin fx) = x + x x 0) 0 x = 0). f x sin f x) = x cos x + x 0) x = 0) x n = /nπ) n = 0,,... ) x n 0 n ) fx n ) = f 0 lim f x n ) = f 0)

3 0407).3. I f x sin fx) = x + x x 0) 0 x = 0). f x sin f x) = x cos x + x 0) x = 0) x n = /nπ) n = 0,,... ) x n 0 n ) fx n ) = f 0 lim f x n ) = f 0) 0407).. I ) f ) a I 3).) lim x a fx) = fa) a.) 4)5) lim fx) = fa) x a+0 lim x a 0 fx) = fa)). I f I I I I f I a 6) fx) fa) lim x a x a f a f a) I I 7) *) 03 0 8 ) an interval; ) an open a closed) interval.

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct 27 6 2 1 2 2 5 3 8 4 13 5 16 6 19 7 23 8 27 N Z = {, ±1, ±2,... }, R =, R + = [, + ), R = [, ], C =. a b = max{a, b}, a b = mi{a, b}, a a, a a. f : X R [a < f < b] = {x X; a < f(x) < b}. X [f] = [f ],

More information

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y 017 8 10 f : R R f(x) = x n + x n 1 + 1, f(x) = sin 1, log x x n m :f : R n R m z = f(x, y) R R R R, R R R n R m R n R m R n R m f : R R f (x) = lim h 0 f(x + h) f(x) h f : R n R m m n M Jacobi( ) m n

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1 1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10 1 2007.4.13. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 0. 1. 1. 2. 3. 2. ɛ-δ 1. ɛ-n

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

1 I

1 I 1 I 3 1 1.1 R x, y R x + y R x y R x, y, z, a, b R (1.1) (x + y) + z = x + (y + z) (1.2) x + y = y + x (1.3) 0 R : 0 + x = x x R (1.4) x R, 1 ( x) R : x + ( x) = 0 (1.5) (x y) z = x (y z) (1.6) x y =

More information

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト 名古屋工業大の数学 年 ~5 年 大学入試数学動画解説サイト http://mathroom.jugem.jp/ 68 i 4 3 III III 3 5 3 ii 5 6 45 99 5 4 3. () r \= S n = r + r + 3r 3 + + nr n () x > f n (x) = e x + e x + 3e 3x + + ne nx f(x) = lim f n(x) lim

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È 2011 i N Z Q R C A def B, A B. ii..,.,.. (, ), ( ),.?????????,. iii 04-13 04-20 04-27 05-04 [ ] 05-11 05-18 05-25 06-01 06-08 06-15 06-22 06-29 07-06 07-13 07-20 07-27 08-03 10-05 10-12 10-19 [ ] 10-26

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

(1) (2) (3) (4) 1

(1) (2) (3) (4) 1 8 3 4 3.................................... 3........................ 6.3 B [, ].......................... 8.4........................... 9........................................... 9.................................

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

limit&derivative

limit&derivative - - 7 )................................................................................ 5.................................. 7.. e ).......................... 9 )..........................................

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h 009 IA I, 3, 4, 5, 6, 7 7 7 4 5 h fx) x x h 4 5 4 5 1 3 1.1........................... 3 1........................... 4 1.3..................................... 6 1.4.............................. 8 1.4.1..............................

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ A S1-20 http://www2.mth.kyushu-u.c.jp/ hr/lectures/lectures-j.html 1 1 1.1 ϵ-n 1 ϵ-n lim n n = α n n α 2 lim n = 0 1 n k n n k=1 0 1.1.7 ϵ-n 1.1.1 n α n n α lim n n = α ϵ N(ϵ) n > N(ϵ) n α < ϵ (1.1.1)

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b) 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h 0 f(a + h, b) f(a, b) h............................................................... ( ) f(x, y) (a, b) x A (a, b) x

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

ORIGINAL TEXT I II A B 1 4 13 21 27 44 54 64 84 98 113 126 138 146 165 175 181 188 198 213 225 234 244 261 268 273 2 281 I II A B 292 3 I II A B c 1 1 (1) x 2 + 4xy + 4y 2 x 2y 2 (2) 8x 2 + 16xy + 6y 2

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

2014 S hara/lectures/lectures-j.html r 1 S phone: , 14 S1-1+13 http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r 1 S1-1+13 14.4.11. 19 phone: 9-8-4441, e-mail: hara@math.kyushu-u.ac.jp Office hours: 1 4/11 web download. I. 1. ϵ-δ 1. 3.1, 3..

More information

i 6 3 ii 3 7 8 9 3 6 iii 5 8 5 3 7 8 v...................................................... 5.3....................... 7 3........................ 3.................3.......................... 8 3 35

More information

Peano-Jordan-Borel Lebesgue Archimedes Gallilei, Pascal, Torricelli, Fermat Newton Leibniz Cauchy Daniell (1963) ( 4,200) 1

Peano-Jordan-Borel Lebesgue Archimedes Gallilei, Pascal, Torricelli, Fermat Newton Leibniz Cauchy Daniell (1963) ( 4,200) 1 2007 5 23 Peao-Jorda-Borel Lebesgue Archimedes Gallilei, Pascal, Torricelli, Fermat Newto Leibiz Cauchy Daiell (1963) ( 4,200) 1 (1965) ( 2,600) (1966) (1972) ( 2,700) (1980) (1995) (2000) ( 2,500) (2000)

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

1

1 1 1 7 1.1.................................. 11 2 13 2.1............................ 13 2.2............................ 17 2.3.................................. 19 3 21 3.1.............................

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a 9 203 6 7 WWW http://www.math.meiji.ac.jp/~mk/lectue/tahensuu-203/ 2 8 8 7. 7 7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa,

More information

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA  appointment Cafe D 1W II K200 : October 6, 2004 Version : 1.2, kawahira@math.nagoa-u.ac.jp, http://www.math.nagoa-u.ac.jp/~kawahira/courses.htm TA M1, m0418c@math.nagoa-u.ac.jp TA Talor Jacobian 4 45 25 30 20 K2-1W04-00

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 Akito Tsuboi June 22, 2006 1 T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 1. X, Y, Z,... 2. A, B (A), (A) (B), (A) (B), (A) (B) Exercise 2 1. (X) (Y ) 2. ((X) (Y )) (Z) 3. (((X) (Y )) (Z)) Exercise

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) (

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) ( + + 3 + 4 +... π 6, ( ) 3 + 5 7 +... π 4, ( ). ( 3 + ( 5) + 7 + ) ( 9 ( ( + 3) 5 + ) ( 7 + 9 + + 3 ) +... log( + ), ) +... π. ) ( 3 + 5 e x dx π.......................................................................

More information

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b)

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b) CALCULUS II (Hiroshi SUZUKI ) 16 1 1 1.1 1.1 f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b) lim f(x, y) = lim f(x, y) = lim f(x, y) = c. x a, y b

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/005431 このサンプルページの内容は, 初版 1 刷発行時のものです. Lebesgue 1 2 4 4 1 2 5 6 λ a

More information

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x 11 11.1 I y = a I a x I x = a + 1 f(a) x a = f(a +) f(a) (11.1) x a 0 f(a) f(a +) f(a) = x a x a 0 (11.) x = a a f (a) d df f(a) (a) I dx dx I I I f (x) d df dx dx (x) [a, b] x a ( 0) x a (a, b) () [a,

More information

16 B

16 B 16 B (1) 3 (2) (3) 5 ( ) 3 : 2 3 : 3 : () 3 19 ( ) 2 ax 2 + bx + c = 0 (a 0) x = b ± b 2 4ac 2a 3, 4 5 1824 5 Contents 1. 1 2. 7 3. 13 4. 18 5. 22 6. 25 7. 27 8. 31 9. 37 10. 46 11. 50 12. 56 i 1 1. 1.1..

More information

1 θ i (1) A B θ ( ) A = B = sin 3θ = sin θ (A B sin 2 θ) ( ) 1 2 π 3 < = θ < = 2 π 3 Ax Bx3 = 1 2 θ = π sin θ (2) a b c θ sin 5θ = sin θ f(sin 2 θ) 2

1 θ i (1) A B θ ( ) A = B = sin 3θ = sin θ (A B sin 2 θ) ( ) 1 2 π 3 < = θ < = 2 π 3 Ax Bx3 = 1 2 θ = π sin θ (2) a b c θ sin 5θ = sin θ f(sin 2 θ) 2 θ i ) AB θ ) A = B = sin θ = sin θ A B sin θ) ) < = θ < = Ax Bx = θ = sin θ ) abc θ sin 5θ = sin θ fsin θ) fx) = ax bx c ) cos 5 i sin 5 ) 5 ) αβ α iβ) 5 α 4 β α β β 5 ) a = b = c = ) fx) = 0 x x = x =

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

04.dvi

04.dvi 22 I 4-4 ( ) 4, [,b] 4 [,b] R, x =, x n = b, x i < x i+ n + = {x,,x n } [,b], = mx{ x i+ x i } 2 [,b] = {x,,x n }, ξ = {ξ,,ξ n }, x i ξ i x i, [,b] f: S,ξ (f) S,ξ (f) = n i= f(ξ i )(x i x i ) 3 [,b] f:,

More information

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y 5 5. 2 D xy D (x, y z = f(x, y f D (2 (x, y, z f R 2 5.. z = x 2 y 2 {(x, y; x 2 +y 2 } x 2 +y 2 +z 2 = z 5.2. (x, y R 2 z = x 2 y + 3 (2,,, (, 3,, 3 (,, 5.3 (. (3 ( (a, b, c A : (x, y, z P : (x, y, x

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

II Time-stamp: <05/09/30 17:14:06 waki> ii

II Time-stamp: <05/09/30 17:14:06 waki> ii II waki@cc.hirosaki-u.ac.jp 18 1 30 II Time-stamp: ii 1 1 1.1.................................................. 1 1.2................................................... 3 1.3..................................................

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t) =(x(t),y(t),z(t)) ( dp dx dt = dt, dy dt, dz ) dt f () > f x

y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t) =(x(t),y(t),z(t)) ( dp dx dt = dt, dy dt, dz ) dt f () > f x I 5 2 6 3 8 4 Riemnn 9 5 Tylor 8 6 26 7 3 8 34 f(x) x = A = h f( + h) f() h A (differentil coefficient) f f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t)

More information

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k : January 14, 28..,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k, A. lim k A k = A. A k = (a (k) ij ) ij, A k = (a ij ) ij, i,

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a 3 3.1 3.1.1 A f(a + h) f(a) f(x) lim f(x) x = a h 0 h f(x) x = a f 0 (a) f 0 (a) = lim h!0 f(a + h) f(a) h = lim x!a f(x) f(a) x a a + h = x h = x a h 0 x a 3.1 f(x) = x x = 3 f 0 (3) f (3) = lim h 0 (

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0. () 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >

More information

Dynkin Serre Weyl

Dynkin Serre Weyl Dynkin Naoya Enomoto 2003.3. paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie 4 1.1 Lie ( )................................ 4 1.2 Killing form...........................................

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 常微分方程式の局所漸近解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/007651 このサンプルページの内容は, 初版 1 刷発行当時のものです. i Leibniz ydy = y 2 /2 1675 11 11 [6] 100 Bernoulli Riccati 19 Fuchs

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x 1 1.1 4n 2 x, x 1 2n f n (x) = 4n 2 ( 1 x), 1 x 1 n 2n n, 1 x n n 1 1 f n (x)dx = 1, n = 1, 2,.. 1 lim 1 lim 1 f n (x)dx = 1 lim f n(x) = ( lim f n (x))dx = f n (x)dx 1 ( lim f n (x))dx d dx ( lim f d

More information

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P 9 (Finite Element Method; FEM) 9. 9. P(0) P(x) u(x) (a) P(L) f P(0) P(x) (b) 9. P(L) 9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L)

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

高校生の就職への数学II

高校生の就職への数学II II O Tped b L A TEX ε . II. 3. 4. 5. http://www.ocn.ne.jp/ oboetene/plan/ 7 9 i .......................................................................................... 3..3...............................

More information

untitled

untitled - k k k = y. k = ky. y du dx = ε ux ( ) ux ( ) = ax+ b x u() = ; u( ) = AE u() = b= u () = a= ; a= d x du ε x = = = dx dx N = σ da = E ε da = EA ε A x A x x - σ x σ x = Eε x N = EAε x = EA = N = EA k =

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy f f x, y, u, v, r, θ r > = x + iy, f = u + iv C γ D f f D f f, Rm,. = x + iy = re iθ = r cos θ + i sin θ = x iy = re iθ = r cos θ i sin θ x = + = Re, y = = Im i r = = = x + y θ = arg = arctan y x e i =

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information