II (2011 ) ( ) α β û i R

Size: px
Start display at page:

Download "II (2011 ) ( ) α β û i R"

Transcription

1 II α β 3 û i 4 R F 5 7 F 6 8 GLS 8 8 heil and Goldberger Model 9 MLE 9 9 I 3 93 II 3 94 AR i

2 Wald, LM, LR AR MA 5 84 ARMA ARIMA SARIMA , Identification ARCH Unit Root 6 9 Cointegration 69 GMM Generalized Mothod of Moments ii

3 X, Y, X, Y,, X n, Y n n X i Y i Y i α + βx i, X i Y i α, β α β {X i, Y i, i,,, n} i i α, β Y i α βx i, X i Y i α βx i, Y i n α + β X i, 3 X i Y i α X i + β Xi, n Y i n n X n iy i X i a b d b c d ad bc c a α, β α β n X i n X i α β, i i i n n X i n X i n X i n Y i n X iy i α β Sα, β Sα, β min Sα, β α,β u i Y i α βx i α, β α, β Sα, β α Sα, β β α, β α, β n n X i n X i n X i n n X i n X i n Y i n X iy i β β n n X iy i n X i n Y i n n X i n X i n X iy i nxy n X i nx n X i XY i Y n X i X 3 α Y βx X X i, n Y n Y i,

4 Y i α + βx i α β α β i Y i X i α β n β X iy i nxy n X i nx α Y βx X Y n Xi X i Y i i Y i X i X i Y i Xi Y i Xi Xi Y i X i Y X β α α, β α, β α, β Ŷ i α + βx i, Ŷ i X i Y i i Y i X i X i Y i Xi Ŷ i Y i Xi Xi Y i X i Ŷi Y X Ŷ i Y i X i Ŷi 5 5 X i Ŷ i Y i û i Y i Ŷi, û i Y i Ŷi + û i α + βx i + û i, Y Y i Y Ŷi Y + û i, 3 û i û i Y i α βx i û i, X i û i,

5 Ŷ i α + βx i Ŷ i û i, Ŷ i û i α + βx i û i α û i + β X i û i i Y i X i Ŷ i û i X i û i Ŷ i û i Y i Xi Ŷi ûi Xi û i Ŷi û i R Y i Y Ŷi Y + û i, Y i Y Ŷi Y + û i Ŷi Y + Ŷi Y û i + Ŷi Y + û i Y i Y Ŷi Y + n Ŷi Y n n Y i Y + û i n Y i Y û i û i 3 Y i Y y Ŷi Y Ŷi û i Ŷi R n R Ŷi Y n Y i Y R n û i n Y i Y, Y i Ŷi + û i Ŷi Y Ŷi Y Y i Y û i Ŷi Y Y i Y Ŷi Y Y i Y n R Ŷi Y n Y i Y Ŷi Y û i n Ŷi Y n Y i Y n Ŷi Y n Ŷi Y Y i Y n Y i Y n Ŷi Y R Y i Ŷi Y i Y Ŷi Y + R, û i 3

6 R t 9 y t β x t + β x t + + β k x kt + u t, t,,, u t R n û i n Y i Y n û i n Y i ny û i Y i α + βx i Y Y i i Y i X i Ŷ i û i û i Yi Y i Xi Ŷi ûi û i Y i û i 3 X 3 Y 875 R 5 α β Y i n β X iy i nxy n X i nx α Y βx X Y n Xi X i Y i R n û i n Y i Y û i Y n n û i n Y i ny Y i a u t iid, σ b x t, x t,, x kt u t c x t, x t,, x kt, y t d β u t iid N, σ 3 x t β 4 Sβ, β,, β k y t β x t β x t β k x kt t Sβ, β,, β k β, β,, β k β, β,, β k Sβ, β,, β k β t x t y t β x t β x t β k x kt t Sβ, β,, β k β t x t y t β x t β x t β k x kt t Sβ, β,, β k β kt x kt y t β x t β x t β k x kt t 4

7 xt y t β x t + β xt x t + + β k xt x kt xt y t β xt x t + β x t y x β + u y x β + u + + β k xt x kt xkt y t β xkt x t + β xkt x t + + β k x kt x t xt x t xt x kt xt x t x t xt x kt xkt x t xkt x t x kt β xt y t β xt y t β k xkt y t 5 y t β x t + β x t + + β k x kt + u t β β x t x t x kt x t β + u t x t x t x t x kt, β β β β k, y x β + u β k + u t y y y y Xβ + u y X u y y y x x x u u u, x x x, β + u u u 6 x t : k, β: k, y:, X: k, u: 5

8 3 A :, B : n m, C : m k, D : k n, tra a ii, where A [a ij ] If A is idempotent, A A A A 3 A is idempotent if and only if the eigen values of A consist of and 4 If A is idempotent, ranka tra 5 trbcd trcdb 3 a, x :, y : K, A :, B : K a x x x a x a a x x a x Ax x A + A x x Ax x x A + A x By B tr A A log A A xy I 3 a, x, y, µ :, Σ, A, B :, σ : scalar A If x Nµ, Σ, then a x Na µ, a Σa If x Nµ, Σ, then x µ Σ x µ χ 3 x: n, y: m x Nµ x, Σ x, y Nµ y, Σ y, x y E x µ x y µ y x µ x Σ x x µ x /n y µ y Σ F n, m y y µ y /m 4 If x N, σ I and A is a symmetric idempotent matrix of rank G, then x Ax/σ χ G 5 If x N, σ I, A and B are symmetric idempotent matrices of rank G and K, and AB, then x Ax / x Bx Gσ Kσ x Ax/G x Bx/K 4 y :, X : k, β : k, u :, u u, u,, u t u t u u t F G, K Regression model: y Xβ + u, u, σ I min β y Xβ y Xβ u u y Xβ y Xβ y y β X y + β X Xβ u u β X y + X Xβ β β β X X X y 6

9 3 u u β β X X c Xd d c c d X Xd > * a x x Ax > A positive definite matrix b x x Ax < A positive definite matrix 4 β X X X y X X X Xβ + u β + X X X u 5 β X X X y y 6 E β β + X X X Eu β 7 V β E β β β β E X X X ux X X u X X X Euu XX X σ X X 8 u N, σ I β Nβ, σ X X β β X X β β χ k σ * x k x Nµ, Σ x µ Σ x µ χ k 9 Properties of β : BLUE best linear unbiased estimator, ie, Unbiased and efficient estimator in linear class Gauss-Markov theorem β Cy β Cy CXβ + u CXβ + Cu E β CXβ + CEu CXβ β Cy E β β CX I β Cy β CXβ + u β + Cu V β E β β β β ECuu C σ CC D C X X X V β σ CC σ D + X X X D + X X X CX I D + X X X X DX + I DX 7

10 V β σ CC σ D + X X X D + X X X σ X X + σ DD V β + σ DD V β V β β σ s s k y X β y X β, because and y X β y XX X X y I XX X X y I XX X X Xβ + u I XX X X u E k y X β y X β k E I XX X X u I XX X X u k E u I XX X X I XX X X u k E u I XX X X u k E tru I XX X X u k tr I XX X X Euu k σ tr I XX X X k σ k σ A: k k tra k a ii a ii A i j a: tra a 3 A: k, B: k trab trba 4 tr[xx X X ] tr[x X X X] tri k 5 X: E[trX] tr[ex] F H : β If u N, σ I, then β Nβ, σ X X herefore, β β X X β β σ a β β X X β β σ χ k β β X X X u β β X X β β χ k X X X u X XX X X u u XX X X XX X X u u XX X X u XX X X idempotent, ie, A A A u XX X X u σ χ tr XX X X 8

11 tr XX X X tr X X X X tri k k u XX X X u σ b * χ k x N, I k x Ax χ RankA A idempotent, ie, A A A RankA tra x Ax χ tra u N, σ I σ u N, I Rank û y X β y XX X X y I XX X X y I XX X X Xβ + u I XX X X Xβ + I XX X X u X XX X X X β + I XX X X u I XX X X u I û û XX X X u I XX X X u u I XX X X I XX X X u u I XX X X u û û σ u I XX X X u σ χ tr I XX X X tr I XX X X tri tr XX X X tri tr X X X X tri tri k k û û σ ks σ χ k s k û û 3 β û [ ] u N, σ I 9

12 Covû, β Covû, β E û β β I E XX X X u X X X u I E XX X X uu XX X I XX X X Euu XX X I XX X X σ IXX X σ I XX X X XX X σ XX X XX X X XX X σ XX X XX X β û 4 β β X X β β σ û û σ χ k χ k, β β X X β β û û a y y y y y y y y y ỵ y y ii y I ii y y i,,, 4 R û û y I ii y F H : β R y t x t β + u t y t β + x t β + u t y t y x t x β + u t β β X X β β / σ k û û / σ k R R R t û t t y t y t û t û û 3 t y t y y I ii I ii y y I ii y F k, k x t x t, x t,, x kt x t, x t, x t, x x t,, x kt, β β β β k β β, y t x t β + u t y Xβ + u y t y x t x β + u t y X β + u û t û t [ ] t ût,

13 t y t β β x t β k x kt, t y t β x t β, y β + x β, y t β + x t β + û t y t y x t x β + û t 3 y t y x t x β + u t H : β y X β + u 4 β X X β /k û û / k y y β X X β + û û y I ii y û û F k, k β X X β /k û û / k y I ii y û û /k û û/ k F k, k 5 y Xβ + u R R û û y I ii y 6 F β X X β /k û û / k y I ii y û û /k û û/ k R /k R F k, k / k y Xβ +u H : β F If u N, σ I, then β Nβ, σ X X Consider testing the hypothesis H : Rβ r R : G k, rankr G k R β NRβ, σ RX X R herefore, R β r RX X R R β r χ G σ Note that Rβ r a β Nβ, σ X X ER β RE β Rβ b β Nβ, σ X X VR β E R β RβR β Rβ E R β β β β R RE β β β β R RV βr σ RX X R We have the following: R β r RX X R R β r G y X β y X β k F G, k 3

14 a t G, r, R,,,, R i β i s y X β y X β k R β r RX X R R β r G s β i s a ii F, k R β β i a ii X X i i β i β i s a ii t k * Recall that t k F, k b { x t β + u t, t,,, n y t x t β + u t, t n +, n +,, u i N, σ y x y x y n x y n n+ x n+ y n+ x n+ y x β β Y X β Y X Y Xβ + u β + + u u u u n u n+ u n+ u H : β β R I I, r F G rankr k, β k F k, k c R,,,,, r G rankr F, k d y α + α D + α D + α 3 D 3 + Xβ + u D i i α α α 3 β α, α, α, α 3, β k R, r G rankr 3, β k F 3, k e Q t K t L t logq t β + β logk t + β 3 logl t + u t, β + β 3 H : β + β 3 H : β + β 3

15 R, r f n n + Y t α + βx t + γd t + δd t X t + u t, {, t,,, n d t, t n +, n +,, n + H : γ δ H : γ δ R, r g Y t α + βx t + γz t + u t, X t Z t Y t H : β γ H : β γ R, r Define û as û y X β he coefficient of determinant, R, is R û û y My, where M I ii, I is a identity matrix and i is a vector consisting of, ie, i,,, Note that y y y y My y y M is idempotent DurbinWatson ratio, DW, is defined as t DW û t û t t û t where û û, û,, û û Aû û û, A 5 Rβ r y Xβ y Xβ L L y Xβ y Xβ λ Rβ r β, λ β, λ L β X y Xβ R λ L λ Rβ r L/ β β X X X y + X X R λ β + X X R λ Rβ R β + RX X R λ 3

16 r R β + RX X R λ λ RX X R r R β β β + X X R RX X R r R β a Eβ E β + X X R RX X R r RE β β + X X R RX X R r Rβ β b β β β β + X X R RX X R Rβ R β β β X X R RX X R R β Rβ β β X X R RX X R R β β [I X X R RX X R R] β β W β β Vβ E β ββ β E W β β β β W W E β β β β W W V βw σ W X X W σ I X X R RX X R R X X I X X R RX X R R σ I X X R RX X R R X X I R RX X R RX X σ X X X X R RX X R RX X I R RX X R RX X σ X X X X R RX X R RX X X X R RX X R RX X +X X R RX X R RX X R RX X R RX X σ X X X X R RX X R RX X σ X X σ X X R RX X R RX X V β σ X X R RX X R RX X a L β X y Xβ R λ L λ Rβ r X Xβ R λ X y Rβ r X X R β X y R λ r β X X R X y λ R r 4

17 b A B E F B D F G E, F, G E A BD B A + A BD B A B B A F A BD B BD A BD B A B G D B A B D + D B A BD B BD c E, F E X X X X R RX X R RX X F X X R RX X R β EX y + F r β β + X X R RX X R r R β d β X V λ σ X R R Eβ σ E Vβ σ X X X X R RX X R RX X e Rβ r V β Vβ σ X X R RX X R RX X 6 F R β r RX X R R β r G y X β y X β k F G, k R β r RX X R R β r β β X X β β β β + X X R RX X R r R β y Xβ y Xβ y Xβ β X β y Xβ β X β y X β y X β + β β X Xβ β y X β Xβ β β β X y X β y X β y X β + β β X Xβ β X û β β X Xβ β y Xβ y Xβ y X β y X β 5

18 û u û y X β u y Xβ R β r RX X R R β r G y X β y X β k β β X Xβ β G y X β y X β k y Xβ y Xβ y X β y X β G y X β y X β k u u û û/g û û/ k 7 F cons99txt PROGRAM LINE ************************************************ freq a; smpl ; 3 readfile cons99txt year cons yd price; 4 rconscons/price/; 5 rydyd/price/; 6 d; 7 smpl ; 8 d; 9 smpl ; drydd*ryd; dconsrcons-rcons-; olsq rcons c ryd; 3 olsq rcons c d ryd dryd; 4 olsq rcons c ryd rcons-; 5 olsq dcons c; 6 end; EXECUION ****************************************************** Equation Method of estimation Ordinary Least Squares Dependent variable: RCONS Current sample: 956 to 997 Number of observations: 4 Mean of dependent variable 4938 Std dev of dependent var Sum of squared residuals 795E+ Variance of residuals 39878E+8 Std error of regression R-squared Adjusted R-squared Durbin-Watson statistic 6873 F-statistic zero slopes Schwarz Bayes Info Crit 74 6

19 Log of likelihood function Estimated Standard Variable Coefficient Error t-statistic C RYD E Equation Method of estimation Ordinary Least Squares Dependent variable: RCONS Current sample: 956 to 997 Number of observations: 4 Mean of dependent variable 4938 Std dev of dependent var Sum of squared residuals 445E+9 Variance of residuals 64343E+7 Std error of regression R-squared 9994 Adjusted R-squared Durbin-Watson statistic 4979 F-statistic zero slopes 959 Schwarz Bayes Info Crit 5933 Log of likelihood function Estimated Standard Variable Coefficient Error t-statistic C D RYD DRYD Equation 3 Method of estimation Ordinary Least Squares Dependent variable: RCONS Current sample: 956 to 997 Number of observations: 4 Mean of dependent variable 4938 Std dev of dependent var Sum of squared residuals 465E+9 Variance of residuals 6396E+7 Std error of regression 556 R-squared 9997 Adjusted R-squared Durbin-Watson statistic 547 Durbin s h 665 Durbin s h alternative F-statistic zero slopes 98 Schwarz Bayes Info Crit 585 Log of likelihood function Estimated Standard Variable Coefficient Error t-statistic C RYD RCONS Equation 4 Method of estimation Ordinary Least Squares Dependent variable: DCONS Current sample: 956 to 997 Number of observations: 4 Mean of dependent variable Std dev of dependent var 7348 Sum of squared residuals 36647E+9 Variance of residuals 74799E+7 Std error of regression 7348 R-squared 369E-49 Adjusted R-squared Durbin-Watson statistic 387 Schwarz Bayes Info Crit 5895 Log of likelihood function Estimated Standard Variable Coefficient Error t-statistic C ****************************************************** Equation vs Equation 974 Equation RCONS β + β D + β 3 RYD + β 4 RYD D H : β β 4 OLS Equation OLS Equation u u û û/g û û/ k 795E + 445E + 9/ 445E + 9/ F, 38 F, 38 % 5 < 843 H : β β

20 Equation vs Equation 3 Equation 3 RCONS β + β RYD + β 3 RCONS H : β 3 OLS Equation OLS Equation 3 u u û û/g û û/ k 795E + 465E + 9/ 465E + 9/ F, 39 F, 39 % 7333 < 6368 H : β 3 RCONS- RCONS RCONS- t-statistic 3 Equation 3 vs Equation 4 Equation 3 RCONS β + β RYD + β 3 RCONS H : β and β 3 OLS Equation 4 OLS Equation 3 u u û û/g û û/ k 36647E E + 9/ 465E + 9/ F, 39 F, 39 % 594 > 49 H : β and β 3 8 GLS Regression model: y Xβ + u, u, σ Ω Heteroscedasticity σ σ Ω σ σ First-Order Autocorrelation u t ρu t + ɛ t, ɛ t iid N, σ ɛ σ Ω σ ɛ ρ Vu t σ ρ ρ ρ ρ ρ ρ ρ ρ ρ 3 ρ ρ ρ 3 σ ɛ ρ 3 β GLS b min β GLSE of β is b y Xβ Ω y Xβ b X Ω X X Ω y 4 Ω Ω Ω A ΛA Λ A Ω Λ x x Ωx > Ω 5 here exists P shuch that Ω P P take P Λ / A Multiply P on both sides of y Xβ + u 8

21 We have: y X β + u, where y P y, X P X, and u P u Note that Vu VP u P VuP σ P ΩP I, because Ω P P Accordingly, the regression model is rewritten as: y X β + u, u, σ I Apply OLS to the above model hat is, min β is equivalent to: min β y X β y X β y Xβ Ω y Xβ b X X X y X Ω X X Ω y b β + X X X u β + X X X Ω u Eb β Vb σ X X σ X Ω X 6 y Xβ + u, u N, σ Ω, β X X X y β + X X X u V β σ X X X ΩXX X GLS OLS a E β β Eb β β b b V β σ X X X ΩXX X Vb σ X Ω X V β Vb σ X X X ΩXX X σ X Ω X σ X X X X Ω X X Ω Ω X X X X Ω X X Ω σ AΩA Ω u Ω I AΩA b β 7 If u N, σ Ω, then b Nβ, σ X Ω X Consider testing the hypothesis H : Rβ r R : G k, rankr G k R β NRβ, σ RX Ω X R herefore, R β r RX Ω X R R β r σ χ G 9

22 8 9 We have: y Xb Ω y Xb σ χ k R β r RX Ω X R R β r G y Xb Ω y Xb k F G, k b b e e Ω X V β X R Ψ R X Ω X + R Ψ R 9 MLE Maximum Likelihood Estimation MLE he distribution function of {x i } is fx; θ, where x x,, x and θ µ, Σ Likelihood function L is defined as Lθ; x fx; θ Maximum likelihood estimate MLE of θ is θ such that: e y Xb, e y Xb max θ Lθ; x F e Ω e e Ω e/g e Ω e/ k F G, k 8 heil and Goldberger Model r Rβ + v, v, Ψ y Xβ + u, u, Ω y X r R u v β + Ω, Ψ u v Ω X β X R Ψ R Ω y X R Ψ r X Ω X + R Ψ R X Ω y + R Ψ r MLE satisfies the following: a log Lθ; x θ b log Lθ; x θ θ is a negative definite matrix Fisher s information matrix is defined as: log Lθ; x Iθ E θ θ Note as follows: log Lθ; x E θ θ log Lθ; x log Lθ; x E θ θ log Lθ; x V θ θ Lθ; xdx Lθ; x dx θ x θ L/ θ

23 log Lθ; x Lθ; xdx θ log Lθ; x E θ θ log Lθ; x θ θ Lθ; xdx log Lθ; x Lθ; x + θ dx θ log Lθ; x θ θ Lθ; xdx log Lθ; x log Lθ; x + θ θ Lθ; xdx log Lθ; x E θ θ log Lθ; x log Lθ; x E θ θ log Lθ; x V θ 3 Cramer-Rao Iθ: θ sx Esx sxlθ; xdx θ Esx Lθ; x sx dx θ θ log Lθ; x sx Lθ; xdx θ log Lθ; x Cov sx, θ sx θ Esx θ log Lθ; x Cov sx, θ log Lθ; x ρ V sx V θ log Lθ; x V sx V θ log Lθ; x ρ sx θ ρ log Lθ; x Cov sx, θ ρ log Lθ; x V sx V θ Esx log Lθ; x Vsx V θ θ Esx θ Vsx log Lθ; x V θ Esx θ Vsx Iθ log Lθ; x E θ sx Vsx Iθ 4 Iθ θ θ N, lim θ N θ, Iθ

24 sx θ V sx Iθ 5 log Lθ; x θ log Lθ ; x θ + log Lθ ; x θ θ θ θ θ θ log Lθ ; x log Lθ ; x θ θ θ Replace the variables as follows: θ θ i+ θ θ i hen, we have: θ i+ θ i log Lθ i ; x log Lθ i ; x θ θ θ log Lθ i ; x θ θ log Lθ i ; x E θ θ θ i+ θ i log Lθ i ; x log Lθ i ; x E θ θ θ log Lθ θ i Iθ i i ; x θ 9 y t α + βx t + u t, u t u t N, σ u t fu t exp πσ σ u t u, u,, u fu, u,, u fu fu fu exp πσ / σ t 3 y,, y u t y t α βx t fy, y,, y exp πσ / σ Lα, β, σ y, y,, y u t y t α βx t t Lα, β, σ y, y,, y log Lα, β, σ y, y,, y log Lα, β, σ y, y,, y logπ logσ σ y t α βx t t 4 x f x x x gz z f z z f z z f x gz dgz dz

25 x U, z logx f x x 9 I Regression model: y Xβ + u, u N, σ I Log-likelihood function is: x exp z f z z dx dz f x gz exp z exp z 5 y, y,, y Lα, β, σ y, y,, y log Lα, β, σ y, y,, y α, β, σ α, β, σ α, β, σ log Lα, β, σ y, y,, y α σ y t α βx t t log Lα, β, σ y, y,, y β σ y t α βx t x t t log Lα, β, σ y, y,, y σ σ + σ 4 y t α βx t t t β x t xy t y t x t x α y βx σ y t α βx t t OLS ML σ log Lθ; y, X logπσ where θ β, σ max θ log Lθ; y, X log Lθ; y, X θ σ y Xβ y Xβ, We obtain MLE of β and σ : β X X X y, σ y X β y X β 3 Fisher s information matrix is defined as: log Lθ; y, X Iθ E θ θ he inverse of the information matrix, Iθ, provides a lower bound of the variance - covariance matrix for unbiased estimators of θ σ X X Iθ σ 4 93 II Regression model: y Xβ + u, u N, σ Ω Log-likelihood function is: log Lθ; y, X logπσ log Ω σ y Xβ Ω y Xβ, where θ β, σ 3

26 max θ log Lθ; y, X log Lθ; y, X θ We obtain MLE of β and σ : β X Ω X X Ω y, σ y X β Ω y X β 3 Fisher s information matrix is defined as: log Lθ; y, X Iθ E θ θ he inverse of the information matrix, Iθ, provides a lower bound of the variance - covariance matrix for unbiased estimators of θ σ X Ω X Iθ σ 4 94 AR AR t, 3,,, φ < y t φ y t + u t, u t N, σ y, y,, y fy, y,, y fy, y,, y fy fy t y t,, y t fy t y t,, y y t φ y t +u t Ey t y t,, y φ y t, Vy t y t,, y σ fy t y t,, y exp πσ σ y t φ y t fy t y t,, y Ey t y t,, y Vy t y t,, y fy t y t,, y fy t Ey t, y t φ y t + u t φ y t + u t + φ u t φ t y + u t + φ u t + + φ t u u t + φ u t + φ u t + Vy t σ + φ + φ 4 + φ, fy t πσ / φ exp σ / φ y t y, y,, y fy, y,, y fy, y,, y fy fy t y t,, y t t πσ / φ exp σ / φ y exp πσ σ y t φ y t σ Lφ, σ ; y, y,, y logπσ / φ σ / φ y logπσ σ y t φ y t t < ρ < grid search 4

27 95 y t x t β + u t u t ρu t + ɛ t ɛ t iid N, σ ɛ u, u,, u f u ; log f u u, u,, u ; ρ, σɛ log fu ; ρ, σɛ + log fu t u t,, u ; ρ, σɛ t logπσ ɛ / ρ σɛ / ρ u logπσ ɛ σ ɛ u t ρu t t u, u,, u y, y,, y Lρ, σ ɛ, β; y, y,, y log f y y, y,, y ; ρ, σ ɛ, β log f u y x β, y x β,, y x β; ρ, σɛ u y log πσɛ / ρ σɛ / ρ y x β logπσɛ σɛ y t ρy t x t ρx t β t logπσ ɛ + log ρ σɛ ρ y ρ x β logπσɛ σ ɛ y t ρy t x t ρx t β t logπσ ɛ + log ρ σɛ y x β σɛ yt x t β t logπ logσ ɛ + log ρ σ ɛ yt x t β t yt, x t { yt ρ y t, for t, y t ρy t, for t, 3,,, { x ρ x t, for t, t x t ρx t, for t, 3,,, β Lρ, σ ɛ, β; y, y,, y β x t x t x t yt t t X X X y y X β + ɛ, ɛ N, σ ɛ I σ ɛ Lρ, σ ɛ, β; y, y,, y σ yt x t β t y X β y X β y ρ y y y y ρy x y x x x y ρy ρ x x ρx x ρx ρ Lρ, σ ɛ, β; y, y,, y max Lρ, β,σɛ,ρ σ ɛ, β; y 5

28 max Lρ, σ ɛ, β; y ρ Lρ, σ ɛ, β; y concentrated loglikelihood function Lρ, σ ɛ, β; y logπ log σ ɛ + log ρ logπ σ log ɛ ρ + log ρ ρ σ ɛ σ ɛ ρ 96 y t x t β + u t u t iid N, σ t σ t z t α u, u,, u f u ; log f u u, u,, u ; σt log f u u t ; σt t logπ logσ t logπ logz tα t ut t σ t ut z t α u, u,, u y, y,, y Lσ t, β; y, y,, y log f y y, y,, y ; σ t, β log f u y x β, y x β,, y x β; σt u y logπ logz tα yt x t β z t α β, α : t x, x, F, F, lim F t F t x, x, F convergence in distribution a {z :,, } z θ convergence in probability lim Prob z θ < ɛ, ɛ θ z limit plim z θ, probability b θ θ θ θ θ θ consistent estimator 3 Chebyshev gx Prob gx k E gx k 6

29 k gx k U gx < k U U gx ku E gx keu EU EU Prob gx k + Prob gx < k P gx k E gx kprob gx k Prob gx k E gx 4 X gx X µ X µ EX µ VarX Σ Prob X µ X µ k trσ k E X µ X µ E tr X µ X µ E tr x µx µ tr E x µx µ trσ k 5 X i µ, σ, i,,, X µ Chebyshev gx X µ, ɛ k E gx VX σ P X µ ɛ σ ɛ ɛ 6 lim P X µ < ɛ x y plim x c, plim y d a plim x + y c + d b plim x y cd c plim x /y c/d, d d plim gx gc, g Slutsky s heorem 7 Lidberg-Levy Central Limit heorem x, x,, x x t µ Σ independent and identically distributed, iid t x t µ N, Σ 8 Central Limit heorem Greenberg and Webster 983 7

30 x, x,, x x t µ Σ t t Σ lim x t µ N, Σ Σ t t 9 : θ θ θ θ N, Σ θ Nθ, Σ/ : 3 θ consistent uniformly asymptotically normal a θ b θ θ N, Σ c : θ θ consistent, uniformly, asymptotically normal Σ/, Ω/ Ω Σ positive semidefinite θ θ asymptotically efficient : consistent, uniformly, asymptotically normal estimator asymptotically efficient consistent, uniformly, asymptotically normal estimator asymptotically efficient 3 asymptotically efficient consistent, uniformly, asymptotically normal estimator 4 x, x,, x fx; θ θ θ regularity conditions θ θ θ θ Iθ N, lim 5 Regularity Conditions a x t θ b fx; θ θ 3 6 i consistent ii asymptotically normal iii asymptotically efficient, 7 Slutsky s heorem θ θ g θ gθ g well-defined continuous function 8 Invariance of Maximum Likelihood Estimation θ, θ,, θ k θ, θ,, θ k α α θ, θ,, θ k, α α θ, θ,, θ k,, α k α k θ, θ,, θ k α, α,, α k α α θ, θ,, θ k, α α θ, θ,, θ k,, α k α k θ, θ,, θ k β X X X y β β X X M xx X u 8

31 Chebyshev s inequality gx Prob gx k E gx k x X u, gx x x E X u X u E u XX u E tr u XX u E tr XX uu tr XX Euu σ trxx σ trx X σ tr X X k Prob X u X u k σ k tr X X X X M xx X u X u X u trm xx 3 X X M xx X X M xx Slutsky s heorem * Slutsky s heorem θ θ g θ gθ 4 β β + X X X u β + X X X u β β + M xx β 5 i ii iii 6 Asymptotic Normality of OLSE a Central Limit heorem: Webster 983 Greenberg and z, z,, z µ Σ t t Σ lim z t µ N, Σ Σ t t z t b z t x t u t Σ t σ x tx t c Σ Σ lim σ x tx t t σ lim X X σ M xx 9

32 d Central Limit heorem Greenberg and Webster 983 t x tu t X u N, σ M xx β β X X X u β β N, σ M xx u t Errors in Variables a X X plim X V plim X X plim X X + plim V V Σ + Ω b u X u X plim V u plim X u 6 β β β + X X X u V β β + X X X + V u V β y Xβ + u X X + V V : Measurement Errors 3 X V 4 plim β β Σ + Ω Ωβ 7 y t α + β x t + u t x t x t + v t y Xβ + u V β β β X X X y β + X X X u V β 5 Σ plim X X plim xt µ µ µ + σ xt x t 3

33 µ, σ x t Ω plim V V plim v t σv plim α β α β µ µ µ + σ + σv α σv β α µσ v β β σ + σv σvβ β σ vβ plim β β σ + σv β + σv/σ Instrumental Variable IV y Xβ + u, u N, σ I EX u β β + X X X u β + M xx M xu 3 Z u M zu X Z Z Z y Z Xβ + Z u plim plim Z y β plim + plim Z u plim Z X β Z X β plim Z X plim Z y β IV Z X Z y β 4 5 β IV β IV Z X M zx Z Z M zz Z u Z X Z y Z X Z Xβ + u β + Z X Z u X X M xx X u M xu βiv β Z X Z u 3

34 Central Limit heorem Z u N, σ M zz β IV Z X Z u N, σ M zx M zz M zx 6 Central Limit heorem: Greenberg and Webster 983 z, z,, z t Σ lim µ Σ t z t µ N, Σ Σ t t 7 β IV Vβ IV s Z X Z ZX Z s y Xβ IV y Xβ IV k 3 y Xβ + u, u N, σ I EX u Z u M zu X Z 3 Z X X X W X W B + V B X W B B W W W X X W W W W X Z 4 β IV X X X y X W W W W X X W W W W y β IV β + X W W W W X X W W W W u βiv β X W X W W W W W XW N, M xz M zz M xz 5 W u plim W u W u 3

35 6 X X X W W W W X c h θ R h θ N, R θ Iθ θ X W W W W W W W W X X X d χ R h θ R θ Iθ h θ θ χ G β IV X X X y X X X y I θ Iθ convergence in probability R h θ R θ I θ h θ χ θ G 3 3 Wald, LM, LR θ : K hθ : G vector function, G K θ : K he null hypothesis H : hθ θ : k, restricted maximum likelihood estimate θ : k, unrestricted maximum likelihood estimate Iθ : K K, information matrix log Lθ Iθ E θ θ log Lθ : log-likelihood function R θ hθ θ : G K log Lθ F θ : K θ Wald : W h θ R θ I θ R θ h θ a hθ h θ + h θ θ θ θ h θ h θ θ θ θ R θ θ θ b θ Iθ θ θ N, lim θ θ N, Iθ Lagrange Multiplier : LM F θ Iθ F θ a hθ max θ log Lθ, subject to hθ L log Lθ + λhθ b c L log Lθ θ θ L λ hθ + λ hθ θ log Lθ θ log Lθ E, θ log Lθ log Lθ V E θ θ θ Iθ d e log Lθ θ N, Iθ log Lθ log Lθ Iθ θ θ θ F θ Iθ Fθ χ G χ G θ 33

36 3 Likelihood Ratio : LR log λ χ G λ Lθ L θ For proof, see heil 97, p396 4 All of W, LM and LR are asymptotically distributed as χ G random variables under the null hypothesis H : hθ 5 Under some comditions, we have W LR LM See Engle 98 Wald, Likelihood and Lagrange Multiplier ests in Econometrics, Chap 3 in Handbook of Econometrics, Vol, Grilliches and Intriligator eds, North-Holland 3 cons99txt PROGRAM LINE *********************************************** freq a; smpl ; 3 readfile cons99txt year cons yd price; 4 rconscons/price/; 5 rydyd/price/; 6 lydlogryd; 7 olsq rcons c ryd; 8 ar rcons c ryd; 9 olsq rcons c lyd; param a a a3 ; frml eq rconsa+a*ryd**a3-/a3; lsqtol,maxit eq; 3 a35; 4 rrydryd**a3-/a3; 5 ar rcons c rryd; 6 end; EXECUION ***************************************************** Equation Method of estimation Ordinary Least Squares Dependent variable: RCONS Current sample: 955 to 997 Number of observations: 43 Mean of dependent variable 467 Std dev of dependent var 7937 Sum of squared residuals 9697E+ Variance of residuals 36335E+8 Std error of regression R-squared 9959 Adjusted R-squared Durbin-Watson statistic 5 F-statistic zero slopes 839 Schwarz Bayes Info Crit 7397 Log of likelihood function Estimated Standard Variable Coefficient Error t-statistic C RYD E Equation FIRS-ORDER SERIAL CORRELAION OF HE ERROR MAXIMUM LIKELIHOOD IERAIVE ECHNIQUE 34

37 CONVERGENCE ACHIEVED AFER 7 IERAIONS EQUAIONS: EQ Dependent variable: RCONS Current sample: 955 to 997 Number of observations: 43 Statistics based on transformed data Mean of dependent variable 3685 Std dev of dependent var 5495 Sum of squared residuals 4587E+9 Variance of residuals 35567E+7 Std error of regression 8858 R-squared 8854 Adjusted R-squared 8836 Durbin-Watson statistic 3875 Rho autocorrelation coef 9454 Standard error of rho 4839 t-statistic for rho 345 F-statistic zero slopes 356 Log of likelihood function Statistics based on original data Mean of dependent variable 467 Std dev of dependent var 7937 Sum of squared residuals 4586E+9 Variance of residuals 35567E+7 Std error of regression R-squared Adjusted R-squared Durbin-Watson statistic 3874 Estimated Standard Variable Coefficient Error t-statistic C RYD CONVERGENCE ACHIEVED AFER 7 IERAIONS Log of Likelihood Function Number of Observations 43 Standard Parameter Estimate Error t-statistic A A A Standard Errors computed from quadratic form of analytic first derivatives Gauss Dependent variable: RCONS Mean of dependent variable 467 Std dev of dependent var 7937 Sum of squared residuals 593E+9 Variance of residuals 47553E+8 Std error of regression 3847 R-squared Adjusted R-squared Durbin-Watson statistic 5334 Equation 4 FIRS-ORDER SERIAL CORRELAION OF HE ERROR MAXIMUM LIKELIHOOD IERAIVE ECHNIQUE Equation 3 Method of estimation Ordinary Least Squares CONVERGENCE ACHIEVED AFER Dependent variable: RCONS Current sample: 955 to 997 Number of observations: 43 5 IERAIONS Dependent variable: RCONS Current sample: 955 to 997 Number of observations: 43 Mean of dependent variable 467 Std dev of dependent var 7937 Sum of squared residuals 564E+ Variance of residuals 64487E+9 Std error of regression R-squared 93 Adjusted R-squared 9737 Durbin-Watson statistic 975 F-statistic zero slopes 387 Schwarz Bayes Info Crit 3798 Log of likelihood function Estimated Standard Variable Coefficient Error t-statistic C -58E LYD NONLINEAR LEAS SQUARES Statistics based on transformed data Mean of dependent variable 339 Std dev of dependent var 437 Sum of squared residuals 3778E+9 Variance of residuals E+7 Std error of regression 8375 R-squared 9784 Adjusted R-squared Durbin-Watson statistic Rho autocorrelation coef Standard error of rho 663 t-statistic for rho 366 F-statistic zero slopes 3994 Log of likelihood function Statistics based on original data Mean of dependent variable 467 Std dev of dependent var 7937 Sum of squared residuals 439E+9 Variance of residuals 3447E+7 Std error of regression 8545 R-squared Adjusted R-squared Durbin-Watson statistic Estimated Standard 35

38 Variable Coefficient Error t-statistic C RRYD E ***************************************************** Equation vs Equation Equation H : ρ RCONS t β + β RYD t + u t, u t ρu t + ɛ t, ɛ t iid N, σ ɛ MLE Equation MLE Equation log Lβ, σ ɛ, ρ logπ logσ ɛ + log ρ σ ɛ RCONS t β CONS t β RYD t t RCONS t CONS t RYD t { ρ RCONS t, t RCONS t ρrcons t, { ρ, t t, 3,, ρ, t, 3,, { ρ RYD t, t RYD t ρryd t, t, 3,, ρ MLE Equation max log Lβ, σ β,σɛ ɛ, β, σ ɛ Log of likelihood function ρ MLE Equation max log Lβ, β,σɛ,ρ σ ɛ, ρ β, σ ɛ, ρ Log of likelihood function logλ L β, σ ɛ, log L β, σ ɛ, ρ log L β, σ ɛ, log L β, σ ɛ, ρ logλ χ G G G logλ χ chi % > 6635 ρ Equation vs NONLINEAR LEAS SQUARES NONLINEAR LEAS SQUARES RCONS t a + a RYDa3 t + u t a3 a3 RCONS t a a + aryd t + u t Equation H : a3 G 36

39 a3 MLE Equation Log of likelihood function a3 MLE NONLINEAR LEAS SQUARES Log of likelihood function logλ logλ χ chi % > 6635 a3 3 Equation 3 vs NONLINEAR LEAS SQUARES NONLINEAR LEAS SQUARES RCONS t a + a RYDa3 t + u t a3 a3 RCONS t a + a logryd t + u t Equation 3 H : a3 G a3 MLE Equation 3 Log of likelihood function a3 MLE NONLINEAR LEAS SQUARES Log of likelihood function logλ χ chi % > 6635 a3 4 Equation vs Equation 4 Equation 4 RCONS t a + a RYDa3 t + u t, a3 u t ρu t + ɛ t, ɛ t iid N, σɛ H : a3, ρ MLE Equation MLE Equation 4 PROGRAM 3 5 a3 a3 5 logλ logλ χ chi % > 9 a3 ρ logλ

40 4 y t α + βx t + u t x t y t u t u, u,, u σ z t u t σ z t y t α + βx t + u t y t z t α z t + β x t z t + u t z t α z t + β x t z t + u t u t σ Eu ut t E Eu t z t u t Eu t Vu ut t V Vu t σ z t z t z t u t Vu t σ z t y t,, x t z t z t z t û t γz t + ɛ t γ γ t z t u t σ x t x t y t x t α x t + β + u t x t α x t + β + u t β y t x t β + u t, u t N, σt σ σ Ω σ σ σ σ σ σ σ σ σ σ y t x t β + u t, u t N, σ t, σ t z t α L logπ logz tα yt x t β t z t α 3 y t x t β + u t, u t N, σ t, σ t σ x t β p 4 y t x t β + u t, u t N, σ t, σ t expz t α 5 ARCH autoregressive conditional heteroscedasticity y t x t β + u t, u t N, σ t, σ t α + α u t α >, α σ 38

41 5 DW u, u,, u DW u t u t u, u,, u u, u,, u u, u,, u u, u,, u t u t+ u, u,, u y t α + βx t + u t, u t ρu t + ɛ t, H : ρ, H : ρ ɛ, ɛ,, ɛ t DW û t û t t û t t ûtû t t û t ρ, ρ û t û t u t ρu t + ɛ t u t, u t û t, û t ρ ρ DW ρ DW DW 3 DW k k DW t DW û t û t t û t t û t t ûtû t + t û t t û t û t 4 t û t û + û t ûtû t t û t t û t ρ, û + û t û t, t ûtû t t û t t ûtû t t t û t + û 39

42 : 5 % û t 5 t k A B C D E dl dl du du 4 du 4 du 4 dl 4 dl k A B C D E dl dl du du 4 du 4 du 4 dl 4 dl Y t α + βx t + u t, u t ρu t + ɛ t, ɛ, ɛ,, ɛ u t Y t ρy t α ρ + βx t ρx t + ɛ t, Y t Y t ρy t, X t X t ρx t Y t α + βx t + ɛ t, ɛ, ɛ,, ɛ α α ρ Y t β X t + β X t + + β k X kt + u t, u t ρu t + ɛ t, ɛ, ɛ,, ɛ 3 k 3 A B C D E dl dl du du 4 du 4 du 4 dl 4 dl k 4 A B C D E dl dl du du 4 du 4 du 4 dl 4 dl k 5 A B C D E dl dl du du 4 du 4 du 4 dl 4 dl A: B: C: D: E: 4

43 u t Y t ρy t β X t ρx,t : 5 % k k k 3 k 4 k 5 k 6 k 7 k 8 k 9 k k k k 3 n dl du dl du dl du dl du dl du dl du dl du dl du dl du dl du dl du dl du dl du n k clint/bench/dwcrithtm + β X t ρx,t + Y t Y t ρy t, X t X t ρx,t, X t X t ρx,t,, X kt X kt ρx k,t Y t + β k X t ρx k,t + ɛ t, β X t + β X t + + β k X kt + ɛ t ɛ, ɛ,, ɛ ρ ρ Y t β X t + β X t + + β k X kt + ɛ t, Y t Y t Y t, X t X t X,t,, X kt X kt X k,t DW DW ρ DW ρ ρ Y t Y t ρy t, X t X t ρx,t, X t X t ρx,t,, X kt X kt ρx k,t Y t β X t + β X t + + β k X kt + ɛ t, 3 4

44 i Y t β X t + β X t + + β k X kt + u t, û, û,, û ii û t ρû t + ɛ t, ρ iii Y t Y t ρy t, X t X t ρx,t, X t X t ρx,t,, X kt X kt ρx k,t Y t β X t + β X t + + β k X kt + ɛ t, β, β,, β k iv û t Y t β X t β X t β k X kt, û t û t ρû t + ɛ t, ρ v iii iv iv ρ H : ρ Wald y t x t β + u t, u t ρu t + ɛ t, ɛ t iid N, σ ɛ u t σ Ω σ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ + ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ σ σ ɛ ρ ρ 3 u ɛ ρ ρ ρ ρ 4 u u u ɛ ɛ ɛ a h b H : ρ LM, LR, W y t α + βx t + γy t + u t, 4

45 x t y t β y t y t x t y t y t α + βx t + γy t + u t, y t y t α γ + β γ + γ u t, β γ x t y t y t x t y t y t y t x t 3 DW DW h h h ρ s γ, γ ρ s γ t ρ ûtû t û t t û t u t ρu t + ɛ t H : ρ H : ρ H : ρ h a h > z α/ % H b h < z α/ % H z α/ α % 6 omitting relevant variables including irrelevant variable y X β + X β + u, β : k, β : k β, β, s y X β + u β, σ omitting relevant variables y X β + X β + u y X β + u a β OLSE β X X X y X X X X β + X β + u β + X X X X β + X X X u Eβ β + X X X X β β 43

46 β β β β, σ, efficient and unbiased β, σ, biased β β, β, s, unbiased but inefficient β, β, s, efficient and unbiased including irrelevant variable y X β + u y X β + X β + u β X X + u Xβ + u β a β β, β OLSE β X X X y X X X X β + u X X X β X + u β + X X X u b β β E β c V β σ X X β X V σ β X X X X X X X d A B X Y B D Y Z X, Y, Z X A BD B A + A BD B A B B A Y A BD B BD A BD B A B Z D B A B D + D B A BD B BD e β V β σ X X X X X X X X σ X X V β Vβ f β 7 y Xβ + u, u N, σ I x x x k x x x k X a x x x x x x k + a x x x + + a k x k x k x k a, a,, a k β X X X y X X X X 44

47 3 6 Ridge y t x t β + x t β + u t, u t iidn, σ x t x t r r t x t x t x t x t t x t x t t x t x t t x tx t t x t t x t x t x t V β σ X X σ t x t t x tx t t x t t x t t x tx t t x tx t t x t t x tx t t x t t x t t x tx t t x t t x tx t t x tx t t x t t x t t x t r t x t t x tx t t x tx t t x t V β V β σ t x t r σ t x t r 4 x t x t r V β V β t 5 Ridge β X X X y Q ΛQ X y Λ Q X X X X > β R Q Λ + Q X y X X + Q Q X y X X + R X y X X X X + R Ridge 8 8 stationarity : y, y,, y a Ey t µ Ey t µy t τ µ γτ, τ,,, b y t, y t,, y tr r fy t, y t,, y tr fy t, y t,, y tr fy t +τ, y t +τ,, y tr +τ 45

48 3 Ey t µy t τ µ γτ, τ,,, γτ γ τ log Ly t y t,, y Ey t y t,, y Vy t y t,, y 4 ρτ γτ γ 5 µ t γτ y t ρτ γτ γ tτ+ 6 Lag Operator y t µy t τ µ L τ y t y t τ, τ,, 7 Innovation Form y, y,, y Ly,, y,, y Ly y,, y Ly,, y Ly y,, y Ly y,, y Ly,, y Ly Ly t y t,, y t log Ly, y,, y log Ly + log Ly t y t,, y t 8 AR AR : Autoregressive Model ARp y t φ y t + φ y t + + φ p y t p + ɛ t φly t ɛ t φl φ L φ L φ p L p φx p 3 y t y t k φ k,k y t,, y t k+ y t y t k φ, ρ ρ φ, ρ ρ ρ φ, ρ ρ ρ ρ ρ ρ φ 3, φ 3, φ 3,3 ρ ρ ρ3 46

49 ρ ρk ρk ρ ρk 3 ρk ρk ρk ρ φ k, φ ρ k, ρ φ k,k ρk φ k,k φ k,k ρ ρk ρ ρ ρk 3 ρ ρk ρk ρ ρk φ k,k ρ ρk ρk ρ ρk 3 ρk ρk ρk ρ 4 AR y t φ y t + ɛ t a φx φ x x /φ φ < b AR y t φ y t + ɛ t φ y t + ɛ t + φ ɛ t φ 3 y t 3 + ɛ t + φ ɛ t + φ ɛ t φ s y t s + ɛ t + φ ɛ t + + φ s ɛ t s+ s φ s c y t φ y t + ɛ t y t ɛ t + φ ɛ t + φ ɛ t + AR MA d AR µ Ey t Eɛ t + φ ɛ t + φ ɛ t + Eɛ t + φ Eɛ t + φ Eɛ t + e AR y t φ τ y t τ + ɛ t + φ ɛ t + + φ τ ɛ t τ+ γτ Ey t µy t τ µ Ey t y t τ E φ τ y t τ + ɛ t + φ ɛ t + + φ τ ɛ t τ+ y t τ φ τ Ey t τ y t τ + Eɛ t y t τ + φ Eɛ t y t τ + + φ τ Eɛ t τ+ y t τ φ τ γ ρτ γτ γ φ τ AR y t τ Ey t y t τ φ Ey t y t τ + Eɛ t y t τ { φ γτ, τ γτ φ γτ + σ, τ γτ γ τ τ γ φ γ + σ φ γ + σ σ γ φ 47

50 f AR φ, ρ φ ρ ρ ρ φ, ρ ρ g AR i ρ ρ ρ log Ly,, y log Ly + log Ly t y t,, y t logπ σ log φ σ / φ y logπ logσ σ t y t φ y t logπ logσ log φ σ / φ y σ y t φ y t t Ly πσ / φ exp σ / φ y Ly t y t,, y exp πσ σ y t φ y t log Ly,, y σ σ + σ 4 / φ y + σ 4 y t φ y t t log Ly,, y φ φ φ + φ σ y + σ y t φ y t y t t φ, σ σ φ y + y t φ y t t t φ y ty t t y t + φ y σ φ / φ t ii OLS Sφ y t φ y t t y t φ φ t y t y t t y t t φ + y t ɛ t t y t φ t + ɛ t + φ ɛ t 3 + φ ɛ t 3 + ɛ t t ɛ t + φ ɛ t + φ ɛ t 3 + φ φ + E ɛ t + φ ɛ t + φ ɛ t 3 + ɛ t Eɛ t + φ ɛ t + φ ɛ t 3 + OLSE y t ɛ t + φ ɛ t + φ ɛ t 3 + E ɛ t + φ ɛ t + φ ɛ t 3 + ɛ t yt t ɛ t + φ ɛ t + φ ɛ t + t 48

51 Eɛ t + φ ɛ t + φ ɛ t + σ ɛ φ iii φ y t ɛ t, t,,,, σ ɛ / φ / t y t ɛ t σɛ 4 / φ / t t y t ɛ t φ φ iv N, σ 4 ɛ N, φ y t Ey t σ ɛ φ / t y t ɛ t / t y t N, φ A x, x,, x µ σ x / t x t x µ σ/ N, B x, y y x xy y Nµ, σ, xy Nµ, c σ h AR +drift: y t µ + φ y t + ɛ t φly t µ + ɛ t x c φl φ L y t φl µ + φl ɛ t Ey t φl µ + φl Eɛ t φ µ µ φ 5 AR y t φ y t + φ y t + ɛ t a φx φ x φ x b φ L φ L y t ɛ t φx /α, /α AR α L α Ly t ɛ t y t α L α L ɛ t α /α α α L c AR µ Ey t EφLɛ t d AR γτ Ey t µy t τ µ + α /α α α L Ey t y t τ E φ y t + φ y t + ɛ t y t τ φ Ey t y t τ + φ Ey t y t τ ɛ t + Eɛ t y t τ φ γτ + φ γτ, τ φ γτ + φ γτ + σ, τ 49

52 γ φ γ + φ γ + σ γ φ γ + φ γ γ φ γ + φ γ φ σ γ + φ φ φ e τ γ φ γ+φ γ+σ f γ σ φ ρ φ ρ log Ly,, y log Ly, y + log Ly t y t,, y t3 Ly, y V / exp π y y V y y Ly t y t,, y exp πσ σ y t φ y t φ y t φ / φ V γ φ / φ g AR +drift: y t µ + φ y t + φ y t + ɛ t φly t µ + ɛ t φl φ L φ L y t φl µ + φl ɛ t Ey t φl µ + φl Eɛ t φ µ µ φ φ 6 ARp y t φ y t +φ y t + +φ p y t p +ɛ t a ARp γ b ARp : : σ φ ρ φ p ρp min y t φ y t φ y t φ p y t p φ,, φ p : log Ly,, y log Ly p,, y, y + log Ly t y t,, y tp+ Ly p,, y, y V / π y exp y y y p V y y p Ly t y t,, y exp πσ σ y t φ y t φ y t φ p y t p YuleWalker : φ y t + φ y t + + φ p y t p + ɛ t y t y t, y t,, y t p γ ρ ρp ρp ρ ρp 3 ρp ρp ρp ρ φ ρ φ ρ φ p ρp φ p 5

53 γτ ρτ γτ γ tτ+ y t µy t τ µ c ARp +drift: y t µ + φ y t + φ y t + φ p y t p + ɛ t φly t µ + ɛ t φl φ L φ L φ p L p y t φl µ + φl ɛ t Ey t φl µ + φl Eɛ t φ µ µ φ φ φ p d AR p k p +, p +, φ k,k AR, AR 83 MA MA Moveing Average Model MA q y t ɛ t + θ ɛ t + θ ɛ t + + θ q ɛ t q y t θlɛ t θl + θ L + θ L + + θ q L q θx + θ x + θ x + + θ q x q q AR 3 MA y t ɛ t + θ ɛ t a MA Ey t Eɛ t + θ ɛ t Eɛ t + θ Eɛ t b MA γ Eyt Eɛ t + θ ɛ t Eɛ t + θ ɛ t ɛ t + θɛ t Eɛ t + θ Eɛ t ɛ t + θeɛ t + θσ γ Ey t y t Eɛ t + θ ɛ t ɛ t + θ ɛ t θ σ γ Ey t y t Eɛ t + θ ɛ t ɛ t + θ ɛ t 3 θ ρτ + θ, τ, τ, 3, MA ρ c ɛ t θ ɛ t + y t θ ɛ t + y t + θ y t θ 3 ɛ t 3 + y t + θ y t + θ y t 5

54 θ s ɛ t s + y t + θ y t + θ y t + + θ t s+ y t s+ θ s ɛ t s MA AR y t θ y t θ y t d θ t s+ y t s+ + ɛ t γ + θ σ γ θ σ τ γτ y, y,, y fy, y,, y π V / / exp Y V Y Y y y y, + θ θ θ + θ θ V σ θ + θ θ θ + θ 4 MA +drift: y t µ + ɛ t + θ ɛ t y t µ + θlɛ t θl + θ L Ey t µ + θleɛ t µ 5 MA y t ɛ t + θ ɛ t + θ ɛ t a MA + θ + θσ τ θ + θ θ σ τ γτ θ σ τ b θx /β, /β β, β MA y t ɛ t + θ ɛ t + θ ɛ t + θ L + θ L ɛ t + β L + β Lɛ t MA AR c V σ ɛ t + β L + β L y t β /β β + β L β /β β + β L y t + θ + θ θ + θ θ θ θ + θ θ + θ + θ θ + θ θ θ θ + θ θ θ + θ + θ θ + θ θ θ θ + θ θ + θ + θ d MA +drift: y t µ + ɛ t + θ ɛ t + θ ɛ t y t µ + θlɛ t θl + θ L + θ L Ey t µ + θleɛ t µ 6 MA q y t ɛ t +θ ɛ t +θ ɛ t + +θ q ɛ t q a MA q Ey t Eɛ t + θ ɛ t + θ ɛ t + + θ q ɛ t q 5

55 b MA q σ θ θ τ + θ θ τ+ + + θ q τ θ q, γτ τ,,, q,, τ q +, q +,, q τ σ θ i θ τ+i, τ,,, q γτ i, τ q +, q +, θ c MA q d MA q +drift: y t µ + ɛ t + θ ɛ t + θ ɛ t + + θ q ɛ t q y t µ + θlɛ t θl + θ L + θ L + + θ q L q Ey t µ + θleɛ t µ 84 ARMA ARMA : Autoregressive Moving Average Model ARMA p, q y t φ y t + φ y t + + φ p y t p + ɛ t + θ ɛ t + θ ɛ t + + θ q ɛ t q φly t θlɛ t Y V 3 ARMA, : y t φ y t + ɛ t + θ ɛ t y t Ey t φ Ey t + Eɛ t + θ Eɛ t, 3 Ey t y t τ Ey t y t τ φ Ey t y t τ Ey t y t τ γτ + Eɛ t y t τ + θ Eɛ t y t τ Ey t y t τ γτ { σ, τ Eɛ t y t τ, τ,, φ + θ σ, τ Eɛ t y t τ σ, τ, τ, 3, γ φ γ + + φ θ + θ σ γ φ γ + θ σ γτ φ γτ, τ, 3, γ, γ φ γ φ γ + σ φ θ + θ θ γ γ σ φ + φ θ + θ φ θ σ φ + φ θ + θ φ φ θ σ + φ θ + θ φ + φ θ φ + θ 53

56 ρ + φ θ φ + θ + φ θ + θ ρτ φ ρτ 86 SARIMA SARIMA : Seasonal ARIMA Model SARIMA p, d, q φl d s y t θlɛ t s y t L s y t 85 ARIMA ARIMA : Autoregressive Integrated Moving Average Model ARIMA p, d, q φl d y t θlɛ t d y t d Ly t d y t d y t L d y t, d,, y t y t ARMA p, q +drift: y t µ + φ y t + φ y t + φ p y t p + ɛ t + θ ɛ t + θ ɛ t + + θ q ɛ t q φly t µ + θlɛ t φl φ L φ L φ p L p θl + θ L + θ L + + θ q L q y t φl µ + φl θlɛ t Ey t φl µ + φl θleɛ t φ µ µ φ φ φ p y t y t s s 4 s 87 AR p y t φ y t + + φ p y t p + ɛ t a Ey t+k I t y t+k t y t+k φ y t+k + + φ p y t+k p + ɛ t+k y t+k t φ y t+k t + + φ p y t+k p t s t y s t y s b MA q y t ɛ t + θ ɛ t + + θ q ɛ t q a ɛ, ɛ,, ɛ b y t ɛ t + θ ɛ t + + θ q ɛ t q y t+k ɛ t+k + θ ɛ t+k + + θ q ɛ t+k q c y t+k t ɛ t+k t + θ ɛ t+k t + + θ q ɛ t+k q t s > t ɛ s t s t ɛ s t ɛ s 3 ARMA p, q y t φ y t + + φ p y t p + ɛ t + θ ɛ t + + θ q ɛ t q 54

57 a y t+k φ y t+k + + φ p y t+k p + ɛ t+k + θ ɛ t+k + + θ q ɛ t+k q b y t+k t φ y t+k t + + φ p y t+k p t + ɛ t+k t + θ ɛ t+k t + + θ q ɛ t+k q t s t y s t y s ɛ s t ɛ s s > t ɛ s t 88, Identification d, s AIC SBIC p, q a AIC Akaike s Information Criterion AIC log s p + q + b SBIC Shwarz s Bayesian Information Criterion SBIC log s + p + q log ρτ, τ,,, p, d, q, s AR p MA q ρk, k q +, q +, φk, k, k p +, p +, a s y t s y t s L s b τ c AR τ d MA 55

58 ARIMA 985 IDEN RC Date: / ime: 7:3 SMPL range: Number of observations: 57 Autocorrelations Partial Autocorrelations ac pac ************* ************* ************ * ************ ** ************ *** ************ ****** *********** * *********** * *********** * *********** **** ********** * ********** * 79 6 ********** 786 ********** ** ********* * ********* ********* ********* ** ******** * ******** ******** 63-9 Box-Pierce Q-Stat 4636 Prob SE of Correlations 8 Ljung-Box Q-Stat 64 Prob DCRC-RC - IDEN DC Date: / ime: 7:3 SMPL range:

59 Number of observations: 56 Autocorrelations Partial Autocorrelations ac pac ***** ***** *** ****** ***** ************ ************ ******* ***** * *** * **** ** ************ ** ***** *** **** ************ * **** *** **** ** 5-3 *********** * **** *** **** * *********** ** 84-5 Box-Pierce Q-Stat 867 Prob SE of Correlations 8 Ljung-Box Q-Stat 9386 Prob SDCDC-DC -4 IDEN SDC Date: / ime: 7:4 SMPL range: Number of observations: 5 Autocorrelations Partial Autocorrelations ac pac *** *** * **** *** ******* ******

60 * ** * ** * * ** * ** * * * * * * * * * * * ** * Box-Pierce Q-Stat 7 Prob SE of Correlations 8 Ljung-Box Q-Stat 7439 Prob LS // Dependent Variable is SDC Date: / ime: 7:4 SMPL range: Number of observations: 5 Convergence achieved after 7 iterations VARIABLE COEFFICIEN SD ERROR -SA -AIL SIG MA R-squared Mean of dependent var Adjusted R-squared SD of dependent var 575 SE of regression Sum of squared resid Log likelihood -566 Durbin-Watson stat IDEN RESID Date: / ime: 7:4 SMPL range:

61 Number of observations: 5 Autocorrelations Partial Autocorrelations ac pac *** *** * ** ** * * * * ** ** * * * * * -5-9 * ** * * 7 58 * ** * * * * * * * * ** * 9 38 Box-Pierce Q-Stat 96 Prob 847 SE of Correlations 8 Ljung-Box Q-Stat 37 Prob 53 LS // Dependent Variable is SDC Date: / ime: 7:4 SMPL range: Number of observations: 5 Convergence achieved after 7 iterations VARIABLE COEFFICIEN SD ERROR -SA -AIL SIG MA MA R-squared 3397 Mean of dependent var

62 Adjusted R-squared SD of dependent var 575 SE of regression Sum of squared resid Log likelihood F-statistic Durbin-Watson stat Prob F-statistic IDEN RESID Date: / ime: 7:5 SMPL range: Number of observations: 5 Autocorrelations Partial Autocorrelations ac pac 6 6 ** ** * * * * * * ** * - -6 * * * ** 9 * * * * * * * * * * * * * * 5 7 Box-Pierce Q-Stat 53 Prob 768 SE of Correlations 8 Ljung-Box Q-Stat 664 Prob

63 89 : Frequency Domain fλ π τ γτ cos λτ π γτ exp iλτ τ y t fλ π σ 3 γτ π π fλ cos λτdλ 4 wj < s y t w j x t j j r f x λ x t W λ s W λ w j e iλj j r y t f y λ W λ f x λ W λ transfer function W λ W λw λ s s w j e iλj w j e iλj j r j r W λ W λ 5 MA q y t ɛ t + θ ɛ t + + θ q ɛ t q + θ L + + θ q L q ɛ t θlɛ t f y λ θe iλ θe iλ f ɛ λ θe iλ θe iλ σ π 6 AR p : φly t ɛ t y t φl ɛ t f y λ φe iλ φe iλ f ɛλ φe iλ φe iλ π 7 ARMA p, q : φly t θlɛ t y t φl θlɛ t σ f y λ θe iλ θe iλ φe iλ φe iλ f ɛλ σ θe iλ θe iλ φe iλ φe iλ π 8 ARCH Autoregressive Conditional Heteroskedasticity ARCH p ɛ t ɛ t, ɛ t,, ɛ N, h t h t α + α ɛ t + + α p ɛ t p ɛ t Unconditional Variance : α σ α α α p 6

64 GARCH p, q ɛ t ɛ t, ɛ t,, ɛ N, h t h t α + α ɛ t + + α p ɛ t p + β h t + + β q h t q 3 ARCH y t x t β + ɛ t, ɛ t ɛ t, ɛ t,, ɛ N, α + α ɛ t ɛ,, ɛ fɛ,, ɛ fɛ fɛ t ɛ t,, ɛ t / π / α α exp α / α ɛ π exp α + α ɛ t / t t ɛ t α + α ɛ t log Lβ, α, α ; y,, y logπ log α α α / α y x β logπ log α + α y t x t β t t y t x t β α + α y t x t β α, α, β α >, α > Eɛ t ɛ t, ɛ t,, ɛ α + αɛ t ARCH a y t x t β + u t OLS β û t y t x t β b û t α + α û t α ARCH LM 9 9 Unit Root JD Hamilton, 994 ime Series Analysis, Princeton University Press a X X b AR -consistent -consistent c y t a + a t + ɛ t y t b + y t + ɛ t k y t+ t a + a t + y t+k t b k + y t 6

65 φ < : y t φ y t + ɛ t, ɛ t iid N, σ, y, t,, φ OLSE φ y t y t t t y t φ < φ φ + y t ɛ t t t y t y t ɛ t t φ φ y t ɛ t t t s σ γ t y t y s ɛ t ɛ s y t γ φ φ σ N, γ N, φ φ, t t y t ɛ t y t σ γ φ 3 φ φ φ degenetate distribution 4 φ : y t y t + ɛ t, y y t ɛ t + ɛ t + ɛ t + + ɛ y t N, σ t a y t ɛ t y t y t + ɛ t y t + y t ɛ t + ɛ t y t ɛ t y t y t ɛ t y y t ɛ t y t t σ σ y t ɛ t t y σ σ y t N, σ t y χ σ ɛ t σ t ɛ t t ɛ t 63

66 σ y t ɛ t t y σ X σ X χ b yt E t t y t y t t t Ey t ɛ t σ t t σ 5 φ φ 6 a y t y t + ɛ t, y, ɛ t N, y t ɛ t + ɛ t + + ɛ y t N, t y s y t s > t y s y t ɛ s + ɛ s + + ɛ t+ + ɛ t+ y s y t N, s t b y t y t + e,t + e,t + + e N,t ɛ t e,t +e,t + +e N,t t t+ N N Standard Brownian Motion t W t t t + N, W t : Standard Brownian motion W W t, t [, ] i W ii r < r < < r k W r W r, W r 3 W r,, W r k W r k W s W t N, s t iii W r r Zt σw t N, σ t σ Brownian motion Zt W t t χ c X r r [, ], r < u, r < X r u + u, r < 3 u + u + + u, r X r [ r] u t t X r N, rσ [ r] r X r X r σ N, r r X W σ 64

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x 80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = n λ x i e λ x i! = λ n x i e nλ n x i! n n log l(λ) = log(λ) x i nλ log( x i!) log l(λ) λ = 1 λ n x i n =

More information

AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t

AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t 87 6.1 AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t 2, V(y t y t 1, y t 2, ) = σ 2 3. Thus, y t y t 1,

More information

s = 1.15 (s = 1.07), R = 0.786, R = 0.679, DW =.03 5 Y = 0.3 (0.095) (.708) X, R = 0.786, R = 0.679, s = 1.07, DW =.03, t û Y = 0.3 (3.163) + 0

s = 1.15 (s = 1.07), R = 0.786, R = 0.679, DW =.03 5 Y = 0.3 (0.095) (.708) X, R = 0.786, R = 0.679, s = 1.07, DW =.03, t û Y = 0.3 (3.163) + 0 7 DW 7.1 DW u 1, u,, u (DW ) u u 1 = u 1, u,, u + + + - - - - + + - - - + + u 1, u,, u + - + - + - + - + u 1, u,, u u 1, u,, u u +1 = u 1, u,, u Y = α + βx + u, u = ρu 1 + ɛ, H 0 : ρ = 0, H 1 : ρ 0 ɛ 1,

More information

Microsoft Word - 計量研修テキスト_第5版).doc

Microsoft Word - 計量研修テキスト_第5版).doc Q10-2 テキスト P191 1. 記述統計量 ( 変数 :YY95) 表示変数として 平均 中央値 最大値 最小値 標準偏差 観測値 を選択 A. 都道府県別 Descriptive Statistics for YY95 Categorized by values of PREFNUM Date: 05/11/06 Time: 14:36 Sample: 1990 2002 Included

More information

最小2乗法

最小2乗法 2 2012 4 ( ) 2 2012 4 1 / 42 X Y Y = f (X ; Z) linear regression model X Y slope X 1 Y (X, Y ) 1 (X, Y ) ( ) 2 2012 4 2 / 42 1 β = β = β (4.2) = β 0 + β (4.3) ( ) 2 2012 4 3 / 42 = β 0 + β + (4.4) ( )

More information

10

10 z c j = N 1 N t= j1 [ ( z t z ) ( )] z t j z q 2 1 2 r j /N j=1 1/ N J Q = N(N 2) 1 N j j=1 r j 2 2 χ J B d z t = z t d (1 B) 2 z t = (z t z t 1 ) (z t 1 z t 2 ) (1 B s )z t = z t z t s _ARIMA CONSUME

More information

28

28 y i = Z i δ i +ε i ε i δ X y i = X Z i δ i + X ε i [ ] 1 δ ˆ i = Z i X( X X) 1 X Z i [ ] 1 σ ˆ 2 Z i X( X X) 1 X Z i Z i X( X X) 1 X y i σ ˆ 2 ˆ σ 2 = [ ] y i Z ˆ [ i δ i ] 1 y N p i Z i δ ˆ i i RSTAT

More information

Microsoft Word - 計量研修テキスト_第5版).doc

Microsoft Word - 計量研修テキスト_第5版).doc Q9-1 テキスト P166 2)VAR の推定 注 ) 各変数について ADF 検定を行った結果 和文の次数はすべて 1 である 作業手順 4 情報量基準 (AIC) によるラグ次数の選択 VAR Lag Order Selection Criteria Endogenous variables: D(IG9S) D(IP9S) D(CP9S) Exogenous variables: C Date:

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

6.1 (P (P (P (P (P (P (, P (, P.101

6.1 (P (P (P (P (P (P (, P (, P.101 (008 0 3 7 ( ( ( 00 1 (P.3 1 1.1 (P.3.................. 1 1. (P.4............... 1 (P.15.1 (P.15................. (P.18............3 (P.17......... 3.4 (P................ 4 3 (P.7 4 3.1 ( P.7...........

More information

( 30 ) 30 4 5 1 4 1.1............................................... 4 1.............................................. 4 1..1.................................. 4 1.......................................

More information

4 OLS 4 OLS 4.1 nurseries dual c dual i = c + βnurseries i + ε i (1) 1. OLS Workfile Quick - Estimate Equation OK Equation specification dual c nurser

4 OLS 4 OLS 4.1 nurseries dual c dual i = c + βnurseries i + ε i (1) 1. OLS Workfile Quick - Estimate Equation OK Equation specification dual c nurser 1 EViews 2 2007/5/17 2007/5/21 4 OLS 2 4.1.............................................. 2 4.2................................................ 9 4.3.............................................. 11 4.4

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

tokei01.dvi

tokei01.dvi 2. :,,,. :.... Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 3. (probability),, 1. : : n, α A, A a/n. :, p, p Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN

More information

I L01( Wed) : Time-stamp: Wed 07:38 JST hig e, ( ) L01 I(2017) 1 / 19

I L01( Wed) : Time-stamp: Wed 07:38 JST hig e,   ( ) L01 I(2017) 1 / 19 I L01(2017-09-20 Wed) : Time-stamp: 2017-09-20 Wed 07:38 JST hig e, http://hig3.net ( ) L01 I(2017) 1 / 19 ? 1? 2? ( ) L01 I(2017) 2 / 19 ?,,.,., 1..,. 1,2,.,.,. ( ) L01 I(2017) 3 / 19 ? I. M (3 ) II,

More information

Microsoft Word - 計量研修テキスト_第5版).doc

Microsoft Word - 計量研修テキスト_第5版).doc Q3-1-1 テキスト P59 10.8.3.2.1.0 -.1 -.2 10.4 10.0 9.6 9.2 8.8 -.3 76 78 80 82 84 86 88 90 92 94 96 98 R e s i d u al A c tual Fi tte d Dependent Variable: LOG(TAXH) Date: 10/26/05 Time: 15:42 Sample: 1975

More information

% 10%, 35%( 1029 ) p (a) 1 p 95% (b) 1 Std. Err. (c) p 40% 5% (d) p 1: STATA (1). prtesti One-sample test of pr

% 10%, 35%( 1029 ) p (a) 1 p 95% (b) 1 Std. Err. (c) p 40% 5% (d) p 1: STATA (1). prtesti One-sample test of pr 1 1. 2014 6 2014 6 10 10% 10%, 35%( 1029 ) p (a) 1 p 95% (b) 1 Std. Err. (c) p 40% 5% (d) p 1: STATA (1). prtesti 1029 0.35 0.40 One-sample test of proportion x: Number of obs = 1029 Variable Mean Std.

More information

10:30 12:00 P.G. vs vs vs 2

10:30 12:00 P.G. vs vs vs 2 1 10:30 12:00 P.G. vs vs vs 2 LOGIT PROBIT TOBIT mean median mode CV 3 4 5 0.5 1000 6 45 7 P(A B) = P(A) + P(B) - P(A B) P(B A)=P(A B)/P(A) P(A B)=P(B A) P(A) P(A B) P(A) P(B A) P(B) P(A B) P(A) P(B) P(B

More information

y i OLS [0, 1] OLS x i = (1, x 1,i,, x k,i ) β = (β 0, β 1,, β k ) G ( x i β) 1 G i 1 π i π i P {y i = 1 x i } = G (

y i OLS [0, 1] OLS x i = (1, x 1,i,, x k,i ) β = (β 0, β 1,, β k ) G ( x i β) 1 G i 1 π i π i P {y i = 1 x i } = G ( 7 2 2008 7 10 1 2 2 1.1 2............................................. 2 1.2 2.......................................... 2 1.3 2........................................ 3 1.4................................................

More information

seminar0220a.dvi

seminar0220a.dvi 1 Hi-Stat 2 16 2 20 16:30-18:00 2 2 217 1 COE 4 COE RA E-MAIL: ged0104@srv.cc.hit-u.ac.jp 2004 2 25 S-PLUS S-PLUS S-PLUS S-code 2 [8] [8] [8] 1 2 ARFIMA(p, d, q) FI(d) φ(l)(1 L) d x t = θ(l)ε t ({ε t }

More information

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206,

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206, H28. (TMU) 206 8 29 / 34 2 3 4 5 6 Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206, http://link.springer.com/article/0.007/s409-06-0008-x

More information

Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestim

Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestim TS001 Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestimation 49 mwp-055 corrgram/ac/pac 56 mwp-009 dfgls

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

Microsoft Word - 計量研修テキスト_第5版).doc

Microsoft Word - 計量研修テキスト_第5版).doc Q8-1 テキスト P131 Engle-Granger 検定 Dependent Variable: RM2 Date: 11/04/05 Time: 15:15 Sample: 1967Q1 1999Q1 Included observations: 129 RGDP 0.012792 0.000194 65.92203 0.0000 R -95.45715 11.33648-8.420349

More information

σ t σ t σt nikkei HP nikkei4csv H R nikkei4<-readcsv("h:=y=ynikkei4csv",header=t) (1) nikkei header=t nikkei4csv 4 4 nikkei nikkei4<-dataframe(n

σ t σ t σt nikkei HP nikkei4csv H R nikkei4<-readcsv(h:=y=ynikkei4csv,header=t) (1) nikkei header=t nikkei4csv 4 4 nikkei nikkei4<-dataframe(n R 1 R R R tseries fseries 1 tseries fseries R Japan(Tokyo) R library(tseries) library(fseries) 2 t r t t 1 Ω t 1 E[r t Ω t 1 ] ɛ t r t = E[r t Ω t 1 ] + ɛ t ɛ t 2 iid (independently, identically distributed)

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

<4D F736F F D20939D8C7689F090CD985F93C18EEA8D758B E646F63>

<4D F736F F D20939D8C7689F090CD985F93C18EEA8D758B E646F63> Gretl OLS omitted variable omitted variable AIC,BIC a) gretl gretl sample file Greene greene8_3 Add Define new variable l_g_percapita=log(g/pop) Pg,Y,Pnc,Puc,Ppt,Pd,Pn,Ps Add logs of selected variables

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

st.dvi

st.dvi 9 3 5................................... 5............................. 5....................................... 5.................................. 7.........................................................................

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

(p.2 ( ) 1 2 ( ) Fisher, Ronald A.1932, 1971, 1973a, 1973b) treatment group controll group (error function) 2 (Legendre, Adrian

(p.2 ( ) 1 2 ( ) Fisher, Ronald A.1932, 1971, 1973a, 1973b) treatment group controll group (error function) 2 (Legendre, Adrian 2004 1 1 1.1 Maddala(1993) Mátyás and Sevestre (1996) Hsiao(2003) Baltagi(2001) Lee(2002) Woolridge(2002a), Arellano(2003) Journal of Econometrics Econometrica Greene(2000) Maddala(2001) Johnston and Di-

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3.

1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3. 1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, 2013. Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3. 2 4, 2. 1 2 2 Depress Conservative. 3., 3,. SES66 Alien67 Alien71,

More information

第11回:線形回帰モデルのOLS推定

第11回:線形回帰モデルのOLS推定 11 OLS 2018 7 13 1 / 45 1. 2. 3. 2 / 45 n 2 ((y 1, x 1 ), (y 2, x 2 ),, (y n, x n )) linear regression model y i = β 0 + β 1 x i + u i, E(u i x i ) = 0, E(u i u j x i ) = 0 (i j), V(u i x i ) = σ 2, i

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P 1 1.1 (population) (sample) (event) (trial) Ω () 1 1 Ω 1.2 P 1. A A P (A) 0 1 0 P (A) 1 (1) 2. P 1 P 0 1 6 1 1 6 0 3. A B P (A B) = P (A) + P (B) (2) A B A B A 1 B 2 A B 1 2 1 2 1 1 2 2 3 1.3 A B P (A

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

(pdf) (cdf) Matlab χ ( ) F t

(pdf) (cdf) Matlab χ ( ) F t (, ) (univariate) (bivariate) (multi-variate) Matlab Octave Matlab Matlab/Octave --...............3. (pdf) (cdf)...3.4....4.5....4.6....7.7. Matlab...8.7.....9.7.. χ ( )...0.7.3.....7.4. F....7.5. t-...3.8....4.8.....4.8.....5.8.3....6.8.4....8.8.5....8.8.6....8.9....9.9.....9.9.....0.9.3....0.9.4.....9.5.....0....3

More information

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,. (1 C205) 4 10 (2 C206) 4 11 (2 B202) 4 12 25(2013) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7. 8. 1., 2007 ( ).,. 2. P. G., 1995. 3. J. C., 1988. 1... 2.,,. ii 3.,. 4. F. ( ),..

More information

renshumondai-kaito.dvi

renshumondai-kaito.dvi 3 1 13 14 1.1 1 44.5 39.5 49.5 2 0.10 2 0.10 54.5 49.5 59.5 5 0.25 7 0.35 64.5 59.5 69.5 8 0.40 15 0.75 74.5 69.5 79.5 3 0.15 18 0.90 84.5 79.5 89.5 2 0.10 20 1.00 20 1.00 2 1.2 1 16.5 20.5 12.5 2 0.10

More information

chap10.dvi

chap10.dvi . q {y j } I( ( L y j =Δy j = u j = C l ε j l = C(L ε j, {ε j } i.i.d.(,i q ( l= y O p ( {u j } q {C l } A l C l

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

Microsoft Word - 信号処理3.doc

Microsoft Word - 信号処理3.doc Junji OHTSUBO 2012 FFT FFT SN sin cos x v ψ(x,t) = f (x vt) (1.1) t=0 (1.1) ψ(x,t) = A 0 cos{k(x vt) + φ} = A 0 cos(kx ωt + φ) (1.2) A 0 v=ω/k φ ω k 1.3 (1.2) (1.2) (1.2) (1.1) 1.1 c c = a + ib, a = Re[c],

More information

計量経済分析 2011 年度夏学期期末試験 担当 : 別所俊一郎 以下のすべてに答えなさい. 回答は日本語か英語でおこなうこと. 1. 次のそれぞれの記述が正しいかどうか判定し, 誤りである場合には理由, あるいはより適切な 記述はどのようなものかを述べなさい. (1) You have to wo

計量経済分析 2011 年度夏学期期末試験 担当 : 別所俊一郎 以下のすべてに答えなさい. 回答は日本語か英語でおこなうこと. 1. 次のそれぞれの記述が正しいかどうか判定し, 誤りである場合には理由, あるいはより適切な 記述はどのようなものかを述べなさい. (1) You have to wo 計量経済分析 2011 年度夏学期期末試験 担当 : 別所俊一郎 以下のすべてに答えなさい. 回答は日本語か英語でおこなうこと. 1. 次のそれぞれの記述が正しいかどうか判定し, 誤りである場合には理由, あるいはより適切な 記述はどのようなものかを述べなさい. (1) You have to worry about perfect multicollinearity in the multiple

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

DVIOUT-ar

DVIOUT-ar 1 4 μ=0, σ=1 5 μ=2, σ=1 5 μ=0, σ=2 3 2 1 0-1 -2-3 0 10 20 30 40 50 60 70 80 90 4 3 2 1 0-1 0 10 20 30 40 50 60 70 80 90 4 3 2 1 0-1 -2-3 -4-5 0 10 20 30 40 50 60 70 80 90 8 μ=2, σ=2 5 μ=1, θ 1 =0.5, σ=1

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

Microsoft Word - 計量研修テキスト_第5版).doc

Microsoft Word - 計量研修テキスト_第5版).doc Q4-1 テキスト P83 多重共線性が発生する回帰 320000 280000 240000 200000 6000 4000 160000 120000 2000 0-2000 -4000 74 76 78 80 82 84 86 88 90 92 94 96 98 R e s i dual A c tual Fi tted Dependent Variable: C90 Date: 10/27/05

More information

151021slide.dvi

151021slide.dvi : Mac I 1 ( 5 Windows (Mac Excel : Excel 2007 9 10 1 4 http://asakura.co.jp/ books/isbn/978-4-254-12172-8/ (1 1 9 1/29 (,,... (,,,... (,,, (3 3/29 (, (F7, Ctrl + i, (Shift +, Shift + Ctrl (, a i (, Enter,

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

solutionJIS.dvi

solutionJIS.dvi May 0, 006 6 morimune@econ.kyoto-u.ac.jp /9/005 (7 0/5/006 1 1.1 (a) (b) (c) c + c + + c = nc (x 1 x)+(x x)+ +(x n x) =(x 1 + x + + x n ) nx = nx nx =0 c(x 1 x)+c(x x)+ + c(x n x) =c (x i x) =0 y i (x

More information

第9回 日経STOCKリーグレポート 審査委員特別賞<地域の元気がでるで賞>

第9回 日経STOCKリーグレポート 審査委員特別賞<地域の元気がでるで賞> 1/21 1 2 3 1 2 3 4 5 4 5 6 2/21 2 3 2 4 5 6 3/21 38 38 4 2007 10 471 10 10 () () () OKI () () () () () 1989 2008 4 13 10 10 1 2 3 4 1 3 1 4/21 2 3 3 2 5/21 3 100 1.5 1/2 4 () 1991 2002 10 3 1 6/21 10 6

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

7. フィリップス曲線 経済統計分析 (2014 年度秋学期 ) フィリップス曲線の推定 ( 経済理論との関連 ) フィリップス曲線とは何か? 物価と失業の関係 トレード オフ 政策運営 ( 財政 金融政策 ) への含意 ( 計量分析の手法 ) 関数形の選択 ( 関係が直線的でない場合の推定 ) 推

7. フィリップス曲線 経済統計分析 (2014 年度秋学期 ) フィリップス曲線の推定 ( 経済理論との関連 ) フィリップス曲線とは何か? 物価と失業の関係 トレード オフ 政策運営 ( 財政 金融政策 ) への含意 ( 計量分析の手法 ) 関数形の選択 ( 関係が直線的でない場合の推定 ) 推 7. フィリップス曲線 経済統計分析 ( 年度秋学期 ) フィリップス曲線の推定 ( 経済理論との関連 ) フィリップス曲線とは何か? 物価と失業の関係 トレード オフ 政策運営 ( 財政 金融政策 ) への含意 ( 計量分析の手法 ) 関数形の選択 ( 関係が直線的でない場合の推定 ) 推定結果に基づく予測シミュレーション 物価と失業の関係......... -. -. -........ 失業率

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

1 Stata SEM LightStone 3 2 SEM. 2., 2,. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press.

1 Stata SEM LightStone 3 2 SEM. 2., 2,. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press. 1 Stata SEM LightStone 3 2 SEM. 2., 2,. Alan C. Acock, 2013. Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press. 2 3 2 Conservative Depress. 3.1 2. SEM. 1. x SEM. Depress.

More information

橡表紙参照.PDF

橡表紙参照.PDF CIRJE-J-58 X-12-ARIMA 2000 : 2001 6 How to use X-12-ARIMA2000 when you must: A Case Study of Hojinkigyo-Tokei Naoto Kunitomo Faculty of Economics, The University of Tokyo Abstract: We illustrate how to

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

k2 ( :35 ) ( k2) (GLM) web web 1 :

k2 ( :35 ) ( k2) (GLM) web   web   1 : 2012 11 01 k2 (2012-10-26 16:35 ) 1 6 2 (2012 11 01 k2) (GLM) kubo@ees.hokudai.ac.jp web http://goo.gl/wijx2 web http://goo.gl/ufq2 1 : 2 2 4 3 7 4 9 5 : 11 5.1................... 13 6 14 6.1......................

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

Part 1 GARCH () ( ) /24, p.2/93

Part 1 GARCH () ( ) /24, p.2/93 基盤研究 A 統計科学における数理的手法の理論と応用 ( 研究代表者 : 谷口正信 ) によるシンポジウム 計量ファイナンスと時系列解析法の新たな展開 平成 20 年 1 月 24 日 ~26 日香川大学 Realized Volatility の長期記憶性について 1 研究代表者 : 前川功一 ( 広島経済大学 ) 共同研究者 : 得津康義 ( 広島経済大学 ) 河合研一 ( 統計数理研究所リスク解析戦略研究センター

More information

waseda2010a-jukaiki1-main.dvi

waseda2010a-jukaiki1-main.dvi November, 2 Contents 6 2 8 3 3 3 32 32 33 5 34 34 6 35 35 7 4 R 2 7 4 4 9 42 42 2 43 44 2 5 : 2 5 5 23 52 52 23 53 53 23 54 24 6 24 6 6 26 62 62 26 63 t 27 7 27 7 7 28 72 72 28 73 36) 29 8 29 8 29 82 3

More information

1 Tokyo Daily Rainfall (mm) Days (mm)

1 Tokyo Daily Rainfall (mm) Days (mm) ( ) r-taka@maritime.kobe-u.ac.jp 1 Tokyo Daily Rainfall (mm) 0 100 200 300 0 10000 20000 30000 40000 50000 Days (mm) 1876 1 1 2013 12 31 Tokyo, 1876 Daily Rainfall (mm) 0 50 100 150 0 100 200 300 Tokyo,

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

untitled

untitled 1 n m (ICA = independent component analysis) BSS (= blind source separation) : s(t) =(s 1 (t),...,s n (t)) R n : x(t) =(x 1 (t),...,x n (t)) R m 1 i s i (t) a ji R j 2 (A =(a ji )) x(t) =As(t) (1) n =

More information

1 15 R Part : website:

1 15 R Part : website: 1 15 R Part 4 2017 7 24 4 : website: email: http://www3.u-toyama.ac.jp/kkarato/ kkarato@eco.u-toyama.ac.jp 1 2 2 3 2.1............................... 3 2.2 2................................. 4 2.3................................

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

Microsoft Word - 表紙.docx

Microsoft Word - 表紙.docx 黒住英司 [ 著 ] サピエンティア 計量経済学 訂正および練習問題解答 (206/2/2 版 ) 訂正 練習問題解答 3 .69, 3.8 4 (X i X)U i i i (X i μ x )U i ( X μx ) U i. i E [ ] (X i μ x )U i i E[(X i μ x )]E[U i ]0. i V [ ] (X i μ x )U i i 2 i j E [(X i

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

* n x 11,, x 1n N(µ 1, σ 2 ) x 21,, x 2n N(µ 2, σ 2 ) H 0 µ 1 = µ 2 (= µ ) H 1 µ 1 µ 2 H 0, H 1 *2 σ 2 σ 2 0, σ 2 1 *1 *2 H 0 H

* n x 11,, x 1n N(µ 1, σ 2 ) x 21,, x 2n N(µ 2, σ 2 ) H 0 µ 1 = µ 2 (= µ ) H 1 µ 1 µ 2 H 0, H 1 *2 σ 2 σ 2 0, σ 2 1 *1 *2 H 0 H 1 1 1.1 *1 1. 1.3.1 n x 11,, x 1n Nµ 1, σ x 1,, x n Nµ, σ H 0 µ 1 = µ = µ H 1 µ 1 µ H 0, H 1 * σ σ 0, σ 1 *1 * H 0 H 0, H 1 H 1 1 H 0 µ, σ 0 H 1 µ 1, µ, σ 1 L 0 µ, σ x L 1 µ 1, µ, σ x x H 0 L 0 µ, σ 0

More information

2

2 p1 i 2 = 1 i 2 x, y x + iy 2 (x + iy) + (γ + iδ) = (x + γ) + i(y + δ) (x + iy)(γ + iδ) = (xγ yδ) + i(xδ + yγ) i 2 = 1 γ + iδ 0 x + iy γ + iδ xγ + yδ xδ = γ 2 + iyγ + δ2 γ 2 + δ 2 p7 = x 2 +y 2 z z p13

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

1 I

1 I 1 I 3 1 1.1 R x, y R x + y R x y R x, y, z, a, b R (1.1) (x + y) + z = x + (y + z) (1.2) x + y = y + x (1.3) 0 R : 0 + x = x x R (1.4) x R, 1 ( x) R : x + ( x) = 0 (1.5) (x y) z = x (y z) (1.6) x y =

More information

(u(x)v(x)) = u (x)v(x) + u(x)v (x) ( ) u(x) = u (x)v(x) u(x)v (x) v(x) v(x) 2 y = g(t), t = f(x) y = g(f(x)) dy dx dy dx = dy dt dt dx., y, f, g y = f (g(x))g (x). ( (f(g(x)). ). [ ] y = e ax+b (a, b )

More information

確率論と統計学の資料

確率論と統計学の資料 5 June 015 ii........................ 1 1 1.1...................... 1 1........................... 3 1.3... 4 6.1........................... 6................... 7 ii ii.3.................. 8.4..........................

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2 1 1.1 R(x) = 0 y + P (x)y + Q(x)y = R(x)...(1) y + P (x)y + Q(x)y = 0...(2) 1 2 u(x) v(x) c 1 u(x)+ c 2 v(x) = 0 c 1 = c 2 = 0 c 1 = c 2 = 0 2 0 2 u(x) v(x) u(x) u (x) W (u, v)(x) = v(x) v (x) 0 1 1.2

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

L P y P y + ɛ, ɛ y P y I P y,, y P y + I P y, 3 ŷ β 0 β y β 0 β y β β 0, β y x x, x,, x, y y, y,, y x x y y x x, y y, x x y y {}}{,,, / / L P / / y, P

L P y P y + ɛ, ɛ y P y I P y,, y P y + I P y, 3 ŷ β 0 β y β 0 β y β β 0, β y x x, x,, x, y y, y,, y x x y y x x, y y, x x y y {}}{,,, / / L P / / y, P 005 5 6 y β + ɛ {x, x,, x p } y, {x, x,, x p }, β, ɛ E ɛ 0 V ɛ σ I 3 rak p 4 ɛ i N 0, σ ɛ ɛ y β y β y y β y + β β, ɛ β y + β 0, β y β y ɛ ɛ β ɛ y β mi L y y ŷ β y β y β β L P y P y + ɛ, ɛ y P y I P y,,

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

ばらつき抑制のための確率最適制御

ばらつき抑制のための確率最適制御 ( ) http://wwwhayanuemnagoya-uacjp/ fujimoto/ 2011 3 9 11 ( ) 2011/03/09-11 1 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 2 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 3 / 46 (1/2) r + Controller - u Plant y

More information