untitled

Size: px
Start display at page:

Download "untitled"

Transcription

1 BIG-BANG! STARS SUPERNOVAE? R-PROCESS COSMIC-RAYS R S N=50) R S N=82) R S N=126) ++ + Actinide AGB STARS S-PROCESS 232 Th (14.05Gy) P 238 U (4.47 Gy) SUPERNOVA-γ PROCESS? 1

2 INFLATION (Grav. Wave, yet to wait) Different Cosmological Models QCD phase transition -What is Ω CDM =? - Cosmological const. is too small and fine tuned! Ω Λ =? Observed Expansing Universe ν-dec, e + e - -annihilation Big-Bang Nucleosynthesis Golden Age of Cosmology Radiation-Dom. Era Observational Signatures at different cosmic epochs ]! Universe is flat & accelerating! Ω B + Ω CDM + Ω Λ = 1 CMB Anisotropies COBE (1992), WMAP (2003, 2006) Matter-Dom. Era Type Ia SNe, Matter Power sec 3 min 10 5 y 1-10 Gy 2

3 Similarity between the Quantum-World and the Universe Land Earth Stars & Galaxy Large Scale Structure Inside the Proton = Microscopic Quantum World City Energy density fluctuates in Quantum Mechanically. Human Energy density (Temperature) of the Universe fluctuates. Nail Horizon = Early Universe Elem. Particle (Quark) Nucleus (Element) Atom DNA Cell Baby Big-Bang Universe expanded, and quantum fluctuation grew! QGP current sea QGP E=mc 2 3

4 vs. SCIENTIFIC GOAL OF THIS LECTURE is to elucidate the tight coupling between the frontline of cosmology and nuclear astrophysics. Einstein Cosmology 1915 Big-Bang Nucleosynthesis 1948 Albert Einstein George Gamow 4

5 Ω Λ, Ω 5

6 Standard Big-Bang Cosmology The Universe is homogeneous and isotropic in a large enough scale. T = K δt < 18 µk 2dF Quasar (Matter) Distribution: Homogeneous Sky Maps of CMB; Isotropic Newtonian Equation Birkoff s Theorem: Gravity due to mass interior to an arbitrary sphere. r(t) M Homogeneous & Isotropic M = 4/3πρr 3 E = 1 2 m mv r Ý 2 GmM r m 1 2 m r Ý = Gm[(4 / 3)πρr 3 ] mv 2 + E r vr Ý r 2 x 1/2mr 2 = 8 3 πgρ + 2 E mr 2 6

7 [ ] open critical closed 0 NOW t 0 = t U 7

8 General Relativity (1) Weak Gravity (should include Newtonian Gravity), (2) Covariance G µν = R µν 1 2 Rgµν = 8π GT µν +Λg µν R µν = R λ µλν = λ Γ λ λ µν ν Γ µλ + Γ ηλ λ Γ η µν Γ λ µν = 1 { 2 gλβ ν g βµ + µ g βν β g µν } Γ λ η ην Γ µλ 1 g µν = a 2 (t) 1 kr 2 a 2 (t)r 2 a 2 (t)r 2 sin 2 θ ρ T µ ν = p p p Einstein Equation Newtonian Equation G 00 = 8π GT 00 + Λg 00 Hubble parameter H = v/r k = E/m Friedmann Eq. H 2 = 8 3 πgρ + k + Λ a 2 3 Cosmological Constant vr Ý r 2 = 8 3 πgρ + E mr 2 H 2 2 = H Ω γ 0 a 4 + Ω M a 3 + Ω k a 2 +Ω Λ Ω α = ρ α /ρ C ρ C = 3H 02 /8πG a = r = scale factor Deceleration parameter Ω 1 at t = t 0, a 0 = 1 q 0 = (d 2 r/dt 2 )/rh 2 = [Ω CDM /2 Ω Λ ] Ω CDM /2 Ω Λ acceleration! 8

9 Newtonian Orbits: OPEN or CLOSED? Explorer - OPEN Ω < 1 E > 0 ( v > v esc ) Missile - CLOSED Ω > 1 E < 0 ( v < v esc ) k > 0 k < 0 Satellite -MARGINAL Ω = 1 E = 0 ( v = v esc ) k = 0 Escaping Velocity v esc = 11.2 km/s Cosmic Expansion Dark Matter + Dark Energy Affect the expansion of the Universe. Ω CDM Ω Λ accelerating OPEN Flat, but Expand faster! Observable Signature No. 1 History of Hot Big-Bang Expansion decelerating CLOSED CRITICAL Flat! NOW 9

10 Robertson-Walker metric 10

11 Space-space component G 00 = 8π GT 00 +Λg 00 H 2 = 8 3 πgρ + k a 2 + Λ 3 Friedmann Equation H 2 2 = H Ω γ 0 a 4 + Ω M a 3 + Ω k a 2 +Ω Λ Energy Density log ρ Cosmic Expansion History Ω α = ρ α /ρ C, ρ C = 3H 02 /8πG R(t) = a(t) : scale factor Radiation a -4 Λ Matter a -3 Photon Last Scattering Now Cosmic time t [2] Inflationary Scenario Hubble (Causal) Horizon 11

12 Physical Distance Comoving Coordinate Causal Horizon c = velocity of light is constant in any time t & any scale factor R(t). R(t) = SCALE FACTOR 12

13 Metric Expansion R(t) ~ exp(αt) (Inf.) ~ t 1/2 (RD) ~ t 2/3 (MD) Energy Density ρ(t) ~ const. (Inf.) ~ T 4 (RD) ~ T 3 (MD) 13

14 Good bye (Inflation) DIS-CONNEXTED Hello (RD/MD) - SCENARIO HORIZON-in Quantum Fluctuation Causally Connected HORIZON PROBLEM, SOLVED! Exponential Expansion of CURVED-SPACE FLATNESS PROBLEM, SOLVED! 1 = Ω M + Ω Λ 14

15 [3] COSMIC EXPANSION AGE : RED-SHIFT Z : MATTER DOMINATED EPOCH : 1 = Ω γ /a 4 + Ω /a 3 + Ω M /a + Ω Λ Ω /a 3 + Ω M /a + Ω Λ z Ω M Ω Λ The COSMIC (UNIVERSE) AGE could NOT be SHORTER than the GALACTIC AGE! 15

16 AGE of GLOBULAR CLUSTER 16

17 Galactic AGE > Globular Cluster AGE 17

18 Dark Energy (Cosmological const.) can make the COSMIC AGE LONGER! 13.7 Gyr (WMAP-CMB) 18

19 Ω Λ, Ω Ω Λ Ω 19

20 Today: Ω tot = At t = 1 sec: Ω tot (nucleosynthesis) = Type Ia Supernova Redshift-Magnitude Relation 20

21 Latest CMB Results Fluctuations of Cosmic Microwave Background Anisotropies Spergel et al. 2003, ApJS, 148, 175. WMAP determined all cosmological parameters? t 0 Model dependent! = /- 0.2 Gyr Only 4.4% baryons are known. What is Ω m or Ω Λ? A. Penzias & R. Wilson discovered CBR in J. Smoot & R. Mathar discovered CMB Anisotropies in R. Wilson A. Penzias CBR is a direct evidence of Hot Big-Bang! J. Smoot CMB Anisotropies opens a door for Physical Cosmology! Planck: T = 2.7 K T = K δt/t = of oder

22 Cosmic Microwave Background Anisotropies WMAP-3 Two-point (direction) Correlation Function: C = δt/t(n) δt/t(n+θ) Temperature Fluctuations, expanded in terms of spherical harmonics: δt T = l 2 C l a lm m a lm Y lm (θ,φ) l= 2 l= 4 Cosmological Parameter Dependence Angle (deg) smaller Larger Ω Λ Larger Ω CDM Larger Ω B CMB Anisotropies Multipole l Dark Matter potential Ω CDM Baryon Mass Ω B Tγ Photon Pressure 22

23 Sachs-Wolfe Effect & ν-free Ftreaming Effect Acoustic Oscillation Finite mass of neutrinos make the decay of curvature rapidly. Ψ - CDM Massive Dodelson et al.,1996, ApJ, 467, 10) 45 Larger Ω Λ Universal expansion becomes faster! Ω Λ = 0 Physical fluctuation lngth scale λ k -1 looks smaller in angular scale θ l -1 for observer! Ω Λ =

24 MASS of the GALAXY Galaxy = stars MACHO = massive astronomical Compact halo objects Almost ALL luminous stars MACHO MASS of the CLUSTER? CLUSTER = 10 ~ 1000 galaxies 24

25 Hot X-Ray Gas Asymptotic Value = Universal Gas Fraction f U = Ω b /Ω M h 50 3/2 Ω b h 1002 ~ 0.04 (WMAP) Ω M ~ 0.35 h 100-1/2 MASS of the Rich Clusters and Large Scale Structure Asymptotic Value represents Universal Mass Ω M ~

26 HOW MASSIVE IS THE UNIVERSE? 26

27 27

Big Bang Planck Big Bang 1 43 Planck Planck quantum gravity Planck Grand Unified Theories: GUTs X X W X 1 15 ev 197 Glashow Georgi 1 14 GeV 1 2

Big Bang Planck Big Bang 1 43 Planck Planck quantum gravity Planck Grand Unified Theories: GUTs X X W X 1 15 ev 197 Glashow Georgi 1 14 GeV 1 2 12 Big Bang 12.1 Big Bang Big Bang 12.1 1-5 1 32 K 1 19 GeV 1-4 time after the Big Bang [ s ] 1-3 1-2 1-1 1 1 1 1 2 inflationary epoch gravity strong electromagnetic weak 1 27 K 1 14 GeV 1 15 K 1 2 GeV

More information

C10-075 26 2 12 1 1 4 1.1............................. 4 1.2............................ 5 1.3................................... 5 2 6 2.1............................ 6 2.2......................... 6

More information

untitled

untitled 20 11 1 KEK 2 (cosmological perturbation theory) CMB R. Durrer, The theory of CMB Anisotropies, astro-ph/0109522; A. Liddle and D. Lyth, Cosmological Inflation and Large-Scale Structure (Cambridge University

More information

4/15 No.

4/15 No. 4/15 No. 1 4/15 No. 4/15 No. 3 Particle of mass m moving in a potential V(r) V(r) m i ψ t = m ψ(r,t)+v(r)ψ(r,t) ψ(r,t) = ϕ(r)e iωt ψ(r,t) Wave function steady state m ϕ(r)+v(r)ϕ(r) = εϕ(r) Eigenvalue problem

More information

,,.,,.,.,,,.,.,.,..,.,,.,.,,..,, CMB

,,.,,.,.,,,.,.,.,..,.,,.,.,,..,, CMB ,,.,,.,.,,,.,.,.,..,.,,.,.,,..,,. 1 3 2 3 2.1............................................. 3 2.2 CMB............................................... 5 2.3........................................... 7 2.4.............................................

More information

02-量子力学の復習

02-量子力学の復習 4/17 No. 1 4/17 No. 2 4/17 No. 3 Particle of mass m moving in a potential V(r) V(r) m i ψ t = 2 2m 2 ψ(r,t)+v(r)ψ(r,t) ψ(r,t) Wave function ψ(r,t) = ϕ(r)e iωt steady state 2 2m 2 ϕ(r)+v(r)ϕ(r) = εϕ(r)

More information

inflation.key

inflation.key 2 2 G M 0 0-5 ϕ / M G 0 L SUGRA = 1 2 er + eg ij Dµ φ i Dµ φ j 1 2 eg2 D (a) D +ieg ij χ j σ µ Dµ χ i + eϵ µνρσ ψ µ σ ν Dρ ψ σ 1 4 ef (ab) R F (a) [ ] + i 2 e λ (a) σ µ Dµ λ (a) + λ (a) σ µ Dµ λ (a) 1

More information

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq 2007 2007 7 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 2007 2 4 5 6 6 2 2.1 1: KEK Web page 1 1 1 10 16 cm λ λ = h/p p ( ) λ = 10 16 cm E pc [ev] 2.2 quark lepton 2 2.2.1 u d c s t b + 2 3 e 1 3e electric charge

More information

2 g g = GM R 2 = 980 cm s ;1 M m potential energy E r E = ; GMm r (1.4) potential = E m = ;GM r (1.5) r F E F = ; de dr (1.6) g g = ; d dr (1.7) g g g

2 g g = GM R 2 = 980 cm s ;1 M m potential energy E r E = ; GMm r (1.4) potential = E m = ;GM r (1.5) r F E F = ; de dr (1.6) g g = ; d dr (1.7) g g g 1 1 (gravitation) 1.1 m F a ma = F (1.1) F a m F 1.1 m F a (1.1) m a F m F a m a F F a m 0 0 1.2 (universal gravitation) (potential) M m gravitational force F r F = ; GMm r 2 (1.2) G = 6:67 10 ;8 dyn cm

More information

vol5-honma (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5

vol5-honma (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5 2.2 1 2.2 2.2.1 (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5 kpc, Θ 0 = 220 km s 1. (2.1) R 0 7kpc 8kpc Θ 0 180 km s 1 270

More information

2009 2 26 1 3 1.1.................................................. 3 1.2..................................................... 3 1.3...................................................... 3 1.4.....................................................

More information

1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2

1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2 1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2 = 8πG a 3c 2 ρ Kc2 a 2 + Λc2 3 (3), ä a = 4πG Λc2 (ρ

More information

Title ブラックホールと重力波天文学 Author(s) 長峯, 健太郎 Citation 高大連携物理教育セミナー報告書. 28 Issue Date Text Version publisher URL DO

Title ブラックホールと重力波天文学 Author(s) 長峯, 健太郎 Citation 高大連携物理教育セミナー報告書. 28 Issue Date Text Version publisher URL   DO Title ブラックホールと重力波天文学 Author(s) 長峯, 健太郎 Citation 高大連携物理教育セミナー報告書. 28 Issue Date 2017-03 Text Version publisher URL http://hdl.handle.net/11094/60516 DOI rights Osaka University Knowledge Archive : OUKA

More information

PowerPoint Presentation

PowerPoint Presentation 2010 KEK (Japan) (Japan) (Japan) Cheoun, Myun -ki Soongsil (Korea) Ryu,, Chung-Yoe Soongsil (Korea) 1. S.Reddy, M.Prakash and J.M. Lattimer, P.R.D58 #013009 (1998) Magnetar : ~ 10 15 G ~ 10 17 19 G (?)

More information

( ) Note Ω m = 1 Ω m : ( ) r-process α 1: 2 32T h(t 1/2 = y) 2 38U(t 1/2 = y) 2 35U(t 1/2 = 7.038

( ) Note Ω m = 1 Ω m : ( ) r-process α 1: 2 32T h(t 1/2 = y) 2 38U(t 1/2 = y) 2 35U(t 1/2 = 7.038 ( ) Note 4 19 11 22 6 6.1 1 Ω m = 1 Ω m.3 6.1.1 : ( ) r-process α 1: 2 32T h(t 1/2 = 1.45 1 1 y) 2 38U(t 1/2 = 4.468 1 9 y) 2 35U(t 1/2 = 7.38 1 8 y) 2 44Pu(t 1/2 = 8.26 1 7 y) β / (J.A.Johnson and M.Bolte:

More information

untitled

untitled --- = ---- 16 Z 8 0 8 8 0 Big Bang 8 8 s-process 50 r-process 8 50 N r-process s-process Hydrogen 71% Helium 8% Others 1.9% Heay 4-4% lements(>ni p-process (γ process? r-process s-process Big Bang H,He

More information

中央大学セミナー.ppt

中央大学セミナー.ppt String Gas Cosmology References Brandenberger & Vafa, Superstrings in the early universe, Nucl.Phys.B316(1988) 391. Tseytlin & Vafa, Elements of string cosmology, Nucl.Phys.B372 (1992) 443. Brandenberger,

More information

BH BH BH BH Typeset by FoilTEX 2

BH BH BH BH Typeset by FoilTEX 2 GR BH BH 2015.10.10 BH at 2015.09.07 NICT 2015.05.26 Typeset by FoilTEX 1 BH BH BH BH Typeset by FoilTEX 2 1. BH 1.1 1 Typeset by FoilTEX 3 1.2 2 A B A B t = 0 A: m a [kg] B: m b [kg] t = t f star free

More information

: 8.2: A group (i.e. a very small cluster) of galaxies superimposed on a x-ray image from the ROSAT satellite

: 8.2: A group (i.e. a very small cluster) of galaxies superimposed on a x-ray image from the ROSAT satellite 1 8 8.1 8.1.1 8.1: ( Ω = ρ/ρ c ) (Fukugita, M. et al., APJ 503 (1998) 518) ( 15%) (z 0 ) 1.................. 0.0026 h 1 0.0043 h 1 0.0014 h 1 A 2..................... 0.00086 h 1 0.00129 h 1 0.00051 h

More information

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論 email: takahash@sci.u-hyogo.ac.jp May 14, 2009 Outline 1. 2. 3. 4. 5. 6. 2 / 262 Today s Lecture: Mode-mode Coupling Theory 100 / 262 Part I Effects of Non-linear Mode-Mode Coupling Effects of Non-linear

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

Mathews Grant J. (University of Notre Dame) Boyd Richard N. (Lawrence Livermore National Laboratory) 2009/5/21

Mathews Grant J. (University of Notre Dame) Boyd Richard N. (Lawrence Livermore National Laboratory) 2009/5/21 Mathews Grant J. (University of Notre Dame) Boyd Richard N. (Lawrence Livermore National Laboratory) 2009/5/21 Abstract strongly interacting massive particles (SIMPs, X) Big Bang (BBN) X heavy colored

More information

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) 1 9 v..1 c (216/1/7) Minoru Suzuki 1 1 9.1 9.1.1 T µ 1 (7.18) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) E E µ = E f(e ) E µ (9.1) µ (9.2) µ 1 e β(e µ) 1 f(e )

More information

125-1.dvi

125-1.dvi Vol.44, No.1&2 (2017) 1 14 An Interpretation on Structural Realism to Spacetime Used in Big-Bang Cosmology Is Space Really Expanding? Sho FUJITA Abstract This paper discusses a philosophical answer about

More information

Gravothermal Catastrophe & Quasi-equilibrium Structure in N-body Systems

Gravothermal Catastrophe & Quasi-equilibrium Structure  in N-body Systems 2004/3/1 3 N 1 Antonov Problem & Quasi-equilibrium State in N-body N Systems A. Taruya (RESCEU, Univ.Tokyo) M. Sakagami (Kyoto Univ.) 2 Antonov problem N-body study of quasi-attractivity M15 T Antonov

More information

H.Haken Synergetics 2nd (1978)

H.Haken Synergetics 2nd (1978) 27 3 27 ) Ising Landau Synergetics Fokker-Planck F-P Landau F-P Gizburg-Landau G-L G-L Bénard/ Hopfield H.Haken Synergetics 2nd (1978) (1) Ising m T T C 1: m h Hamiltonian H = J ij S i S j h i S

More information

A

A A04-164 2008 2 13 1 4 1.1.......................................... 4 1.2..................................... 4 1.3..................................... 4 1.4..................................... 5 2

More information

B 1 B.1.......................... 1 B.1.1................. 1 B.1.2................. 2 B.2........................... 5 B.2.1.......................... 5 B.2.2.................. 6 B.2.3..................

More information

宇宙理論研究室ガイダンス

宇宙理論研究室ガイダンス 60 S.L.Glashow Glashow : Interaction Warner Books 4 4 1978 12 CMB 10-40 -40 CMB / The universe in a nutshell A H He C, O Ne, Mg Si Fe Sphere(0.1 cylinder (0. slab (0. Cylinder hole (0. Spherical hole

More information

A 99% MS-Free Presentation

A 99% MS-Free Presentation A 99% MS-Free Presentation 2 Galactic Dynamics (Binney & Tremaine 1987, 2008) Dynamics of Galaxies (Bertin 2000) Dynamical Evolution of Globular Clusters (Spitzer 1987) The Gravitational Million-Body Problem

More information

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 2, S 1 N 1 = S 2 N 2 2 (chemical potential) µ S N

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

LNSC2010_HK.dvi

LNSC2010_HK.dvi 1 1 1.1.......... 1 1.2........... 3 1.3.......... 4 1.4.... 5 2 7 2.1........ 7 2.2........ 8 2.3............. 9 2.4.......... 10 2.5.... 12 2.5.1........... 12 2.5.2....... 13 2.6........... 14 2.6.1.......

More information

dark matter density profiles

dark matter density profiles LSS & CDM 2 LSS & CDM 3 SPH simulation: movie SPH simulation in CDM : dark matter hot gas galaxy (Yoshikawa, Taruya, Jing & Suto 2001) LSS & CDM 4 Confronting elements of the CDM paradigm Global cosmological

More information

1 N Mpc well-defined 1 1) Davis et al. 4)? N 2 CMB COBE CMB 2

1 N Mpc well-defined 1 1) Davis et al. 4)? N 2 CMB COBE CMB 2 Observational Cosmology towards the 21st century Yasushi Suto Department of Physics and Research Center for the Early Universe, University of Tokyo, Tokyo 113-0033 We have witnessed a rapid and significant

More information

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices Grand Unification M.Dine, Supersymmetry And String Theory: Beyond the Standard Model 6 2009 2 24 by Standard Model Coupling constant θ-parameter 8 Charge quantization. hypercharge charge Gauge group. simple

More information

main.dvi

main.dvi SGC - 48 208X Y Z Z 2006 1930 β Z 2006! 1 2 3 Z 1930 SGC -12, 2001 5 6 http://www.saiensu.co.jp/support.htm http://www.shinshu-u.ac.jp/ haru/ xy.z :-P 3 4 2006 3 ii 1 1 1.1... 1 1.2 1930... 1 1.3 1930...

More information

( )

( ) 1. 2. 3. 4. 5. ( ) () http://www-astro.physics.ox.ac.uk/~wjs/apm_grey.gif http://antwrp.gsfc.nasa.gov/apod/ap950917.html ( ) SDSS : d 2 r i dt 2 = Gm jr ij j i rij 3 = Newton 3 0.1% 19 20 20 2 ( ) 3 3

More information

総研大恒星進化概要.dvi

総研大恒星進化概要.dvi The Structure and Evolution of Stars I. Basic Equations. M r r =4πr2 ρ () P r = GM rρ. r 2 (2) r: M r : P and ρ: G: M r Lagrange r = M r 4πr 2 rho ( ) P = GM r M r 4πr. 4 (2 ) s(ρ, P ) s(ρ, P ) r L r T

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m A f i x i B e e e e 0 e* e e (2.1) e (b) A e = 0 B = 0 (c) (2.1) (d) e

More information

Akira MIZUTA(KEK) AM, Nagataki, Aoi (ApJ, , 2011) AM + (in prep)

Akira MIZUTA(KEK) AM, Nagataki, Aoi (ApJ, , 2011) AM + (in prep) Akira MIZUTA(KEK) AM, Nagataki, Aoi (ApJ, 732 26, 2011) AM + (in prep) 2011.12.28 GRB GRB. ex. GRB980425/SN1998bw, GRB030329/SN2003dh XRF060218/SN2006aj. GRB091127/SN2009nz XRF100316D/SN2010bh Spectrum

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat / Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiation and the Continuing Failure of the Bilinear Formalism,

More information

Mott散乱によるParity対称性の破れを検証

Mott散乱によるParity対称性の破れを検証 Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ

More information

QMI_10.dvi

QMI_10.dvi 25 3 19 Erwin Schrödinger 1925 3.1 3.1.1 σ τ x u u x t ux, t) u 3.1 t x P ux, t) Q θ P Q Δx x + Δx Q P ux + Δx, t) Q θ P u+δu x u x σ τ P x) Q x+δx) P Q x 3.1: θ P θ Q P Q equation of motion P τ Q τ σδx

More information

QMI_09.dvi

QMI_09.dvi 25 3 19 Erwin Schrödinger 1925 3.1 3.1.1 3.1.2 σ τ 2 2 ux, t) = ux, t) 3.1) 2 x2 ux, t) σ τ 2 u/ 2 m p E E = p2 3.2) E ν ω E = hν = hω. 3.3) k p k = p h. 3.4) 26 3 hω = E = p2 = h2 k 2 ψkx ωt) ψ 3.5) h

More information

QMI_10.dvi

QMI_10.dvi ... black body radiation black body black body radiation Gustav Kirchhoff 859 895 W. Wien O.R. Lummer cavity radiation ν ν +dν f T (ν) f T (ν)dν = 8πν2 c 3 kt dν (Rayleigh Jeans) (.) f T (ν) spectral energy

More information

H+He H+He M > 10 M He He Wolf-Rayet Minit = 13 ~ 100 M, Zinit = 0.0001 ~ 0.02 CNO SN 2007bi (Type Ic) progenitor Minit > 100 M, Zinit = 0.004 WO star? Core collapse Rotating star model Saio, Nomoto, and

More information

arxiv: v1(astro-ph.co)

arxiv: v1(astro-ph.co) arxiv:1311.0281v1(astro-ph.co) R µν 1 2 Rg µν + Λg µν = 8πG c 4 T µν Λ f(r) R f(r) Galileon φ(t) Massive Gravity etc... Action S = d 4 x g (L GG + L m ) L GG = K(φ,X) G 3 (φ,x)φ + G 4 (φ,x)r + G 4X (φ)

More information

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 (vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann

More information

nenmatsu5c19_web.key

nenmatsu5c19_web.key KL π ± e νe + e - (Ke3ee) Ke3ee ν e + e - Ke3 K 0 γ e + π - Ke3 KL ; 40.67(%) Ke3ee K 0 ν γ e + π - Ke3 KL ; 40.67(%) Me + e - 10 4 10 3 10 2 : MC Ke3γ : data K L real γ e detector matter e e 10 1 0 0.02

More information

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

反D中間子と核子のエキゾチックな   束縛状態と散乱状態の解析 .... D 1 in collaboration with 1, 2, 1 RCNP 1, KEK 2 . Exotic hadron qqq q q Θ + Λ(1405) etc. uudd s? KN quasi-bound state? . D(B)-N bound state { { D D0 ( cu) B = D ( cd), B = + ( bu) B 0 ( bd) D(B)-N

More information

Author Workshop 20111124 Henry Cavendish 1731-1810 Biot-Savart 26 (1) (2) (3) (4) (5) (6) Priority Proceeding Impact factor Full paper impact factor Peter Drucker 1890-1971 1903-1989 Title) Abstract

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

4 19

4 19 I / 19 8 1 4 19 : : f(e, J), f(e) Phase mixing Landau Damping, violent relaxation : 2 2 : ( ) http://antwrp.gsfc.nasa.gov/apod/ap950917.html ( ) http://www-astro.physics.ox.ac.uk/~wjs/apm_grey.gif

More information

untitled

untitled 71 7 3,000 1 MeV t = 1 MeV = c 1 MeV c 200 MeV fm 1 MeV 3.0 10 8 10 15 fm/s 0.67 10 21 s (1) 1fm t = 1fm c 1fm 3.0 10 8 10 15 fm/s 0.33 10 23 s (2) 10 22 s 7.1 ( ) a + b + B(+X +...) (3) a b B( X,...)

More information

Contents 1. Ia? 2. Ia 3. WISH Ia cosmology 4. WISH Ia + rate 5.

Contents 1. Ia? 2. Ia 3. WISH Ia cosmology 4. WISH Ia + rate 5. Type Ia Supernova Survey w/ WISH Contents 1. Ia? 2. Ia 3. WISH Ia cosmology 4. WISH Ia + rate 5. Contents 1. Ia? 2. Ia 3. WISH Ia cosmology 4. WISH Ia + rate 5. Type Ia Supernova + +?? (single degenerate)?

More information

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d m v = mg + kv m v = mg k v v m v = mg + kv α = mg k v = α e rt + e rt m v = mg + kv v mg + kv = m v α + v = k m v (v α (v + α = k m ˆ ( v α ˆ αk v = m v + α ln v α v + α = αk m t + C v α v + α = e αk m

More information

1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e =

1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e = Chiral Fermion in AdS(dS) Gravity Fermions in (Anti) de Sitter Gravity in Four Dimensions, N.I, Takeshi Fukuyama, arxiv:0904.1936. Prog. Theor. Phys. 122 (2009) 339-353. 1. Introduction Palatini formalism

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

Formulation and constraints on decaying dark matter with finite mass daughter particles

Formulation and constraints  on decaying dark matter with finite mass daughter particles 有限質量をもつ娘粒子へ崩壊する 暗黒物質モデルとその観測的制限 名古屋大学大学院理学研究科理論天体物理学研究室 (AT 研 ) 修士 2 年 青山尚平 共同研究者 : 市來淨與 新田大輔 杉山直 今回の発表結果は下記の研究成果に基づくものです S.A., K.Ichiki, D.Nitta and N.Sugiyama, ArXiv(2011) [1106.1984] 目次 1. Introduction

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

l ηµν hµν g µν = η µν + h µν, h µν 1 l Transvers-Traceless (TT) h TT 0µ = 0, η ij i h TT jk = 0, η ij h TT ij = 0, η µν µ ν h TT ij = 2 c 2 t + Δ 2 h TT = 0 ij 2 Polarization l From the TT condition, h

More information

爆発的星形成? AGN関係を 生み出す物理機構の観測的示唆

爆発的星形成? AGN関係を 生み出す物理機構の観測的示唆 Umemura, Fukue & Mineshige 1997, 1998 Ohsuga et al. 1998 R ring ~100pc dv r = v 2 ϕ dt r 1 dp ρ dr dφ 1 r d(rv ϕ ) dt = 3χE 2c typical timescale dr + χ c F r 3 2 Myr r R ring V ring 3χE 2c v ϕ Umemura,

More information

ADM-Hamiltonian Cheeger-Gromov 3. Penrose

ADM-Hamiltonian Cheeger-Gromov 3. Penrose ADM-Hamiltonian 1. 2. Cheeger-Gromov 3. Penrose 0. ADM-Hamiltonian (M 4, h) Einstein-Hilbert M 4 R h hdx L h = R h h δl h = 0 (Ric h ) αβ 1 2 R hg αβ = 0 (Σ 3, g ij ) (M 4, h ij ) g ij, k ij Σ π ij = g(k

More information

Contents 1 Jeans (

Contents 1 Jeans ( Contents 1 Jeans 2 1.1....................................... 2 1.2................................. 2 1.3............................... 3 2 3 2.1 ( )................................ 4 2.2 WKB........................

More information

Ando_JournalClub_160708

Ando_JournalClub_160708 Independent discoveries of a tidally disrupting dwarf galaxy around NGC 253! A Tidally Disrupting Dwarf Galaxy in the Halo of NGC 253 Toloba, E. et al. 2016, ApJL, 816, L5 (hereafter T16, accepted 2015.12.07)

More information

K E N Z U 01 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.................................... 4 1..1..................................... 4 1...................................... 5................................

More information

SFN

SFN THE STAR FORMATION NEWSLETTER No.291-14 March 2017 2017/04/28 16-20 16. X-Shooter spectroscopy of young stellar objects in Lupus. Atmospheric parameters, membership and activity diagnostics 17. The evolution

More information

2007 5 iii 1 1 1.1.................... 1 2 5 2.1 (shear stress) (shear strain)...... 5 2.1.1...................... 6 2.1.2.................... 6 2.2....................... 7 2.2.1........................

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3. 5 S 2 tot = S 2 T (y, t) + S 2 (y) = const. Z 2 (4.22) σ 2 /4 y = y z y t = T/T 1 2 (3.9) (3.15) s 2 = A(y, t) B(y) (5.1) A(y, t) = x d 1+α dx ln u 1 ] 2u ψ(u), u = x(y + x 2 )/t s 2 T A 3T d S 2 tot S

More information

重力と宇宙 新しい時空の量子論

重力と宇宙 新しい時空の量子論 Summer Institute at Fujiyoshida, 2009/08/06 KEK/ Conformal Field Theory on R x S^3 from Quantized Gravity, arxiv:0811.1647[hep-th]. Renormalizable 4D Quantum Gravity as A Perturbed Theory from CFT, arxiv:0907.3969[hep-th].

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38

Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38 ( ) 2011 5 14 at 1 / 38 Introduction? = String Field Theory = SFT 2 / 38 String Field : ϕ(x, t) x ϕ x / ( ) X ( σ) (string field): Φ[X(σ), t] X(σ) Φ (Φ X(σ) ) X(σ) & / 3 / 38 SFT with Lorentz & Gauge Invariance

More information

Sgr.A 2 saida@daido-it.a.jp Sgr.A 1 3 1.1 2............................................. 3 1.2.............................. 4 2 1 6 2.1................................. 6 2.2...................................

More information

CMB and DM (Cosmic Microwave Background and Dark Matter) ~ ~

CMB and DM (Cosmic Microwave Background and Dark Matter) ~ ~ 2003 2003 62 CMB and DM (Cosmic Microwave Background and Dark Matter) ~ ~ -PIC PIC CMB DM http://www-cr.scphys.kyotou.ac.jp cr.scphys.kyotou.ac.jp/ member/miuchi/education/lecture/2003_1st/ up up 5 223

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

Einstein ( ) YITP

Einstein ( ) YITP Einstein ( ) 2013 8 21 YITP 0. massivegravity Massive spin 2 field theory Fierz-Pauli (FP ) Kinetic term L (2) EH = 1 2 [ λh µν λ h µν λ h λ h 2 µ h µλ ν h νλ + 2 µ h µλ λ h], (1) Mass term FP L mass =

More information

CP-PACS CP-PACS CP-PACS : 2048PU+128IOU 614GFLOPS peak 128GByte memory 1058GByte disk 1992 1996 SR2201 : 1996 8 9 CP-PACS Top 500 List ranking No. 1 November 1996 Linpack 368.2Gflops No. 24 Novermber 1999

More information

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III. Masafumi Udagawa Dept. of Physics, Gakushuin University Mar. 8, 16 @ in Gakushuin University Reference M. U., L. D. C. Jaubert, C. Castelnovo and R. Moessner, arxiv:1603.02872 Outline I. Introduction:

More information

1.7 D D 2 100m 10 9 ev f(x) xf(x) = c(s)x (s 1) (x + 1) (s 4.5) (1) s age parameter x f(x) ev 10 9 ev 2

1.7 D D 2 100m 10 9 ev f(x) xf(x) = c(s)x (s 1) (x + 1) (s 4.5) (1) s age parameter x f(x) ev 10 9 ev 2 2005 1 3 5.0 10 15 7.5 10 15 ev 300 12 40 Mrk421 Mrk421 1 3.7 4 20 [1] Grassberger-Procaccia [2] Wolf [3] 11 11 11 11 300 289 11 11 1 1.7 D D 2 100m 10 9 ev f(x) xf(x) = c(s)x (s 1) (x + 1) (s 4.5) (1)

More information

200708_LesHouches_02.ppt

200708_LesHouches_02.ppt Numerical Methods for Geodynamo Simulation Akira Kageyama Earth Simulator Center, JAMSTEC, Japan Part 2 Geodynamo Simulations in a Sphere or a Spherical Shell Outline 1. Various numerical methods used

More information

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206,

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206, H28. (TMU) 206 8 29 / 34 2 3 4 5 6 Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206, http://link.springer.com/article/0.007/s409-06-0008-x

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2 Hanbury-Brown Twiss (ver. 1.) 24 2 1 1 1 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 3 3 Hanbury-Brown Twiss ( ) 4 3.1............................................

More information

215 11 13 1 2 1.1....................... 2 1.2.................... 2 1.3..................... 2 1.4...................... 3 1.5............... 3 1.6........................... 4 1.7.................. 4

More information

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz 2 Rutherford 2. Rutherford N. Bohr Rutherford 859 Kirchhoff Bunsen 86 Maxwell Maxwell 885 Balmer λ Balmer λ = 364.56 n 2 n 2 4 Lyman, Paschen 3 nm, n =3, 4, 5, 4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n

More information

,,..,. 1

,,..,. 1 016 9 3 6 0 016 1 0 1 10 1 1 17 1..,,..,. 1 1 c = h = G = ε 0 = 1. 1.1 L L T V 1.1. T, V. d dt L q i L q i = 0 1.. q i t L q i, q i, t L ϕ, ϕ, x µ x µ 1.3. ϕ x µ, L. S, L, L S = Ld 4 x 1.4 = Ld 3 xdt 1.5

More information

スケーリング理論とはなにか? - --尺度を変えて見えること--

スケーリング理論とはなにか?  - --尺度を変えて見えること-- ? URL: http://maildbs.c.u-tokyo.ac.jp/ fukushima mailto:hukusima@phys.c.u-tokyo.ac.jp DEX-SMI @ 2006 12 17 ( ) What is scaling theory? DEX-SMI 1 / 40 Outline Outline 1 2 3 4 ( ) What is scaling theory?

More information

iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi

iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi 4 4 9............................................... 3.3......................... 4.4................. 5.5............................ 7 9..................... 9.............................3................................4..........................5.............................6...........................

More information

2 Planck Planck BRST Planck Λ QG Planck GeV Planck Λ QG Friedmann CMB

2 Planck Planck BRST Planck Λ QG Planck GeV Planck Λ QG Friedmann CMB 量子重力理論と宇宙論 (下巻) くりこみ理論と初期宇宙論 浜田賢二 高エネルギー加速器研究機構 (KEK) 素粒子原子核研究所 http://research.kek.jp/people/hamada/ 量子重力の世界は霧に包まれた距離感のない幽玄の世界にたとえること ができる 深い霧が晴れて時空が現れる 国宝松林図屏風 (長谷川等伯筆) 平成 20 年 11 月初版/平成 21 年 09 月改定/

More information

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) * * 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *1 2004 1 1 ( ) ( ) 1.1 140 MeV 1.2 ( ) ( ) 1.3 2.6 10 8 s 7.6 10 17 s? Λ 2.5 10 10 s 6 10 24 s 1.4 ( m

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

系外惑星大気

系外惑星大気 http://hubblesite.org/newscenter/archive/2001/38/ 2004 9 30 1781 1846 1930 50 2 3 radial velocity HDS 5m/s HD209458 HD209458+I 2 cell Subaru/HDS 4 (Mayor & Queloz 1995) 4.2 5 2 1.5% HST 4 orbits Brown

More information

1 a b cc b * 1 Helioseismology * * r/r r/r a 1.3 FTD 9 11 Ω B ϕ α B p FTD 2 b Ω * 1 r, θ, ϕ ϕ * 2 *

1 a b cc b * 1 Helioseismology * * r/r r/r a 1.3 FTD 9 11 Ω B ϕ α B p FTD 2 b Ω * 1 r, θ, ϕ ϕ * 2 * 448 8542 1 e-mail: ymasada@auecc.aichi-edu.ac.jp 1. 400 400 1.1 10 1 1 5 1 11 2 3 4 656 2015 10 1 a b cc b 22 5 1.2 * 1 Helioseismology * 2 6 8 * 3 1 0.7 r/r 1.0 2 r/r 0.7 3 4 2a 1.3 FTD 9 11 Ω B ϕ α B

More information

Euler Appendix cos, sin 2π t = 0 kx = 0, 2π x = 0 (wavelength)λ kλ = 2π, k = 2π/λ k (wavenumber) x = 0 ωt = 0, 2π t = 0 (period)t T = 2π/ω ω = 2πν (fr

Euler Appendix cos, sin 2π t = 0 kx = 0, 2π x = 0 (wavelength)λ kλ = 2π, k = 2π/λ k (wavenumber) x = 0 ωt = 0, 2π t = 0 (period)t T = 2π/ω ω = 2πν (fr This manuscript is modified on March 26, 2012 3 : 53 pm [1] 1 ( ) Figure 1: (longitudinal wave) (transverse wave). P 7km S 4km P S P S x t x u(x, t) t = t 0 = 0 f(x) f(x) = u(x, 0) v +x (Fig.2) ( ) δt

More information