Big Bang Planck Big Bang 1 43 Planck Planck quantum gravity Planck Grand Unified Theories: GUTs X X W X 1 15 ev 197 Glashow Georgi 1 14 GeV 1 2

Size: px
Start display at page:

Download "Big Bang Planck Big Bang 1 43 Planck Planck quantum gravity Planck Grand Unified Theories: GUTs X X W X 1 15 ev 197 Glashow Georgi 1 14 GeV 1 2"

Transcription

1 12 Big Bang 12.1 Big Bang Big Bang K 1 19 GeV 1-4 time after the Big Bang [ s ] inflationary epoch gravity strong electromagnetic weak 1 27 K 1 14 GeV 1 15 K 1 2 GeV quark confinement neutrino decoupling nucleosynthesis photon decoupling 3K 1-4 ev 12.1: 273

2 Big Bang Planck Big Bang 1 43 Planck Planck quantum gravity Planck Grand Unified Theories: GUTs X X W X 1 15 ev 197 Glashow Georgi 1 14 GeV 1 27 K Big Bang Big Bang

3 12.1 Big Bang 275 radius of observed universe [ m ] 1 2 Standard "Big Bang" theory inflationary theory inflationary period time after the Big Bang [ s ] 12.2: GeV 1 15 K W Z K 1GeV 1 3MeV 1 1 K e + p n + ν e (12.1) e + e + Z ν x + ν x

4 Big Bang 1.9 K Big Bang 1 nucleosynthesis 1 9 K D p + n D+γ (12.2) A =5 A =8 4 He 25% 4 He 4 He 3 He 5 7 Li 7 Be 4 He 75% 4 He Coulomb A = He

5 Thomson 12.1 Big Bang K 1% 38 K 3 K 1 5 Cosmic Microwave Background Radiation Big Bang

6 Big Bang E f(e) f(e) = 1 ( ) E µ exp ± 1 kt T µ (12.3) k Bolzmann ± + Fermi Bose E m p E 2 = p 2 c 2 + m 2 c 4 (12.4) N U P S N = U = P = kt dp f(e) (12.5) (2π h) 3 dp Ef(E) (12.6) (2π h) 3 S = 1 kt dp log[1 f(e) ] (12.7) (2π h) 3 [ ] U + P µn (12.8) S Boltzmann g 1 2 g =2 1 g =2 T µ (1) kt mc 2 kt µ

7 (2) kt mc 2 kt mc 2 µ Boltzmann (3) µ mc 2 kt Fermi Fermi Bose Bose.5 MeV/c 2 MeV kt mc 2 kt µ E 1 E = pc dp c 3 E2 de d p (12.9) 4π N U P N = U = n(e)de = u(e)de = E 2 de 2π 2 f(e) (12.1) ( hc) 3 E 2 de 2π 2 Ef(E) (12.11) ( hc) 3 P = p(e)de = kt E 2 de 2π 2 log[1 f(e) ] (12.12) ( hc) 3 n(e) E E +de u(e) p(e) Bose E x = E/(kT ) x 2 dx e x 1 = 2!ζ(3) ζ(3) = (12.13) x 3 dx e x 1 = π4 15 (12.14) ζ N boson = ζ(3) (kt) 3 π 2 ( hc) 3 U boson = π2 (kt) 4 3 ( hc) 3 (12.15)

8 28 12 Big Bang Fermi Bose x n e x 1 xn e x +1 = 2xn e 2x (12.16) 1 x n dx e x 1 x n dx e x +1 = 2x n dx e 2x 1 = 1 2 n x n ( dx e x +1 = 1 1 ) x n dx 2 n e x 1 t n dt e t 1 (12.17) (12.18) n =2 n =3 Fermi Bose N fermion = 3 4 N boson U fermion = 7 8 U boson (12.19) 12.3 Bose u(e) Fermi T =1 15 K kt = 86 GeV u ( E ) [ 1 6 fm -3 ] T =1 15 K boson fermion energy E [ GeV ] 12.3:

9 N boson = T 3 m 3 U boson = T 4 Jm 3 (12.2) T K U boson N boson = π4 3 ζ(3) kt =2.7 kt U fermion N fermion = 7 6 E x = E/(kT ) x 2 log ex e x ± 1 dx = ± U boson N boson =3.15 kt (12.21) x 2 log ex ± 1 e x dx (12.22) ± [ ] x 2 log ex ± 1 1 e x dx = ± 3 x3 log ex ± 1 e x + 1 x 3 dx 3 e x ± 1 (12.23) 1 3 P P = 1 3 U (12.24) (12.24) S = 4 3 U kt (12.25) S boson = 2π4 45 ζ(3) N boson =3.6 N boson S fermion = 7 6 S boson (12.26) - N ( kt h ) 3 S (12.27)

10 Big Bang U boson 12.1 quarks = 63 massive leptons = 1.5 neutrinos = 5.25 photon 1 2 = 2 weak bosons 3 3 = 9 gluons8 2 = 16 6 flavor W ± Z 1 Higgs 8 2 U standard = U boson (12.28) 3 4 2%

11 n(e)de = 1 1 π 2 ( hc) 3 ( ) E 2 de (12.29) E exp 1 kt u(e)de = En(E)dE = 1 1 π 2 ( hc) 3 ( E exp kt ) E 3 de (12.3) 1 E N γ = 2ζ(3) (kt)3 π 2 ( hc) 3 = T 3 m 3 (12.31) U γ = π2 (kt) 4 15 ( hc) 3 = T 4 Jm 3 (12.32) u(e) λ u(e) (12.3) E λ λ λ +dλ u(λ)dλ = 4 hc λ 5 dλ ( ) 2π hc exp 1 kt λ u(λ) 12.4 (12.33) u(λ) λ max u(λ) λ max = hc kt = K T m (12.34) λ max 5 nm T = = 58 K (12.35)

12 Big Bang.25.2 u ( λ ) [ ev µm -4 ] K 7 K 6 K 5 K wave length λ [ µm] 12.4: kt mc 2 µ E E = mc 2 + p2 2m (12.36) ±1 ( ) ( ) f(e) = exp mc2 µ exp p2 (12.37) kt 2mkT Fermi Bose ( ) p 2n exp p2 dp = 2mkT = (2n 1)!! 2 n 1 π 3 2 (2mkT ) n+ 1 2 ( ) 1 π 2 3 (mkt ) 2 n =1 2 2m 3kT 2 ( ) 1 π 2 3 (mkt ) 2 n =2 2 (12.38)

13 N U N = ( ) 3 ) mkt 2 exp ( mc2 µ 2π h 2 kt (12.39) U = (mc ) 2 kt N (12.4) (12.21) P f(e) 1 log [1 f(e)] f(e) P = kt N (12.41) S [ ] 5 (2πkT)3/2 S = N + log 2 (2π h) 3 N (12.42) K 1 kev E mc 2 R N U matter = Nmc2 R 3 (12.43) R 3 (12.32) T 4 kt = hν = hc (12.44) λ R 4 1 m 3 1 U matter (today) = ( ) 2 = Jm 3 (12.45)

14 Big Bang 2.7 K (12.32) U γ (today) = = Jm 3 (12.46) 4 R R 3 R 4 f U matter = f 3 U matter (today) U γ = f 4 U γ (today) (12.47) U matter = U γ f = =3 1 4 (12.48) T = 3K =15 K (12.49)

15 Big Bang BBN Big Bang Nucleosynthesis Primordial Nucleosynthesis primordial Big Bang D 3 He 4 He 7 Li 4 He/H.8 7 Li/H (1) (2) η = N baryon N γ (12.5) p + p D+e + + ν e B/A t<1s p + e n + ν e n + e + p + ν e (12.51) n p + e + ν e (12.52)

16 Big Bang kt > MeV Boltzmann Boltzmann n p exp ( mc2 kt ) mc 2 =(m n m p )c 2 =1.293 MeV (12.53) kt n/p 1 n N n t 1s kt < mc 2 (12.51) mc 2 n p = exp fr freeze-out ( mc2 kt fr ) 1 6 (12.54) T fr (12.51) Fermi 1.9 K 2.7 K t>1s (12.52) D = 2 H p + n D+γ (12.55) B(D) = 2.23 MeV kt.1 MeV 1 τ n = 882 s

17 n p 1 7 (12.56) (12.55) 4 He D+n 3 H+γ 3 H+p 4 He + γ D+p 3 He + γ 3 He + n 4 He + γ (12.57) D+D 3 H+p 3 H+D 4 He + n D+D 3 He + n 3 He + D 4 He + p (12.58) 4 He 2p +2n 4 He + γ (12.59) 1:7 4 He 1:12 4 He Y p = =.25 (12.6) Big Bang kt 1 MeV NSE nuclear statistical equilibrium i fraction X i = A i N i N baryon = A i (N i /N H ) 1+ i A i (N i /N H ) (12.61)

18 29 12 Big Bang A i N i N baryon X i = g i [ ζ(3) A i 1 π (1 A i)/2 2 (3A i 5)/2 ] A 5/2 i ( kt ) 3(Ai 1)/2 m N c 2 η A i 1 X Z i p B i i m N ( ) (12.62) X A Bi i Z i n exp kt i Γ i Λ i i t dn i dt = 3HN i + Λ i Γ i N i (12.63) H =ȧ(t)/a(t) Hubble i i n p D 3 H 3 He 4 He 6, 7, 8 Li 7, 9 Be 16 O (12.52) (12.57) (12.58) A =7 3 He + 4 He 7 Be + γ 7 Be + n 7 Li + p (12.64) 7 Li + p 2 4 He Coulomb He 5 He 5 He 4 He 4 He 8 Be 8 Be 4 He 12.5 [3] Big Bang t 18 s Be H Be + e 7 Li + ν e 3 H 3 He + e + ν e (12.65)

19 Big Bang D, 3 He, 4 He, 7 Li Big Bang η 12.6 [2] D D+D D 4 He 7 Li 7 Be 7 Li Helium-4 Big Bang 4 He 4 He HII 4 He Big Bang 4 He Y p =.238 ±.2 (stat) ±.5 (sys) (12.66) HII Lithium-7 7 Li 1/3 Li Li Fe Li Big Bang Li ( ) Li/H p = 1.23 ± (12.67) +.56 Li Li Li-Fe 6 Li D Big Bang Big Bang D QAS quaser absorption system D QAS D/H =(3. ±.4 (stat)) 1 5 (12.68)

20

21 D/H =(1.5±.1 (stat)) 1 5 D D/H < Helium-3 3 He HII Big Bang 3 He Big Bang η η He D 7 Li 2.6 η η 1 = η 1 1 (12.69) 1 9 Big Bang η (12.69) Ω b = h 2 η 1 (12.7).95 Ω b h 2.23 (12.71) Ω b 1 Ω lum.24 h 1 (12.72) Ω lum Ω b 1 6 K X Ω matter.3 Dark Matter Big Bang Big Bang η η

22 Big Bang Hubble Big Bang George Gamow 9 Big Bang Gamow Ralph Alpher Robert Herman 5K 1965 Bell Arno Penzias Robert Wilson 4 GHz 7.35 cm 3.5 ±1. K Gamow, Alpher, Herman Planck Big Bang K Planck T I ν = 2hν3 1 c 2 ( hν exp kt ) 1 (12.73) T =3K Planck ν 5 GHz λ 2mm COBE Cosmic Background Explorer Satellite FIRAS Far-Infrared Absolute Spectrophotometer GHz 1 GHz 3 COBE FIRAS T γ N γ U γ T γ = ±.2 K (95% CL) N γ = 2 ζ(3) π 2 Tγ 3 U γ = π2 15 T γ cm gcm 3.26 ev cm 3 (12.74)

23 Penzias Wilson 1% isotropic unpolarized 1 5 anisotropic T T (θ,φ) = a lm Y lm (θ, φ) (12.75) lm θ 1/l l a lm 2 (12.76) 4π l =1 m T T = ( l = 1 ) (12.77) Doppler T β = v/c Doppler T (θ) = T ( ) 1 β 2 1 β cos θ = T 1+βcos θ + β2 2 cos2θ + O(β3 ) (12.78) (11.2 ±.1) h ( 7.22 ±.8) v = 371 ±.5 kms 1 (12.79) Local Group of galaxies v LG = 627 ± 22 km s 1 (12.8) Q rms Q 2 rms T 2 γ = 1 4π a 2m 2 (12.81) m

24 Big Bang µk 1 6 K 4 µk Q rms 28 µk (12.82) COBE l >2 BOOMERanG MAXIMA-1 DASI CBI [4] [ ( +1)C /2 π ] 1/2 [ µ K] Angular Scale [Degrees] n=1 H=5 CDM+1%B COBE QMASK FIRS MAX TEN MAXIMA IAC Pyth HACME Pyth V SP MSAM ARGO SK IAB TOCO97 QMAP TOCO98 ARCHEOPS BOOM-LDB CAT OVRO WD DASI SuZIE BIMA CBI VSA eff Ned Wright - 1 Nov : l 12.7 l 2

25 BOOMERanG Ω tot =1.2 ±.6 (12.83) Ω tot =1 Ω b h 2 =.22 ±.4 (12.84) Big Bang Big Bang

26 Big Bang K. Hagiwara et al., Phys. Rev. D66, 11-1 (22) (Particle Data Group) 3. A Knowledgebase for Extragalactic Astronomy and Cosmology 4. Ned Wright scosmology Tutorial wright/ 5. G. Gamow, Phys. Rev. 7 (1946) 572, R. Alpher, H. Bethe and G. Gamow, Phys. Rev. 73 (1948) 83 R. Alpher and R.C. Herman, Phys. Rev. 75 (1949) Big-bang nucleosynthesis enters the precision era, Rev. Mod. Phys. 7 (1998) COBE:

KamLAND (µ) ν e RSFP + ν e RSFP(Resonant Spin Flavor Precession) ν e RSFP 1. ν e ν µ ν e RSFP.ν e νµ ν e νe µ KamLAND νe KamLAND (ʼ4). kton-day 8.3 < E ν < 14.8 MeV candidates Φ(νe) < 37 cm - s -1 P(νe

More information

2 X-ray 6 gamma-ray 7 1 17.1 0:38m 0:77m nm 17.2 Hz Hz 1 E p E E = h = ch= (17.2) p = E=c = h=c = h= (17.3) continuum continuous spectrum line spectru

2 X-ray 6 gamma-ray 7 1 17.1 0:38m 0:77m nm 17.2 Hz Hz 1 E p E E = h = ch= (17.2) p = E=c = h=c = h= (17.3) continuum continuous spectrum line spectru 1 17 object 1 observation 17.1 X electromagnetic wave photon 1 = c (17.1) c =3 10 8 ms ;1 m mm = 10 ;3 m m =10 ;6 m nm = 10 ;9 m 1 Hz 17.1 spectrum radio 2 infrared 3 visual light optical light 4 ultraviolet

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

untitled

untitled (a) (b) (c) (d) Wunderlich 2.5.1 = = =90 2 1 (hkl) {hkl} [hkl] L tan 2θ = r L nλ = 2dsinθ dhkl ( ) = 1 2 2 2 h k l + + a b c c l=2 l=1 l=0 Polanyi nλ = I sinφ I: B A a 110 B c 110 b b 110 µ a 110

More information

Γ Ec Γ V BIAS THBV3_0401JA THBV3_0402JAa THBV3_0402JAb 1000 800 600 400 50 % 25 % 200 100 80 60 40 20 10 8 6 4 10 % 2.5 % 0.5 % 0.25 % 2 1.0 0.8 0.6 0.4 0.2 0.1 200 300 400 500 600 700 800 1000 1200 14001600

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ 8 + J/ψ ALICE B597 : : : 9 LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ 6..................................... 6. (QGP)..................... 6.................................... 6.4..............................

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

学習内容と日常生活との関連性の研究-第2部-第6章

学習内容と日常生活との関連性の研究-第2部-第6章 378 379 10% 10%10% 10% 100% 380 381 2000 BSE CJD 5700 18 1996 2001 100 CJD 1 310-7 10-12 10-6 CJD 100 1 10 100 100 1 1 100 1 10-6 1 1 10-6 382 2002 14 5 1014 10 10.4 1014 100 110-6 1 383 384 385 2002 4

More information

* 1 2014 7 8 *1 iii 1. Newton 1 1.1 Newton........................... 1 1.2............................. 4 1.3................................. 5 2. 9 2.1......................... 9 2.2........................

More information

untitled

untitled 24 2016 2015 8 26,,,,,,,,,,,, D.,,, L.,,, E.,,,,,, 1 1,,,,, 2,,, 7 1 2, 3 4 5 6 7 Contribution No.: CB 15-1 20 40,,,,,,,, 3,,,,, 10,,,,,,, 2, 3 5, 7 ,,, 2,, 3,, 4,,,,,,,,,,,,, 4,,,,,,,,, 1, 50, 1, 50 50,

More information

量子力学A

量子力学A c 1 1 1.1....................................... 1 1............................................ 4 1.3.............................. 6 10.1.................................. 10......................................

More information

km2 km2 km2 km2 km2 22 4 H20 H20 H21 H20 (H22) (H22) (H22) L=600m L=430m 1 H14.04.12 () 1.6km 2 H.14.05.31 () 3km 3 4 5 H.15.03.18 () 3km H.15.06.20 () 1.1km H.15.06.30 () 800m 6 H.15.07.18

More information

[ ] = L [δ (D ) (x )] = L D [g ] = L D [E ] = L Table : ħh = m = D D, V (x ) = g δ (D ) (x ) E g D E (Table )D = Schrödinger (.3)D = (regularization)

[ ] = L [δ (D ) (x )] = L D [g ] = L D [E ] = L Table : ħh = m = D D, V (x ) = g δ (D ) (x ) E g D E (Table )D = Schrödinger (.3)D = (regularization) . D............................................... : E = κ ............................................ 3.................................................

More information

CVMに基づくNi-Al合金の

CVMに基づくNi-Al合金の CV N-A (-' by T.Koyama ennard-jones fcc α, β, γ, δ β α γ δ = or α, β. γ, δ α β γ ( αβγ w = = k k k ( αβγ w = ( αβγ ( αβγ w = w = ( αβγ w = ( αβγ w = ( αβγ w = ( αβγ w = ( αβγ w = ( βγδ w = = k k k ( αγδ

More information

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-7 O1-8 O1-9 O1-10 O1-11 O1-12 O1-13 O1-14 O1-15 O1-16 O1-17 O1-18 O1-19 O1-20 O1-21 O1-22 O1-23 O1-24 O1-25 O1-26 O1-27 O1-28 O1-29 O1-30 O1-31 O1-32 O1-33 O1-34 O1-35

More information

p.2/76

p.2/76 kino@info.kanagawa-u.ac.jp p.1/76 p.2/76 ( ) (2001). (2006). (2002). p.3/76 N n, n {1, 2,...N} 0 K k, k {1, 2,...,K} M M, m {1, 2,...,M} p.4/76 R =(r ij ), r ij = i j ( ): k s r(k, s) r(k, 1),r(k, 2),...,r(k,

More information

FIG. 3. Color Absorption images of 171 Yb atoms a and 174 Yb atoms b in the fermion-boson mixture trapped in the crossed FORT. Optical density increas

FIG. 3. Color Absorption images of 171 Yb atoms a and 174 Yb atoms b in the fermion-boson mixture trapped in the crossed FORT. Optical density increas FIG. 3. Color Absorption images of 171 Yb atoms a and 174 Yb atoms b in the fermion-boson mixture trapped in the crossed FORT. Optical density increases from red to blue. Blue areas near the center of

More information

CL X X PC 1 CL CL CL 1

CL X X PC 1 CL CL CL 1 データセクション Ver. 1.0 1 2 1 2 3 4 CL 2 1 1 5 1 2 3 4 5 X X PC 1 CL CL CL 1 2 3 CL 2 1 1 + 2 1 3 HP 1 1 1 1 HP 4 + 1 1 1 1 + HP HP 0 1 1 4 1 1 1 3 DP 1 1 DP 1 1 DP DP 2 1 1 +2 + 1 1 5 DP DP + 1 1 1 1 DP DP

More information

030801調査結果速報版.PDF

030801調査結果速報版.PDF 15 8 1 15 7 26 1. 2. 15 7 27 15 7 28 1 2 7:13 16:56 0:13 3km 45 346 108 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3. 3.1 26 7 10 1 20cm 2 1 2 45 1/15 3 4 5,6 3 4 3 5 6 ( ) 7,8 8 7 8 2 55 9 10 9 10

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

untitled

untitled .m 5m :.45.4m.m 3.m.6m (N/mm ).8.6 σ.4 h.m. h.68m h(m) b.35m θ4..5.5.5 -. σ ta.n/mm c 3kN/m 3 w 9.8kN/m 3 -.4 ck 6N/mm -.6 σ -.8 3 () :. 4 5 3.75m :. 7.m :. 874mm 4 865mm mm/ :. 7.m 4.m 4.m 6 7 4. 3.5

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

閨75, 縺5 [ ィ チ573, 縺 ィ ィ

閨75, 縺5 [ ィ チ573, 縺 ィ ィ 39ィ 8 998 3. 753 68, 7 86 タ7 9 9989769 438 縺48 縺55 3783645 タ5 縺473 タ7996495 ィ 59754 8554473 9 8984473 3553 7. 95457357, 4.3. 639745 5883597547 6755887 67996499 ィ 597545 4953473 9 857473 3553, 536583, 89573,

More information

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B 9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A

More information

nsg02-13/ky045059301600033210

nsg02-13/ky045059301600033210 φ φ φ φ κ κ α α μ μ α α μ χ et al Neurosci. Res. Trpv J Physiol μ μ α α α β in vivo β β β β β β β β in vitro β γ μ δ μδ δ δ α θ α θ α In Biomechanics at Micro- and Nanoscale Levels, Volume I W W v W

More information

populatio sample II, B II? [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2

populatio sample II, B II?  [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2 (2015 ) 1 NHK 2012 5 28 2013 7 3 2014 9 17 2015 4 8!? New York Times 2009 8 5 For Today s Graduate, Just Oe Word: Statistics Google Hal Varia I keep sayig that the sexy job i the ext 10 years will be statisticias.

More information

B

B B YES NO 5 7 6 1 4 3 2 BB BB BB AA AA BB 510J B B A 510J B A A A A A A 510J B A 510J B A A A A A 510J M = σ Z Z = M σ AAA π T T = a ZP ZP = a AAA π B M + M 2 +T 2 M T Me = = 1 + 1 + 2 2 M σ Te = M 2 +T

More information

4 3 1 Introduction 3 2 7 2.1.................................. 7 2.1.1..................... 8 2.1.2............................. 8 2.1.3.......................... 10 2.2...............................

More information

nsg04-28/ky208684356100043077

nsg04-28/ky208684356100043077 δ!!! μ μ μ γ UBE3A Ube3a Ube3a δ !!!! α α α α α α α α α α μ μ α β α β β !!!!!!!! μ! Suncus murinus μ Ω! π μ Ω in vivo! μ μ μ!!! ! in situ! in vivo δ δ !!!!!!!!!! ! in vivo Orexin-Arch Orexin-Arch !!

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 単純適応制御 SAC サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/091961 このサンプルページの内容は, 初版 1 刷発行当時のものです. 1 2 3 4 5 9 10 12 14 15 A B F 6 8 11 13 E 7 C D URL http://www.morikita.co.jp/support

More information

000 001

000 001 all-round catalogue vol.2 000 001 002 003 AA0102 AA0201 AA0701 AA0801 artistic brushes AA0602 AB2701 AB2702 AB2703 AB2704 AA0301 AH3001 AH3011 AH3101 AH3201 AH3111 AB3201 AB3202 AB2601 AB2602 AB0701 artistic

More information

I 1 V ( x) = V (x), V ( x) = V ( x ) SO(3) x = R x: R SO(3) Lorentz R t JR = J: J = diag(1, 1, 1, 1) x = x + a Poincarré ( ) 2

I 1 V ( x) = V (x), V ( x) = V ( x ) SO(3) x = R x: R SO(3) Lorentz R t JR = J: J = diag(1, 1, 1, 1) x = x + a Poincarré ( ) 2 III 1 2005 Jan 30th, 2006 I : II : I : [ I ] 12 13 9 (Landau and Lifshitz, Quantum Mechanics chapter 12, 13, 9: Pergamon Pr.) [ ] ( ) (H. Georgi, Lie algebra in particle physics, Perseus Books) [ ] II

More information

2 FIG. 1: : n FIG. 2: : n (Ch h ) N T B Ch h n(z) = (sin ϵ cos ω(z), sin ϵ sin ω(z), cos ϵ), (1) 1968 Meyer [5] 50 N T B Ch h [4] N T B 10 nm Ch h 1 µ

2 FIG. 1: : n FIG. 2: : n (Ch h ) N T B Ch h n(z) = (sin ϵ cos ω(z), sin ϵ sin ω(z), cos ϵ), (1) 1968 Meyer [5] 50 N T B Ch h [4] N T B 10 nm Ch h 1 µ : (Dated: February 5, 2016), (Ch), (Oblique Helicoidal) (Ch H ), Twist-bend (N T B ) I. (chiral: ) (achiral) (n) (Ch) (N ) 1996 [1] [2] 2013 (N T B ) [3] 2014 [4] (oblique helicoid) 2016 1 29 Electronic

More information

untitled

untitled 1. Web21 2001 4 2. Web21 2001 4 3. Web21 2001 4 4. Web21 2001 4 5. BCS Web21 2001 6 6. Web21 2001 6 7. Web21 2001 8 8. - Web21 2001 10 9. 9-1. Web21 2001 10 9-2. d Web21 2001 12 9-3. Web21 2001 12 1. T

More information

縺 縺8 縺, [ 縺 チ : () () () 4 チ93799; () "64": ィャ 9997ィ

縺 縺8 縺, [ 縺 チ : () () () 4 チ93799; () 64: ィャ 9997ィ 34978 998 3. 73 68, 86 タ7 9 9989769 438 縺48 縺 378364 タ 縺473 399-4 8 637744739 683 6744939 3.9. 378,.. 68 ィ 349 889 3349947 89893 683447 4 334999897447 (9489) 67449, 6377447 683, 74984 7849799 34789 83747

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

< qq > (Quark Gluon Plasma,QGP) QGP (< qq >= ) < qq > π - π K + Nambu-Goldstone K + S = + S = K K + K + - K + t free ρ K + N K + N next-to-leading ord

< qq > (Quark Gluon Plasma,QGP) QGP (< qq >= ) < qq > π - π K + Nambu-Goldstone K + S = + S = K K + K + - K + t free ρ K + N K + N next-to-leading ord -K + < qq > (Quark Gluon Plasma,QGP) QGP (< qq >= ) < qq > π - π K + Nambu-Goldstone K + S = + S = K K + K + - K + t free ρ K + N K + N next-to-leading order (NLO) NLO (low energy constant,lec) χ I = I

More information

2

2 1 12123456789012345678901234 12123456789012345678901234 12123456789012345678901234 12123456789012345678901234 12123456789012345678901234 12123456789012345678901234 12123456789012345678901234 12123456789012345678901234

More information

『共形場理論』

『共形場理論』 T (z) SL(2, C) T (z) SU(2) S 1 /Z 2 SU(2) (ŜU(2) k ŜU(2) 1)/ŜU(2) k+1 ŜU(2)/Û(1) G H N =1 N =1 N =1 N =1 N =2 N =2 N =2 N =2 ĉ>1 N =2 N =2 N =4 N =4 1 2 2 z=x 1 +ix 2 z f(z) f(z) 1 1 4 4 N =4 1 = = 1.3

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

τ p ω πτ p ω π τ p (t) = 2 2 t 2 exp(i t)exp 8 2 S(,t) = s( ) (t )d d 2 E x dz 2 = 2 E x z E x = E 0 e z, = + j = 1 2 0 tan = 0, v = c r 10 11 Horn Circulator Net Work Analyzer t H = E t E = H E t B =

More information

,000m 7 CAT

,000m 7 CAT 7,404 15 63% 1,000 120 2 17 60 150 4 67 120 7 5 6,049 20 2,265 20 87.4 17 2 3 =3.5%23.2%73.3% 40 20 151110 1 2010 2011 3,000m 7 CAT 11 12 18 316 3 18 3 19 95 9 65 3 75 2 80 2 60 3 100 2 2011 3 33 3 3 140km

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi II (Basics of Probability Theory ad Radom Walks) (Preface),.,,,.,,,...,,.,.,,.,,. (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

56 4 2 log N ( t ) 1 0 0 t 1/2 τ m 2τ m time t 4.1: λ decay rate λ = 1 τ m (4.8) A B b Γ = h τ m = hλ (4.9) A B + b (4.10) Q Q = M(B)+M(b) M(A) (4.11)

56 4 2 log N ( t ) 1 0 0 t 1/2 τ m 2τ m time t 4.1: λ decay rate λ = 1 τ m (4.8) A B b Γ = h τ m = hλ (4.9) A B + b (4.10) Q Q = M(B)+M(b) M(A) (4.11) 4 4.1 t N(t) t t +dt dn(t) N(t) dn(t) = λn(t)dt (4.1) dn(t) dt = λn(t) (4.2) t =0 N 0 = N(0) 4.1 N(t) =N 0 e λt (4.3) log N(t) = log N 0 λt (4.4) mean life half-life t N(t) τ m =1/λ 1/e τ m 1/2 t 1/2 T

More information

2

2 1 2 3 4 5 6 ( ) 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 6+ 6-5 2 6-5- 6-5+ 5-5- 5- 22 6+ 6-6+ 6-6- S-P time 10 5 2 23 S-P time 5 2 5 2 ( ) 5 2 24 25 26 1 27 28 29 30 95 31 ( 8 2 ) http://www.kishou.go.jp/know/shindo/kaisetsu.html

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi I (Basics of Probability Theory ad Radom Walks) 25 4 5 ( 4 ) (Preface),.,,,.,,,...,,.,.,,.,,. (,.) (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios,

More information

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law I (Radom Walks ad Percolatios) 3 4 7 ( -2 ) (Preface),.,,,...,,.,,,,.,.,,.,,. (,.) (Basic of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

研修コーナー

研修コーナー l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l

More information

たたら製鉄についてのまとめ

たたら製鉄についてのまとめ 65 1229 1570 5 3 5 2769 1876 1889 9 1892 1927-73 - - 1619 131 2 5500 43 194 1889 1955-1617 3 2 3 1186 2 9 15 1165-74 - 596 300 200 4 888 4 888 11 3 8892 10 2 969 708781782888 729 749 859 877 3 947 3 1523

More information

1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e =

1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e = Chiral Fermion in AdS(dS) Gravity Fermions in (Anti) de Sitter Gravity in Four Dimensions, N.I, Takeshi Fukuyama, arxiv:0904.1936. Prog. Theor. Phys. 122 (2009) 339-353. 1. Introduction Palatini formalism

More information

0.45m1.00m 1.00m 1.00m 0.33m 0.33m 0.33m 0.45m 1.00m 2

0.45m1.00m 1.00m 1.00m 0.33m 0.33m 0.33m 0.45m 1.00m 2 24 11 10 24 12 10 30 1 0.45m1.00m 1.00m 1.00m 0.33m 0.33m 0.33m 0.45m 1.00m 2 23% 29% 71% 67% 6% 4% n=1525 n=1137 6% +6% -4% -2% 21% 30% 5% 35% 6% 6% 11% 40% 37% 36 172 166 371 213 226 177 54 382 704 216

More information

10 117 5 1 121841 4 15 12 7 27 12 6 31856 8 21 1983-2 - 321899 12 21656 2 45 9 2 131816 4 91812 11 20 1887 461971 11 3 2 161703 11 13 98 3 16201700-3 - 2 35 6 7 8 9 12 13 12 481973 12 2 571982 161703 11

More information

3/4/8:9 { } { } β β β α β α β β

3/4/8:9 { } { } β β β α β α β β α β : α β β α β α, [ ] [ ] V, [ ] α α β [ ] β 3/4/8:9 3/4/8:9 { } { } β β β α β α β β [] β [] β β β β α ( ( ( ( ( ( [ ] [ ] [ β ] [ α β β ] [ α ( β β ] [ α] [ ( β β ] [] α [ β β ] ( / α α [ β β ] [ ] 3

More information

第86回日本感染症学会総会学術集会後抄録(I)

第86回日本感染症学会総会学術集会後抄録(I) κ κ κ κ κ κ μ μ β β β γ α α β β γ α β α α α γ α β β γ μ β β μ μ α ββ β β β β β β β β β β β β β β β β β β γ β μ μ μ μμ μ μ μ μ β β μ μ μ μ μ μ μ μ μ μ μ μ μ μ β

More information

04. 0 04 08 0 4 6 7 8.. 5 6 8 9. 0.. 994 986 40 99 006 60 00 p. 7 7 9.m 4.6m 50% 50 m p 4 5 p0 p 994 p 80cm 6 7 p 8 9 p 999 6 0 4 5 00mm 750mm,000 750,000,70 550,00,80 4 00mm 800mm 6 p 4 5 7 8 6 7 8 9

More information

10:30 12:00 P.G. vs vs vs 2

10:30 12:00 P.G. vs vs vs 2 1 10:30 12:00 P.G. vs vs vs 2 LOGIT PROBIT TOBIT mean median mode CV 3 4 5 0.5 1000 6 45 7 P(A B) = P(A) + P(B) - P(A B) P(B A)=P(A B)/P(A) P(A B)=P(B A) P(A) P(A B) P(A) P(B A) P(B) P(A B) P(A) P(B) P(B

More information

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t 1 1.1 sin 2π [rad] 3 ft 3 sin 2t π 4 3.1 2 1.1: sin θ 2.2 sin θ ft t t [sec] t sin 2t π 4 [rad] sin 3.1 3 sin θ θ t θ 2t π 4 3.2 3.1 3.4 3.4: 2.2: sin θ θ θ [rad] 2.3 0 [rad] 4 sin θ sin 2t π 4 sin 1 1

More information

SC210301 Ł\†EŒÚ M-KL.ec6

SC210301 Ł\†EŒÚ M-KL.ec6 30 36 01 02 07 08 05 95 11 94 11 97 13 91 13 9T 14 15 15 96 16 BE 16 BF 16 BG 17 CL 17 00 17 17 17 1 180 28 28 180 2 180 181 60 180 180 90 32 180 30 15 29 29 30 14 3 15 30 29 29 14 30 14 19 19 30 30 22

More information

D:/BOOK/MAIN/MAIN.DVI

D:/BOOK/MAIN/MAIN.DVI 8 2 F (s) =L f(t) F (s) =L f(t) := Z 0 f()e ;s d (2.2) s s = + j! f(t) (f(0)=0 f(0) _ = 0 d n; f(0)=dt n; =0) L dn f(t) = s n F (s) (2.3) dt n Z t L 0 f()d = F (s) (2.4) s s =s f(t) L _ f(t) Z Z ;s L f(t)

More information

閨 , , , 縺05, 縺 縺05, 閨 [

閨 , , , 縺05, 縺 縺05, 閨 [ 04050900708 000 0. 07050 70, 0 0806 タ07 09 0909080900706009 040080 縺0408 縺0505 00070800060405 タ05 縺040070 090800008080900504040009 09050409080500004040009 050000080908 0000 09080905004090 0508050400 0

More information

01_教職員.indd

01_教職員.indd T. A. H. A. K. A. R. I. K. O. S. O. Y. O. M. K. Y. K. G. K. R. S. A. S. M. S. R. S. M. S. I. S. T. S. K.T. R. T. R. T. S. T. S. T. A. T. A. D. T. N. N. N. Y. N. S. N. S. H. R. H. W. H. T. H. K. M. K. M.

More information

_spring_school.key

_spring_school.key 2014/03/07 VII: XMASS http://www-sk1.icrr.u-tokyo.ac.jp/index.html XMASS( CANDLES (2 NEWAGE ( KAGURA( KAMLAND ( 2 F. Zwicky 1933 F. Zwicky!! (400! F. Zwicky 1933 F. Zwicky!! (400! 1970 Vera Cooper Rubin!

More information

橡博論表紙.PDF

橡博論表紙.PDF Study on Retaining Wall Design For Circular Deep Shaft Undergoing Lateral Pressure During Construction 2003 3 Study on Retaining Wall Design For Circular Deep Shaft Undergoing Lateral Pressure During Construction

More information

untitled

untitled 2009 7 29-30 1 2 + + = 1 = 1 ( = = 0) 3 Eb (, T ) exp[ C C 2 1 5 /( T )] 1 [ W/(m2μm)] : [ m] T : [K] C 1 = 3.743 10 8 [W m 4 /m 2 ] C 2 = 1.439 10 4 [ m K] 4 E b max max T 2897 m m K = 10 m 5 E E b E

More information

hirameki_09.dvi

hirameki_09.dvi 2009 July 31 1 2009 1 1 e-mail: mtakahas@auecc.aichi-edu.ac.jp 2 SF 2009 7 31 3 1 5 1.1....................... 5 1.2.................................. 6 1.3..................................... 7 1.4...............................

More information

1. 2. 3. 4. 3.2 1. 2. 3. 4 4.1 1. σ f n λ f λ f = 1 nσ f. (4.1) 2. E n, m 1 generation,t g v t g = λ f v = 1 (4.2) vnσ f E = 1 2 mv2 2E v = m t g = 1

1. 2. 3. 4. 3.2 1. 2. 3. 4 4.1 1. σ f n λ f λ f = 1 nσ f. (4.1) 2. E n, m 1 generation,t g v t g = λ f v = 1 (4.2) vnσ f E = 1 2 mv2 2E v = m t g = 1 2003.3.14 1 nuclear weapon 2 1942 1942 1943 1945.7.15 8. 6 8. 9 2 3 3.1 239, 1 1. 2. 3. 4. 3.2 1. 2. 3. 4 4.1 1. σ f n λ f λ f = 1 nσ f. (4.1) 2. E n, m 1 generation,t g v t g = λ f v = 1 (4.2) vnσ f E

More information

1 2 3 4 1 2 3 4 5 1 2 3 4 5 1 2 3 4

1 2 3 4 1 2 3 4 5 1 2 3 4 5 1 2 3 4 1 2 3 4 1 2 3 4 5 1 2 3 4 5 1 2 3 4 -1- -2- 1-3- 2 3 - -4- nm 7. nm -5- APS Advanced Photon Source ESRF European Synchrotron Radiation Facility, APS ESRF, APS, ESRF, APS ESRF -6- 1,, APS ESRF APS ESRF

More information

176 B B.1: ( ) ( ) ( ) (2 2 ) ( ) ( ) ( ) (quantitative nondestructive evaluation:qnde) (1) X X X X CT(computed tomography)

176 B B.1: ( ) ( ) ( ) (2 2 ) ( ) ( ) ( ) (quantitative nondestructive evaluation:qnde) (1) X X X X CT(computed tomography) B 1) B.1 B.1.1 ( ) B.1 1 50 100 m B.1.2 (nondestructive testing:ndt) (nondestructive inspection:ndi) (nondestructive evaluation:nde) 175 176 B B.1: ( ) ( ) ( ) (2 2 ) ( ) ( ) ( ) (quantitative nondestructive

More information

現代物理化学 1-1(4)16.ppt

現代物理化学 1-1(4)16.ppt (pdf) pdf pdf http://www1.doshisha.ac.jp/~bukka/lecture/index.html http://www.doshisha.ac.jp/ Duet -1-1-1 2-a. 1-1-2 EU E = K E + P E + U ΔE K E = 0P E ΔE = ΔU U U = εn ΔU ΔU = Q + W, du = d 'Q + d 'W

More information

untitled

untitled 1333 1 1968 6 10 HP 2 HP 1 3 3 3 4cm 5 6 HP 1888 21 1893 26 1896 29 1877 10 1889 22 1936 11 1899 32 1906 39 4 1 30 20 HP 43 04 52 140 49 01 138.28m 280.11 km 2 4 5 HP 1955 1985 1995 2000 1995 1960 1985

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

<90CE90EC88E290D55F955C8E862E656336>

<90CE90EC88E290D55F955C8E862E656336> 5 5 9 9 7 7 5 5 6 6 7 7 8 8 9 9 8 8 8 8 79 79 78 78 76 76 77 77 7 7 6 7 7 5 68 68 67 67 66 66 65 65 6 6 6 6 6 6 6 6 6 6 59 59 58 58 57 57 56 56 55 55 5 5 8 8 5 5 9 9 9 8 7 9 9 8 8 7 7 6 6 5 5 5 5 69 69

More information