Big Bang Planck Big Bang 1 43 Planck Planck quantum gravity Planck Grand Unified Theories: GUTs X X W X 1 15 ev 197 Glashow Georgi 1 14 GeV 1 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Big Bang Planck Big Bang 1 43 Planck Planck quantum gravity Planck Grand Unified Theories: GUTs X X W X 1 15 ev 197 Glashow Georgi 1 14 GeV 1 2"

Transcription

1 12 Big Bang 12.1 Big Bang Big Bang K 1 19 GeV 1-4 time after the Big Bang [ s ] inflationary epoch gravity strong electromagnetic weak 1 27 K 1 14 GeV 1 15 K 1 2 GeV quark confinement neutrino decoupling nucleosynthesis photon decoupling 3K 1-4 ev 12.1: 273

2 Big Bang Planck Big Bang 1 43 Planck Planck quantum gravity Planck Grand Unified Theories: GUTs X X W X 1 15 ev 197 Glashow Georgi 1 14 GeV 1 27 K Big Bang Big Bang

3 12.1 Big Bang 275 radius of observed universe [ m ] 1 2 Standard "Big Bang" theory inflationary theory inflationary period time after the Big Bang [ s ] 12.2: GeV 1 15 K W Z K 1GeV 1 3MeV 1 1 K e + p n + ν e (12.1) e + e + Z ν x + ν x

4 Big Bang 1.9 K Big Bang 1 nucleosynthesis 1 9 K D p + n D+γ (12.2) A =5 A =8 4 He 25% 4 He 4 He 3 He 5 7 Li 7 Be 4 He 75% 4 He Coulomb A = He

5 Thomson 12.1 Big Bang K 1% 38 K 3 K 1 5 Cosmic Microwave Background Radiation Big Bang

6 Big Bang E f(e) f(e) = 1 ( ) E µ exp ± 1 kt T µ (12.3) k Bolzmann ± + Fermi Bose E m p E 2 = p 2 c 2 + m 2 c 4 (12.4) N U P S N = U = P = kt dp f(e) (12.5) (2π h) 3 dp Ef(E) (12.6) (2π h) 3 S = 1 kt dp log[1 f(e) ] (12.7) (2π h) 3 [ ] U + P µn (12.8) S Boltzmann g 1 2 g =2 1 g =2 T µ (1) kt mc 2 kt µ

7 (2) kt mc 2 kt mc 2 µ Boltzmann (3) µ mc 2 kt Fermi Fermi Bose Bose.5 MeV/c 2 MeV kt mc 2 kt µ E 1 E = pc dp c 3 E2 de d p (12.9) 4π N U P N = U = n(e)de = u(e)de = E 2 de 2π 2 f(e) (12.1) ( hc) 3 E 2 de 2π 2 Ef(E) (12.11) ( hc) 3 P = p(e)de = kt E 2 de 2π 2 log[1 f(e) ] (12.12) ( hc) 3 n(e) E E +de u(e) p(e) Bose E x = E/(kT ) x 2 dx e x 1 = 2!ζ(3) ζ(3) = (12.13) x 3 dx e x 1 = π4 15 (12.14) ζ N boson = ζ(3) (kt) 3 π 2 ( hc) 3 U boson = π2 (kt) 4 3 ( hc) 3 (12.15)

8 28 12 Big Bang Fermi Bose x n e x 1 xn e x +1 = 2xn e 2x (12.16) 1 x n dx e x 1 x n dx e x +1 = 2x n dx e 2x 1 = 1 2 n x n ( dx e x +1 = 1 1 ) x n dx 2 n e x 1 t n dt e t 1 (12.17) (12.18) n =2 n =3 Fermi Bose N fermion = 3 4 N boson U fermion = 7 8 U boson (12.19) 12.3 Bose u(e) Fermi T =1 15 K kt = 86 GeV u ( E ) [ 1 6 fm -3 ] T =1 15 K boson fermion energy E [ GeV ] 12.3:

9 N boson = T 3 m 3 U boson = T 4 Jm 3 (12.2) T K U boson N boson = π4 3 ζ(3) kt =2.7 kt U fermion N fermion = 7 6 E x = E/(kT ) x 2 log ex e x ± 1 dx = ± U boson N boson =3.15 kt (12.21) x 2 log ex ± 1 e x dx (12.22) ± [ ] x 2 log ex ± 1 1 e x dx = ± 3 x3 log ex ± 1 e x + 1 x 3 dx 3 e x ± 1 (12.23) 1 3 P P = 1 3 U (12.24) (12.24) S = 4 3 U kt (12.25) S boson = 2π4 45 ζ(3) N boson =3.6 N boson S fermion = 7 6 S boson (12.26) - N ( kt h ) 3 S (12.27)

10 Big Bang U boson 12.1 quarks = 63 massive leptons = 1.5 neutrinos = 5.25 photon 1 2 = 2 weak bosons 3 3 = 9 gluons8 2 = 16 6 flavor W ± Z 1 Higgs 8 2 U standard = U boson (12.28) 3 4 2%

11 n(e)de = 1 1 π 2 ( hc) 3 ( ) E 2 de (12.29) E exp 1 kt u(e)de = En(E)dE = 1 1 π 2 ( hc) 3 ( E exp kt ) E 3 de (12.3) 1 E N γ = 2ζ(3) (kt)3 π 2 ( hc) 3 = T 3 m 3 (12.31) U γ = π2 (kt) 4 15 ( hc) 3 = T 4 Jm 3 (12.32) u(e) λ u(e) (12.3) E λ λ λ +dλ u(λ)dλ = 4 hc λ 5 dλ ( ) 2π hc exp 1 kt λ u(λ) 12.4 (12.33) u(λ) λ max u(λ) λ max = hc kt = K T m (12.34) λ max 5 nm T = = 58 K (12.35)

12 Big Bang.25.2 u ( λ ) [ ev µm -4 ] K 7 K 6 K 5 K wave length λ [ µm] 12.4: kt mc 2 µ E E = mc 2 + p2 2m (12.36) ±1 ( ) ( ) f(e) = exp mc2 µ exp p2 (12.37) kt 2mkT Fermi Bose ( ) p 2n exp p2 dp = 2mkT = (2n 1)!! 2 n 1 π 3 2 (2mkT ) n+ 1 2 ( ) 1 π 2 3 (mkt ) 2 n =1 2 2m 3kT 2 ( ) 1 π 2 3 (mkt ) 2 n =2 2 (12.38)

13 N U N = ( ) 3 ) mkt 2 exp ( mc2 µ 2π h 2 kt (12.39) U = (mc ) 2 kt N (12.4) (12.21) P f(e) 1 log [1 f(e)] f(e) P = kt N (12.41) S [ ] 5 (2πkT)3/2 S = N + log 2 (2π h) 3 N (12.42) K 1 kev E mc 2 R N U matter = Nmc2 R 3 (12.43) R 3 (12.32) T 4 kt = hν = hc (12.44) λ R 4 1 m 3 1 U matter (today) = ( ) 2 = Jm 3 (12.45)

14 Big Bang 2.7 K (12.32) U γ (today) = = Jm 3 (12.46) 4 R R 3 R 4 f U matter = f 3 U matter (today) U γ = f 4 U γ (today) (12.47) U matter = U γ f = =3 1 4 (12.48) T = 3K =15 K (12.49)

15 Big Bang BBN Big Bang Nucleosynthesis Primordial Nucleosynthesis primordial Big Bang D 3 He 4 He 7 Li 4 He/H.8 7 Li/H (1) (2) η = N baryon N γ (12.5) p + p D+e + + ν e B/A t<1s p + e n + ν e n + e + p + ν e (12.51) n p + e + ν e (12.52)

16 Big Bang kt > MeV Boltzmann Boltzmann n p exp ( mc2 kt ) mc 2 =(m n m p )c 2 =1.293 MeV (12.53) kt n/p 1 n N n t 1s kt < mc 2 (12.51) mc 2 n p = exp fr freeze-out ( mc2 kt fr ) 1 6 (12.54) T fr (12.51) Fermi 1.9 K 2.7 K t>1s (12.52) D = 2 H p + n D+γ (12.55) B(D) = 2.23 MeV kt.1 MeV 1 τ n = 882 s

17 n p 1 7 (12.56) (12.55) 4 He D+n 3 H+γ 3 H+p 4 He + γ D+p 3 He + γ 3 He + n 4 He + γ (12.57) D+D 3 H+p 3 H+D 4 He + n D+D 3 He + n 3 He + D 4 He + p (12.58) 4 He 2p +2n 4 He + γ (12.59) 1:7 4 He 1:12 4 He Y p = =.25 (12.6) Big Bang kt 1 MeV NSE nuclear statistical equilibrium i fraction X i = A i N i N baryon = A i (N i /N H ) 1+ i A i (N i /N H ) (12.61)

18 29 12 Big Bang A i N i N baryon X i = g i [ ζ(3) A i 1 π (1 A i)/2 2 (3A i 5)/2 ] A 5/2 i ( kt ) 3(Ai 1)/2 m N c 2 η A i 1 X Z i p B i i m N ( ) (12.62) X A Bi i Z i n exp kt i Γ i Λ i i t dn i dt = 3HN i + Λ i Γ i N i (12.63) H =ȧ(t)/a(t) Hubble i i n p D 3 H 3 He 4 He 6, 7, 8 Li 7, 9 Be 16 O (12.52) (12.57) (12.58) A =7 3 He + 4 He 7 Be + γ 7 Be + n 7 Li + p (12.64) 7 Li + p 2 4 He Coulomb He 5 He 5 He 4 He 4 He 8 Be 8 Be 4 He 12.5 [3] Big Bang t 18 s Be H Be + e 7 Li + ν e 3 H 3 He + e + ν e (12.65)

19 Big Bang D, 3 He, 4 He, 7 Li Big Bang η 12.6 [2] D D+D D 4 He 7 Li 7 Be 7 Li Helium-4 Big Bang 4 He 4 He HII 4 He Big Bang 4 He Y p =.238 ±.2 (stat) ±.5 (sys) (12.66) HII Lithium-7 7 Li 1/3 Li Li Fe Li Big Bang Li ( ) Li/H p = 1.23 ± (12.67) +.56 Li Li Li-Fe 6 Li D Big Bang Big Bang D QAS quaser absorption system D QAS D/H =(3. ±.4 (stat)) 1 5 (12.68)

20

21 D/H =(1.5±.1 (stat)) 1 5 D D/H < Helium-3 3 He HII Big Bang 3 He Big Bang η η He D 7 Li 2.6 η η 1 = η 1 1 (12.69) 1 9 Big Bang η (12.69) Ω b = h 2 η 1 (12.7).95 Ω b h 2.23 (12.71) Ω b 1 Ω lum.24 h 1 (12.72) Ω lum Ω b 1 6 K X Ω matter.3 Dark Matter Big Bang Big Bang η η

22 Big Bang Hubble Big Bang George Gamow 9 Big Bang Gamow Ralph Alpher Robert Herman 5K 1965 Bell Arno Penzias Robert Wilson 4 GHz 7.35 cm 3.5 ±1. K Gamow, Alpher, Herman Planck Big Bang K Planck T I ν = 2hν3 1 c 2 ( hν exp kt ) 1 (12.73) T =3K Planck ν 5 GHz λ 2mm COBE Cosmic Background Explorer Satellite FIRAS Far-Infrared Absolute Spectrophotometer GHz 1 GHz 3 COBE FIRAS T γ N γ U γ T γ = ±.2 K (95% CL) N γ = 2 ζ(3) π 2 Tγ 3 U γ = π2 15 T γ cm gcm 3.26 ev cm 3 (12.74)

23 Penzias Wilson 1% isotropic unpolarized 1 5 anisotropic T T (θ,φ) = a lm Y lm (θ, φ) (12.75) lm θ 1/l l a lm 2 (12.76) 4π l =1 m T T = ( l = 1 ) (12.77) Doppler T β = v/c Doppler T (θ) = T ( ) 1 β 2 1 β cos θ = T 1+βcos θ + β2 2 cos2θ + O(β3 ) (12.78) (11.2 ±.1) h ( 7.22 ±.8) v = 371 ±.5 kms 1 (12.79) Local Group of galaxies v LG = 627 ± 22 km s 1 (12.8) Q rms Q 2 rms T 2 γ = 1 4π a 2m 2 (12.81) m

24 Big Bang µk 1 6 K 4 µk Q rms 28 µk (12.82) COBE l >2 BOOMERanG MAXIMA-1 DASI CBI [4] [ ( +1)C /2 π ] 1/2 [ µ K] Angular Scale [Degrees] n=1 H=5 CDM+1%B COBE QMASK FIRS MAX TEN MAXIMA IAC Pyth HACME Pyth V SP MSAM ARGO SK IAB TOCO97 QMAP TOCO98 ARCHEOPS BOOM-LDB CAT OVRO WD DASI SuZIE BIMA CBI VSA eff Ned Wright - 1 Nov : l 12.7 l 2

25 BOOMERanG Ω tot =1.2 ±.6 (12.83) Ω tot =1 Ω b h 2 =.22 ±.4 (12.84) Big Bang Big Bang

26 Big Bang K. Hagiwara et al., Phys. Rev. D66, 11-1 (22) (Particle Data Group) 3. A Knowledgebase for Extragalactic Astronomy and Cosmology 4. Ned Wright scosmology Tutorial wright/ 5. G. Gamow, Phys. Rev. 7 (1946) 572, R. Alpher, H. Bethe and G. Gamow, Phys. Rev. 73 (1948) 83 R. Alpher and R.C. Herman, Phys. Rev. 75 (1949) Big-bang nucleosynthesis enters the precision era, Rev. Mod. Phys. 7 (1998) COBE:

KamLAND (µ) ν e RSFP + ν e RSFP(Resonant Spin Flavor Precession) ν e RSFP 1. ν e ν µ ν e RSFP.ν e νµ ν e νe µ KamLAND νe KamLAND (ʼ4). kton-day 8.3 < E ν < 14.8 MeV candidates Φ(νe) < 37 cm - s -1 P(νe

More information

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 = 3 3.1 3.1.1 kg m s J = kg m 2 s 2 MeV MeV [1] 1MeV=1 6 ev = 1.62 176 462 (63) 1 13 J (3.1) [1] 1MeV/c 2 =1.782 661 731 (7) 1 3 kg (3.2) c =1 MeV (atomic mass unit) 12 C u = 1 12 M(12 C) (3.3) 41 42 3 u

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2 Hanbury-Brown Twiss (ver. 1.) 24 2 1 1 1 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 3 3 Hanbury-Brown Twiss ( ) 4 3.1............................................

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

2 X-ray 6 gamma-ray 7 1 17.1 0:38m 0:77m nm 17.2 Hz Hz 1 E p E E = h = ch= (17.2) p = E=c = h=c = h= (17.3) continuum continuous spectrum line spectru

2 X-ray 6 gamma-ray 7 1 17.1 0:38m 0:77m nm 17.2 Hz Hz 1 E p E E = h = ch= (17.2) p = E=c = h=c = h= (17.3) continuum continuous spectrum line spectru 1 17 object 1 observation 17.1 X electromagnetic wave photon 1 = c (17.1) c =3 10 8 ms ;1 m mm = 10 ;3 m m =10 ;6 m nm = 10 ;9 m 1 Hz 17.1 spectrum radio 2 infrared 3 visual light optical light 4 ultraviolet

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

untitled

untitled (a) (b) (c) (d) Wunderlich 2.5.1 = = =90 2 1 (hkl) {hkl} [hkl] L tan 2θ = r L nλ = 2dsinθ dhkl ( ) = 1 2 2 2 h k l + + a b c c l=2 l=1 l=0 Polanyi nλ = I sinφ I: B A a 110 B c 110 b b 110 µ a 110

More information

Γ Ec Γ V BIAS THBV3_0401JA THBV3_0402JAa THBV3_0402JAb 1000 800 600 400 50 % 25 % 200 100 80 60 40 20 10 8 6 4 10 % 2.5 % 0.5 % 0.25 % 2 1.0 0.8 0.6 0.4 0.2 0.1 200 300 400 500 600 700 800 1000 1200 14001600

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ 8 + J/ψ ALICE B597 : : : 9 LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ 6..................................... 6. (QGP)..................... 6.................................... 6.4..............................

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

Μ粒子電子転換事象探索実験による世界最高感度での 荷電LFV探索 第3回機構シンポジューム 2009年5月11日 素粒子原子核研究所 三原 智

Μ粒子電子転換事象探索実験による世界最高感度での 荷電LFV探索  第3回機構シンポジューム 2009年5月11日 素粒子原子核研究所 三原 智 µ COMET LFV esys clfv (Charged Lepton Flavor Violation) J-PARC µ COMET ( ) ( ) ( ) ( ) B ( ) B ( ) B ( ) B ( ) B ( ) B ( ) B 2016 J- PARC µ KEK 3 3 3 3 3 3 3 3 3 3 3 clfv clfv clfv clfv clfv clfv clfv

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

untitled

untitled . 96. 99. ( 000 SIC SIC N88 SIC for Windows95 6 6 3 0 . amano No.008 6. 6.. z σ v σ v γ z (6. σ 0 (a (b 6. (b 0 0 0 6. σ σ v σ σ 0 / v σ v γ z σ σ 0 σ v 0γ z σ / σ ν /( ν, ν ( 0 0.5 0.0 0 v sinφ, φ 0 (6.

More information

学習内容と日常生活との関連性の研究-第2部-第6章

学習内容と日常生活との関連性の研究-第2部-第6章 378 379 10% 10%10% 10% 100% 380 381 2000 BSE CJD 5700 18 1996 2001 100 CJD 1 310-7 10-12 10-6 CJD 100 1 10 100 100 1 1 100 1 10-6 1 1 10-6 382 2002 14 5 1014 10 10.4 1014 100 110-6 1 383 384 385 2002 4

More information

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1 1 1.1......... 1............. 1.3... 1.4......... 1.5.............. 1.6................ Bownian Motion.1.......... Einstein.............. 3.3 Einstein........ 3.4..... 3.5 Langevin Eq.... 3.6................

More information

* 1 2014 7 8 *1 iii 1. Newton 1 1.1 Newton........................... 1 1.2............................. 4 1.3................................. 5 2. 9 2.1......................... 9 2.2........................

More information

untitled

untitled 24 2016 2015 8 26,,,,,,,,,,,, D.,,, L.,,, E.,,,,,, 1 1,,,,, 2,,, 7 1 2, 3 4 5 6 7 Contribution No.: CB 15-1 20 40,,,,,,,, 3,,,,, 10,,,,,,, 2, 3 5, 7 ,,, 2,, 3,, 4,,,,,,,,,,,,, 4,,,,,,,,, 1, 50, 1, 50 50,

More information

km2 km2 km2 km2 km2 22 4 H20 H20 H21 H20 (H22) (H22) (H22) L=600m L=430m 1 H14.04.12 () 1.6km 2 H.14.05.31 () 3km 3 4 5 H.15.03.18 () 3km H.15.06.20 () 1.1km H.15.06.30 () 800m 6 H.15.07.18

More information

Happy 60th Birthdays! Ishikawa-san & Kawamoto-san

Happy 60th Birthdays! Ishikawa-san & Kawamoto-san Glashow-Weinberg-Salam model on the lattice A construction with exact gauge invariance Y. Kikukawa Institute of Physics, University of Tokyo based on : D. Kadoh and Y.K., JHEP 0805:095 (2008), 0802:063

More information

量子力学A

量子力学A c 1 1 1.1....................................... 1 1............................................ 4 1.3.............................. 6 10.1.................................. 10......................................

More information

[ ] = L [δ (D ) (x )] = L D [g ] = L D [E ] = L Table : ħh = m = D D, V (x ) = g δ (D ) (x ) E g D E (Table )D = Schrödinger (.3)D = (regularization)

[ ] = L [δ (D ) (x )] = L D [g ] = L D [E ] = L Table : ħh = m = D D, V (x ) = g δ (D ) (x ) E g D E (Table )D = Schrödinger (.3)D = (regularization) . D............................................... : E = κ ............................................ 3.................................................

More information

untitled

untitled 0 ( L CONTENTS 0 . sin(-x-sinx, (-x(x, sin(90-xx,(90-xsinx sin(80-xsinx,(80-x-x ( sin{90-(ωφ}(ωφ. :n :m.0 m.0 n tn. 0 n.0 tn ω m :n.0n tn n.0 tn.0 m c ω sinω c ω c tnω ecω sin ω ω sin c ω c ω tn c tn ω

More information

CVMに基づくNi-Al合金の

CVMに基づくNi-Al合金の CV N-A (-' by T.Koyama ennard-jones fcc α, β, γ, δ β α γ δ = or α, β. γ, δ α β γ ( αβγ w = = k k k ( αβγ w = ( αβγ ( αβγ w = w = ( αβγ w = ( αβγ w = ( αβγ w = ( αβγ w = ( αβγ w = ( βγδ w = = k k k ( αγδ

More information

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í Markov 2009 10 2 Markov 2009 10 2 1 / 25 1 (GA) 2 GA 3 4 Markov 2009 10 2 2 / 25 (GA) (GA) L ( 1) I := {0, 1} L f : I (0, ) M( 2) S := I M GA (GA) f (i) i I Markov 2009 10 2 3 / 25 (GA) ρ(i, j), i, j I

More information

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-7 O1-8 O1-9 O1-10 O1-11 O1-12 O1-13 O1-14 O1-15 O1-16 O1-17 O1-18 O1-19 O1-20 O1-21 O1-22 O1-23 O1-24 O1-25 O1-26 O1-27 O1-28 O1-29 O1-30 O1-31 O1-32 O1-33 O1-34 O1-35

More information

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3 19 Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3 1 1 1.1 γ ΛN................. 1 1.2 KEK J-PARC................................ 2 1.2.1 J-PARC....................................

More information

p.2/76

p.2/76 kino@info.kanagawa-u.ac.jp p.1/76 p.2/76 ( ) (2001). (2006). (2002). p.3/76 N n, n {1, 2,...N} 0 K k, k {1, 2,...,K} M M, m {1, 2,...,M} p.4/76 R =(r ij ), r ij = i j ( ): k s r(k, s) r(k, 1),r(k, 2),...,r(k,

More information

030801調査結果速報版.PDF

030801調査結果速報版.PDF 15 8 1 15 7 26 1. 2. 15 7 27 15 7 28 1 2 7:13 16:56 0:13 3km 45 346 108 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3. 3.1 26 7 10 1 20cm 2 1 2 45 1/15 3 4 5,6 3 4 3 5 6 ( ) 7,8 8 7 8 2 55 9 10 9 10

More information

CL X X PC 1 CL CL CL 1

CL X X PC 1 CL CL CL 1 データセクション Ver. 1.0 1 2 1 2 3 4 CL 2 1 1 5 1 2 3 4 5 X X PC 1 CL CL CL 1 2 3 CL 2 1 1 + 2 1 3 HP 1 1 1 1 HP 4 + 1 1 1 1 + HP HP 0 1 1 4 1 1 1 3 DP 1 1 DP 1 1 DP DP 2 1 1 +2 + 1 1 5 DP DP + 1 1 1 1 DP DP

More information

FIG. 3. Color Absorption images of 171 Yb atoms a and 174 Yb atoms b in the fermion-boson mixture trapped in the crossed FORT. Optical density increas

FIG. 3. Color Absorption images of 171 Yb atoms a and 174 Yb atoms b in the fermion-boson mixture trapped in the crossed FORT. Optical density increas FIG. 3. Color Absorption images of 171 Yb atoms a and 174 Yb atoms b in the fermion-boson mixture trapped in the crossed FORT. Optical density increases from red to blue. Blue areas near the center of

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

untitled

untitled .m 5m :.45.4m.m 3.m.6m (N/mm ).8.6 σ.4 h.m. h.68m h(m) b.35m θ4..5.5.5 -. σ ta.n/mm c 3kN/m 3 w 9.8kN/m 3 -.4 ck 6N/mm -.6 σ -.8 3 () :. 4 5 3.75m :. 7.m :. 874mm 4 865mm mm/ :. 7.m 4.m 4.m 6 7 4. 3.5

More information

閨75, 縺5 [ ィ チ573, 縺 ィ ィ

閨75, 縺5 [ ィ チ573, 縺 ィ ィ 39ィ 8 998 3. 753 68, 7 86 タ7 9 9989769 438 縺48 縺55 3783645 タ5 縺473 タ7996495 ィ 59754 8554473 9 8984473 3553 7. 95457357, 4.3. 639745 5883597547 6755887 67996499 ィ 597545 4953473 9 857473 3553, 536583, 89573,

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

Microsoft PowerPoint - H22コロキウム [互換モード]

Microsoft PowerPoint - H22コロキウム [互換モード] ÿ z ªªª ª ««HE ~ «. z ªªª ª 1 z ªªª ª 4 u ««««ªªªª «d 5/6«3«ªªªª «d 6/3«. z ªªª ª z ªªª ª 5 xfy dowload hp://www.akua.cc.ukuba.ac.jp/~moiomo/ Xd z ªªª ª 3 z ªªª ª 6 1 Xd Xd z z Xd ª «ªªªª «ªˆ «ªªªªª «~~Xd

More information

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B 9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A

More information

Microsoft PowerPoint - H22コロキウム [互換モード]

Microsoft PowerPoint - H22コロキウム [互換モード] xf. Xd z. 3. v 4. 5. Xd i y co y z z θ α «Œ X «+ co θ «z ªªª ª 5 z ªªª ª 8 Xd Xd q λ f ( q) ρ( ) exp( πiq ) dv λ «uθ «z ªªª ª 6 z ªªª ª 9 Xd Xd z z Xd ª «ªªªª «ªˆ «ªªªªª «~~Xd q Xd«Xd«ª ª ªªª f ( q) ρ(

More information

nsg02-13/ky045059301600033210

nsg02-13/ky045059301600033210 φ φ φ φ κ κ α α μ μ α α μ χ et al Neurosci. Res. Trpv J Physiol μ μ α α α β in vivo β β β β β β β β in vitro β γ μ δ μδ δ δ α θ α θ α In Biomechanics at Micro- and Nanoscale Levels, Volume I W W v W

More information

2142B/152142B

2142B/152142B ! EFGH FIJG EFGH O m A kg A lm knm Q m B kg B m B m A A B gms x y z P Q R S T U y xz S T U D F G y F I G J z F I G J D J H G U A I y z x u O d α B P Q R S T F D E A um O ωrads u m A l kω! m A l kω m A

More information

populatio sample II, B II? [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2

populatio sample II, B II?  [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2 (2015 ) 1 NHK 2012 5 28 2013 7 3 2014 9 17 2015 4 8!? New York Times 2009 8 5 For Today s Graduate, Just Oe Word: Statistics Google Hal Varia I keep sayig that the sexy job i the ext 10 years will be statisticias.

More information

観測量と物理量の関係.pptx

観測量と物理量の関係.pptx (I! F! ( (! "! (#, $ #, $!! di! d"! =!I! + B! (T ex T ex : "! n 2 / g 2 = exp(! h! n 1 / g 1 kt ex " I! ("! = I! (0e "! +! e ("! " #! B! [T ex ("! ]d " d! " = # " ds = h" 4$ %("(n dsb h" 1 12 [1! exp(!

More information

15_15KEK

15_15KEK 25, Nov. 24th - - T. Hyodo, Int. J. Mod. Phys. A 28, 3345 (23) T. Hyodo, Phys. ev. Lett., 322 (23) - - - Λ(45) Y. Kamiya, T. Hyodo, arxiv:59.46 [hep-ph] K or N 2 イントロダクション ハドロンの構造とエキゾチック状態 ハドロンの分類 観測されているハドロン

More information

B

B B YES NO 5 7 6 1 4 3 2 BB BB BB AA AA BB 510J B B A 510J B A A A A A A 510J B A 510J B A A A A A 510J M = σ Z Z = M σ AAA π T T = a ZP ZP = a AAA π B M + M 2 +T 2 M T Me = = 1 + 1 + 2 2 M σ Te = M 2 +T

More information

4 3 1 Introduction 3 2 7 2.1.................................. 7 2.1.1..................... 8 2.1.2............................. 8 2.1.3.......................... 10 2.2...............................

More information

000 001

000 001 all-round catalogue vol.2 000 001 002 003 AA0102 AA0201 AA0701 AA0801 artistic brushes AA0602 AB2701 AB2702 AB2703 AB2704 AA0301 AH3001 AH3011 AH3101 AH3201 AH3111 AB3201 AB3202 AB2601 AB2602 AB0701 artistic

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 単純適応制御 SAC サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/091961 このサンプルページの内容は, 初版 1 刷発行当時のものです. 1 2 3 4 5 9 10 12 14 15 A B F 6 8 11 13 E 7 C D URL http://www.morikita.co.jp/support

More information

nsg04-28/ky208684356100043077

nsg04-28/ky208684356100043077 δ!!! μ μ μ γ UBE3A Ube3a Ube3a δ !!!! α α α α α α α α α α μ μ α β α β β !!!!!!!! μ! Suncus murinus μ Ω! π μ Ω in vivo! μ μ μ!!! ! in situ! in vivo δ δ !!!!!!!!!! ! in vivo Orexin-Arch Orexin-Arch !!

More information

I 1 V ( x) = V (x), V ( x) = V ( x ) SO(3) x = R x: R SO(3) Lorentz R t JR = J: J = diag(1, 1, 1, 1) x = x + a Poincarré ( ) 2

I 1 V ( x) = V (x), V ( x) = V ( x ) SO(3) x = R x: R SO(3) Lorentz R t JR = J: J = diag(1, 1, 1, 1) x = x + a Poincarré ( ) 2 III 1 2005 Jan 30th, 2006 I : II : I : [ I ] 12 13 9 (Landau and Lifshitz, Quantum Mechanics chapter 12, 13, 9: Pergamon Pr.) [ ] ( ) (H. Georgi, Lie algebra in particle physics, Perseus Books) [ ] II

More information

2 FIG. 1: : n FIG. 2: : n (Ch h ) N T B Ch h n(z) = (sin ϵ cos ω(z), sin ϵ sin ω(z), cos ϵ), (1) 1968 Meyer [5] 50 N T B Ch h [4] N T B 10 nm Ch h 1 µ

2 FIG. 1: : n FIG. 2: : n (Ch h ) N T B Ch h n(z) = (sin ϵ cos ω(z), sin ϵ sin ω(z), cos ϵ), (1) 1968 Meyer [5] 50 N T B Ch h [4] N T B 10 nm Ch h 1 µ : (Dated: February 5, 2016), (Ch), (Oblique Helicoidal) (Ch H ), Twist-bend (N T B ) I. (chiral: ) (achiral) (n) (Ch) (N ) 1996 [1] [2] 2013 (N T B ) [3] 2014 [4] (oblique helicoid) 2016 1 29 Electronic

More information

ms.dvi

ms.dvi ( ) 2010 11 21 1 review Onsager [1] 2 2 1 1 PPM 2010-09 図 1: 実験装置の図 写真中央にある円筒形の容器が超電導コイルで囲まれた真空 容器で この中に電子を閉じ込める 左側の四角い箱の中には光学系が設置されて おり 電子の像を箱左端の CCD カメラへ導く役割を担う このようにして超電導マ グネットから CCD カメラを遠ざけないと 強磁場の影響を受け正しい撮像が行え

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 通信方式第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/072662 このサンプルページの内容は, 第 2 版発行当時のものです. i 2 2 2 2012 5 ii,.,,,,,,.,.,,,,,.,,.,,..,,,,.,,.,.,,.,,.. 1990 5 iii 1 1

More information

untitled

untitled 1. Web21 2001 4 2. Web21 2001 4 3. Web21 2001 4 4. Web21 2001 4 5. BCS Web21 2001 6 6. Web21 2001 6 7. Web21 2001 8 8. - Web21 2001 10 9. 9-1. Web21 2001 10 9-2. d Web21 2001 12 9-3. Web21 2001 12 1. T

More information

MUFFIN3

MUFFIN3 MUFFIN - MUltiFarious FIeld simulator for Non-equilibrium system - ( ) MUFFIN WG3 - - JCII, - ( ) - ( ) - ( ) - (JSR) - - MUFFIN sec -3 msec -6 sec GOURMET SUSHI MUFFIN -9 nsec PASTA -1 psec -15 fsec COGNAC

More information

縺 縺8 縺, [ 縺 チ : () () () 4 チ93799; () "64": ィャ 9997ィ

縺 縺8 縺, [ 縺 チ : () () () 4 チ93799; () 64: ィャ 9997ィ 34978 998 3. 73 68, 86 タ7 9 9989769 438 縺48 縺 378364 タ 縺473 399-4 8 637744739 683 6744939 3.9. 378,.. 68 ィ 349 889 3349947 89893 683447 4 334999897447 (9489) 67449, 6377447 683, 74984 7849799 34789 83747

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

2

2 1 12123456789012345678901234 12123456789012345678901234 12123456789012345678901234 12123456789012345678901234 12123456789012345678901234 12123456789012345678901234 12123456789012345678901234 12123456789012345678901234

More information

< qq > (Quark Gluon Plasma,QGP) QGP (< qq >= ) < qq > π - π K + Nambu-Goldstone K + S = + S = K K + K + - K + t free ρ K + N K + N next-to-leading ord

< qq > (Quark Gluon Plasma,QGP) QGP (< qq >= ) < qq > π - π K + Nambu-Goldstone K + S = + S = K K + K + - K + t free ρ K + N K + N next-to-leading ord -K + < qq > (Quark Gluon Plasma,QGP) QGP (< qq >= ) < qq > π - π K + Nambu-Goldstone K + S = + S = K K + K + - K + t free ρ K + N K + N next-to-leading order (NLO) NLO (low energy constant,lec) χ I = I

More information

CKY CKY CKY 4 Kerr CKY

CKY CKY CKY 4 Kerr CKY ( ) 1. (I) Hidden Symmetry and Exact Solutions in Einstein Gravity Houri-Y.Y: Progress Supplement (2011) (II) Generalized Hidden Symmetries and Kerr-Sen Black Hole Houri-Kubiznak-Warnick-Y.Y: JHEP (2010)

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

『共形場理論』

『共形場理論』 T (z) SL(2, C) T (z) SU(2) S 1 /Z 2 SU(2) (ŜU(2) k ŜU(2) 1)/ŜU(2) k+1 ŜU(2)/Û(1) G H N =1 N =1 N =1 N =1 N =2 N =2 N =2 N =2 ĉ>1 N =2 N =2 N =4 N =4 1 2 2 z=x 1 +ix 2 z f(z) f(z) 1 1 4 4 N =4 1 = = 1.3

More information

C p (.2 C p [[T ]] Bernoull B n,χ C p p q p 2 q = p p = 2 q = 4 ω Techmüller a Z p ω(a a ( mod q φ(q ω(a Z p a pz p ω(a = 0 Z p φ Euler Techmüller ω Q

C p (.2 C p [[T ]] Bernoull B n,χ C p p q p 2 q = p p = 2 q = 4 ω Techmüller a Z p ω(a a ( mod q φ(q ω(a Z p a pz p ω(a = 0 Z p φ Euler Techmüller ω Q p- L- [Iwa] [Iwa2] -Leopoldt [KL] p- L-. Kummer Remann ζ(s Bernoull B n (. ζ( n = B n n, ( n Z p a = Kummer [Kum] ( Kummer p m n 0 ( mod p m n a m n ( mod (p p a ( p m B m m ( pn B n n ( mod pa Z p Kummer

More information

τ p ω πτ p ω π τ p (t) = 2 2 t 2 exp(i t)exp 8 2 S(,t) = s( ) (t )d d 2 E x dz 2 = 2 E x z E x = E 0 e z, = + j = 1 2 0 tan = 0, v = c r 10 11 Horn Circulator Net Work Analyzer t H = E t E = H E t B =

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

,000m 7 CAT

,000m 7 CAT 7,404 15 63% 1,000 120 2 17 60 150 4 67 120 7 5 6,049 20 2,265 20 87.4 17 2 3 =3.5%23.2%73.3% 40 20 151110 1 2010 2011 3,000m 7 CAT 11 12 18 316 3 18 3 19 95 9 65 3 75 2 80 2 60 3 100 2 2011 3 33 3 3 140km

More information

2 内容 大気ニュートリノ スーパーカミオカンデ ニュートリノ振動の発見 検証 今後のニュートリノ振動の課題

2 内容 大気ニュートリノ スーパーカミオカンデ ニュートリノ振動の発見 検証 今後のニュートリノ振動の課題 1 SK-I 大気ニュートリノにおける ニュートリノ振動の発見 石塚正基 ( 東京工業大学 ) 2016 年 2 月 20 日 第 29 回宇宙ニュートリノ研究会 東京大学宇宙線研究所 2 内容 大気ニュートリノ スーパーカミオカンデ ニュートリノ振動の発見 検証 今後のニュートリノ振動の課題 3 大気ニュートリノ 大気ニュートリノ生成 From SK website p π µ + ν µ e +

More information

1320M/161320M

1320M/161320M " # $ %! θθ v m g y v θ O v α x! O x y x α x y y " v # v sinα $ & v cosα ' v cosα v sinα ( v cosα % v sinα " g # gsinθ $ g sinθ ' g ( gsinθ ) g sinθ % gcosθ & g cosθ * gcosθ! g cosθ xy y L v g x xy L α

More information

2

2 1 2 3 4 5 6 ( ) 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 6+ 6-5 2 6-5- 6-5+ 5-5- 5- 22 6+ 6-6+ 6-6- S-P time 10 5 2 23 S-P time 5 2 5 2 ( ) 5 2 24 25 26 1 27 28 29 30 95 31 ( 8 2 ) http://www.kishou.go.jp/know/shindo/kaisetsu.html

More information

56 4 2 log N ( t ) 1 0 0 t 1/2 τ m 2τ m time t 4.1: λ decay rate λ = 1 τ m (4.8) A B b Γ = h τ m = hλ (4.9) A B + b (4.10) Q Q = M(B)+M(b) M(A) (4.11)

56 4 2 log N ( t ) 1 0 0 t 1/2 τ m 2τ m time t 4.1: λ decay rate λ = 1 τ m (4.8) A B b Γ = h τ m = hλ (4.9) A B + b (4.10) Q Q = M(B)+M(b) M(A) (4.11) 4 4.1 t N(t) t t +dt dn(t) N(t) dn(t) = λn(t)dt (4.1) dn(t) dt = λn(t) (4.2) t =0 N 0 = N(0) 4.1 N(t) =N 0 e λt (4.3) log N(t) = log N 0 λt (4.4) mean life half-life t N(t) τ m =1/λ 1/e τ m 1/2 t 1/2 T

More information

R. R. Wilson, " Radiological Use of Fast Protons" (Radiology 1946:47:487-91)

R. R. Wilson,  Radiological Use of Fast Protons (Radiology 1946:47:487-91) KEK 2010/6/25 KEK R. R. Wilson, " Radiological Use of Fast Protons" (Radiology 1946:47:487-91) X http://www.gsi.de PHITS 25cm p z He C 4 He 4 He 4 He p 12 C 12 C 12 C PHITS (particle and heavy ion transport

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi II (Basics of Probability Theory ad Radom Walks) (Preface),.,,,.,,,...,,.,.,,.,,. (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi I (Basics of Probability Theory ad Radom Walks) 25 4 5 ( 4 ) (Preface),.,,,.,,,...,,.,.,,.,,. (,.) (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios,

More information

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law I (Radom Walks ad Percolatios) 3 4 7 ( -2 ) (Preface),.,,,...,,.,,,,.,.,,.,,. (,.) (Basic of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

q π =0 Ez,t =ε σ {e ikz ωt e ikz ωt } i/ = ε σ sinkz ωt 5.6 x σ σ *105 q π =1 Ez,t = 1 ε σ + ε π {e ikz ωt e ikz ωt } i/ = 1 ε σ + ε π sinkz ωt 5.7 σ

q π =0 Ez,t =ε σ {e ikz ωt e ikz ωt } i/ = ε σ sinkz ωt 5.6 x σ σ *105 q π =1 Ez,t = 1 ε σ + ε π {e ikz ωt e ikz ωt } i/ = 1 ε σ + ε π sinkz ωt 5.7 σ H k r,t= η 5 Stokes X k, k, ε, ε σ π X Stokes 5.1 5.1.1 Maxwell H = A A *10 A = 1 c A t 5.1 A kη r,t=ε η e ik r ωt 5. k ω ε η k η = σ, π ε σ, ε π σ π A k r,t= q η A kη r,t+qηa kηr,t 5.3 η q η E = 1 c A

More information

1

1 016 017 6 16 1 1 5 1.1............................................... 5 1................................................... 5 1.3................................................ 5 1.4...............................................

More information

たたら製鉄についてのまとめ

たたら製鉄についてのまとめ 65 1229 1570 5 3 5 2769 1876 1889 9 1892 1927-73 - - 1619 131 2 5500 43 194 1889 1955-1617 3 2 3 1186 2 9 15 1165-74 - 596 300 200 4 888 4 888 11 3 8892 10 2 969 708781782888 729 749 859 877 3 947 3 1523

More information

研修コーナー

研修コーナー l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l

More information

目次 : ハドロンの性質 単位系と Raidity ハドロンの静的な性質 ハドロンとハドロン多体系の物理 QCD の概説 クォークの閉じ込めとストリング描像 ハドロンの動的性質と粒子生成 ハドロン ハドロン衝突について 実験データからわかること String 模型 衝突の時空描像 Jet

目次 : ハドロンの性質 単位系と Raidity ハドロンの静的な性質 ハドロンとハドロン多体系の物理 QCD の概説 クォークの閉じ込めとストリング描像 ハドロンの動的性質と粒子生成 ハドロン ハドロン衝突について 実験データからわかること String 模型 衝突の時空描像 Jet ハドロンの性質 浜垣秀樹東京大学原子核科学研究センター 目次 : ハドロンの性質 単位系と Raidity ハドロンの静的な性質 ハドロンとハドロン多体系の物理 QCD の概説 クォークの閉じ込めとストリング描像 ハドロンの動的性質と粒子生成 ハドロン ハドロン衝突について 実験データからわかること String 模型 衝突の時空描像 Jet 単位系 と 力学変数 単位系 (Units) 原子核物理

More information

0.45m1.00m 1.00m 1.00m 0.33m 0.33m 0.33m 0.45m 1.00m 2

0.45m1.00m 1.00m 1.00m 0.33m 0.33m 0.33m 0.45m 1.00m 2 24 11 10 24 12 10 30 1 0.45m1.00m 1.00m 1.00m 0.33m 0.33m 0.33m 0.45m 1.00m 2 23% 29% 71% 67% 6% 4% n=1525 n=1137 6% +6% -4% -2% 21% 30% 5% 35% 6% 6% 11% 40% 37% 36 172 166 371 213 226 177 54 382 704 216

More information

10 117 5 1 121841 4 15 12 7 27 12 6 31856 8 21 1983-2 - 321899 12 21656 2 45 9 2 131816 4 91812 11 20 1887 461971 11 3 2 161703 11 13 98 3 16201700-3 - 2 35 6 7 8 9 12 13 12 481973 12 2 571982 161703 11

More information

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP 1. 1 213 1 6 1 3 1: ( ) 2: 3: SF 1 2 3 1: 3 2 A m 2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

More information