notes.dvi

Size: px
Start display at page:

Download "notes.dvi"

Transcription

1 ( 517, ) u.ac.jp 1 γ <0.1Å X 0.1Å 6Å X 6Å 100Å 100Å 3000Å 3000Å 1µm 1µm 5µm 5µm 20µm 20µm 300µm 300µm 1mm 1mm 1cm 1cm 10cm >10cm λ (cm) ν (Hz) λ = c/ν (1) E (erg, ergs) T (K) E = hν = kt (2) 1

2 Planck c = e+10 cm sec 1 h = e 27 erg sec Boltzmann k = e 16 erg K 1 1eV = e 12 erg 13.6eV? 2 Surface brightness I ν (erg sec 1 cm 2 Hz 1 Sr 1 ) = I ν dνdadtdω (3) de = I ν dνdadtdω = I ν dν da dt dω (4) dadω = da dω = dada r 2 (5) dν = dν I ν = I ν (6) Flux density F ν (erg sec 1 cm 2 Hz 1, Jy) F ν = 1 Jy = 1 e 23 erg sec 1 cm 2 Hz 1 I ν cosθ dω (7) 2

3 Momentum flux density Π ν (dyn cm 2 Hz 1 ) Π ν = 1 c I ν cos 2 θ dω (8) Total flux F (erg sec 1 cm 2 ) F = Pressure p (dyn cm 2 ) ν2 ν 1 F ν dν (9) p = ν2 Intensity I (erg sec 1 cm 2 Sr 1 ) I = ν 1 Π ν dν (10) ν2 ν 1 I ν dν (11) Emissivity j ν (erg sec 1 cm 3 Hz 1 Sr 1 ) j ν = di ν ds Absorption coefficient α ν (cm 1 ) (12) di ν ds = α νi ν (13) 3 diν ds = j ν α ν I ν (14) 3

4 I ν (s) = I ν (0)+ s 0 j ν(s ) ds (15) I ν (0) = 0, j ν = const. I ν (s) = j ν s (16) Optical depth τ ν I ν (s) = I ν (0)e τ ν (17) τ ν s 0 α ν(s ) ds (18) Source function S ν (19)(20) (14) dτ ν = α ν ds (19) S ν j ν α ν (20) di ν dτ ν +I ν = S ν (21) e τ ν I ν = I ν (0)e τ ν + τν 0 e (τ ν τ ν ) S ν (τ ν) dτ ν (22) S ν = const. I ν (τ ν ) = S ν +e τ ν [I ν (0) S ν ] (23) τ ν I ν S ν 4

5 dω = da, dv = dads (24) r2 (7) cosθ 1 (12)(24) F ν = 1 r 2 Luminosity L ν (erg sec 1 Hz 1 ) j ν dv (25) P νv (25)(26) L ν = Total luminosity L tot (erg sec 1 ) j ν = 1 4π P νv (26) P νv dv = 4πr 2 F ν (27) L tot = 4πr 2 F ν dν (28) ( 0.1,1Jy@1.4GHz, F ν ν 0.7, 10GHz cutoff) Total Luminosity? ( Mpc, 1pc=3.09e+18 cm) 0 5

6 4 Plank law B ν (erg sec 1 cm 2 Hz 1 Sr 1 ) B ν = 2hν3 c 2 1 exp(hν/kt) 1 (29) T ((3) ) (1) (1) dν = c/λ 2 dλ B λ = 2hc2 λ 5 1 exp(hc/λkt) 1 R ( ) I ν = B ν (7) 2π F ν = B ν dφ 0 = πb ν sin 2 θ c = πb ν ( R r )2 θc 0 sinθcosθdθ r = R (30) (31) F ν = πb ν (32) 6

7 Stefan-Boltzmann law (9)(32) total flux F = 0 πb ν dν = 2πh ( kt )4 x 3 dx c 2 h 0 e x 1 = σt 4 (33) 0 x 3 dx e x 1 = π4 15 Stefan-Boltzmann Rayleigh-Jeans law (hν kt) exp σ 2π5 k 4 15c 2 h 3 (34) = e 5ergsec 1 cm 2 K 4 ( ) hν 1 = hν kt kt I RJ Wien law (hν kt) I W ν +... (35) ν (T) = 2ν2 kt (36) c2 ( 2hν3 (T) = exp hν ) c 2 kt (37) 7

8 Wien B ν ν ν max B ν ν ν=νmax = 0 (38) x = hν max /kt x = 3(1 e x ) x 2.82 ν max T = e+10 Hz K 1 (39) (λ max T = 5100 µm K ) B λ λ λ max B λ λ λ=λmax = 0 (40) y = hc/λ max kt y = 5(1 e y ) y 4.97 λ max T = 2898 µm K (41) S ν = B ν (23) I ν B ν 8

9 Brightness Temperature T b (K) I ν = B ν (T b ) (42) (31) B ν Rayleigh-Jeans law T b (23) T b = c2 2ν 2 k I ν = T(1 e τ ν ) (43) T b Color Temperature T c (K) Effective Temperature T eff (K) T b Total flux (9) Stefan-Boltzmann law (33) F = I ν cosθ dωdν = σt 4 eff (44) 9

10 Vega T c 1e+4 K Vega arcsec? (Vega = e+10 cm 1arcsec = 1/3600 F ν λ µm )

11 5 Einstein Mean intensity J ν = 1 4π Line profile function I ν dω (45) 0 φ(ν) dν = 1 (46) E E+hν 0 intensity J = 0 J ν φ(ν) dν (47) Einstein A A 21 (sec 1 ) 2 1 (Spontaneous emission) Einstein B B 12, B 21 B 12 J 1 2 (Absorption) B 21 J 2 1 (Stimulated emission) Einstein 1,2 11

12 n 1, n 2 n 1 B 12 J = n 2 A 21 +n 2 B 21 J (48) J = A 21 /B 21 (n 1 /n 2 )(B 12 /B 21 ) 1 (49) n 1 /n 2 n 1 n 2 = g 1 exp( E/kT) g 2 exp[ (E +hν 0 )/kt] ( ) hν0 kt = g 1 g 2 exp (50) g 1, g 2 (49)(50) J = g n = 2 n 1 (2l+1) = 2n 2 (51) l=0 A 21 /B 21 (g 1 B 12 /g 2 B 21 )exp(hν 0 /kt) 1 (52) Line profile function φ(ν) ν 0 (52) ν 0 (29) g 1 B 12 = g 2 B 21 (53) A 21 = 2hν3 0 c 2 B 21 (54) 12

13 1 j ν = hν 0 4π n 2A 21 φ(ν) (55) α ν = hν 0 4π (n 1B 12 n 2 B 21 )φ(ν) (56) (20) S ν = n 2 A 21 n 1 B 12 n 2 B 21 (57) (56)(57) (53)(54) α ν = hν 0 4π n 1B 12 S ν = 2hν3 0 c 2 ( ) 1 g 1n 2 φ(ν) (58) g 2 n 1 ( ) g2 n (59) g 1 n 2 (50) (58)(59) α ν = hν [ ( )] 0 4π n hν0 1B 12 1 exp φ(ν) kt (60) S ν = B ν0 (T) (61) (50) n 1 g ( ) 1 hν0 exp (62) n 2 g 2 kt 13

14 ( Maxwell ) (50) n 2 g 1 n 1 g 2 = exp ( hν0 kt ) < 1 (63) n 1 g 1 > n 2 g 2 (64) n 1 g 1 < n 2 g 2 (65) (58) 6 Scattering coefficient σ ν (cm 1 ) (coherent/elastic/monochromatic scattering) mean intensity (45) j ν = σ ν J ν (66) 14

15 (14) di ν ds = σ ν(i ν J ν ) (67) ( ) j ν = α ν S ν = α ν B ν (14)(67) di ν ds = α ν(i ν B ν ) σ ν (I ν J ν ) (68) = (α ν +σ ν )(I ν S ν ) (69) S ν = α νb ν +σ ν J ν α ν +σ ν (70) Extinction coefficient α ν +σ ν (cm 1 ) (19) dτ ν = (α ν +σ ν )ds (71) Mean free path l ν (cm) τ ν = (α ν +σ ν )l ν = 1 (72) l ν = 1 α ν +σ ν (73) 15

16 Albedo 1 ǫ ν ǫ ν ǫ ν = α ν α ν +σ ν (74) 1 ǫ ν = σ ν α ν +σ ν (75) single-scattering albedo (70) Diffusion length l (cm) S ν = (1 ǫ ν )J ν +ǫ ν B ν (76) N Mean free path l ν N ǫ ν l = Nl ν = l ν ǫν = 1 αν (α ν +σ ν ) (77) diffusion/thermalization length effective mean path Rosseland (78) (69) ds = dz cosθ = dz µ I ν (z,µ) = S ν 16 µ I ν α ν +σ ν z (78) (79)

17 2 mean free path I ν I ν 0 2 (70) I (0) ν = S (0) ν = B ν (80) (79) (7) I (1) ν (z,µ) = B ν F ν (z) = = 2π Total flux(9) I ν (1) +1 1 I(1) ν µ B ν α ν +σ ν z (z,µ)cosθ dω (z,µ)µ dµ = 2π B ν α ν +σ ν z 4π B ν = 3(α ν +σ ν ) T +1 1 µ2 dµ T z (81) (82) F(z) = 0 F ν (z) dν = 4π T 3 z 0 = 16σT3 T 3α R z 1 α ν +σ ν B ν T dν (83) 17

18 Rosseland mean absorption coefficient 1 α R (33) 0 1 B ν α ν +σ ν T dν 0 B ν T dν (84) B ν 0 T dν = B ν dν = 4σT3 (85) T 0 π (83) Rosseland approximation equation of radiative diffusion T C (core) T S (shell) ν 0 α ν A, B T C > T S, T C < T S Tc A Ts B 18

19 7 P, P (erg sec 1 ) P = e2 6πε 0 c 3 r2 (86) P = e2 x 2 0ω 4 12πε 0 c 3 (87) e = e 19 C ε 0 = e 21 g 1 cm 3 sec 2 C 2 m = e 28 g Radiation reaction force F rad (dyn) F rad ṙ = P (88) 1 t 1 t 2 t2 t2 F rad ṙ dt = e2 r r dt t 1 6πε 0 c 3 t 1 = e2 ( [ r ṙ] t ) t2 2 6πε 0 c 3 t1 ṙ ṙ dt t 1 (89) r ṙ(t 1 ) = r ṙ(t 2 ) F rad = e2 6πε 0 c 3ṙ = mτṙ (90) Radiation reaction time scale τ (sec) τ 2r 0 3c = e 24 sec (91) 19

20 r 0 (cm) e 2 r 0 = = e 13 cm (92) 4πε 0 mc2 Radiation reaction F = m( r τṙ ) = mω 2 0 r+ee 0e iωt (93) x τẋ +ẍ+ω0x 2 = ee 0 m eiωt (94) x = x 0 e iωt = x 0 e i(ωt+δ) (95) x 0 = ee 0 1 m ω 2 ω0 2 iω 3 τ (96) tanδ = ω3 τ ω 2 ω0 2 (97) (87) P = e2 x 0 2 ω 4 12πε 0 c 3 e 4 E0 2 ω 4 12πε 0 m 2 c 3 (ω 2 ω0) 2 2 +(ω0τ) 3 (98) 2 ( τω 1 ω ω 0 ω ω 0 ) flux (Poynting vector S ) S (erg sec 1 cm 2 ) S = 1 2 ε 0cE 2 0 (99) 20

21 Scattering cross section σ (cm 2 ) σ P S = σ ω 4 T (ω 2 ω0) 2 2 +(ω0τ) 3 (100) 2 Thomson cross section σ T (cm 2 ) σ T = 8π 3 r2 0 = e 25 cm 2 (101) Thomson scattering X ω ω 0 (100) Rayleigh scattering σ σ T (102) ω ω 0 (100) σ σ T ( ω ω 0 ) 4 (103) ω ω 0 ω 2 ω0 2 = 2ω 0(ω ω 0 ) ω = ω 0 (100) Γ σ πcr 0 (104) (ω ω 0 ) 2 +(Γ/2) 2 Classical damping constant Γ (rad 2 sec 1 ) Γ ω 2 0τ (105) 21

22 Oscillator strength f ij (104) ω ω 0 (100) (104) 0 σ dν 1 2π σ dω = πcr 0 = e2 4ε 0 mc (106) f ij 0 σ dν = e2 4ε 0 mc f ij = hν 0 4π B ij (107) (56) 1 n r n r = c c = ε µ = ε r µ r (108) ε 0 µ 0 µ r 1 (n r 1) n n r = ε r = (96)(105) n r = nex ε 0 E 1+ nex 2ε 0 E ne 2 2ε 0 m(ω 2 0 ω 2 +iγω) 22 (109) (110)

23 F = m r = ee 0 sinωt (111) (101) (Θ r ) dp dω = e2 r 2 Θ (112) 16π 2 ε 0 c 3sin2 Thomson scattering (θ ) dσ dω = 1 2 r2 0(1+cos 2 θ) (113) θ ( x y ) y x π 2 θ π 2 θ z 23

24 8 Fourier ˆf(ω) = 1 2π f(t) = Parseval f2 (t) dt = 2π f(t)eiωt dt (114) ˆf(ω)e iωt dω (115) ˆf(ω) 2 dω (116) W (erg) W = P dt = 0 dw dω dω (117) (86) (116) W = = = 0 e 2 6πε 0 c 3 r2 dt e 2 3ε 0 c 3 ˆ r 2 dω 2e 2 3ε 0 c 3 ˆ r 2 dω (118) dw/dν (erg Hz 1 ) dw dν = 2πdW dω = 4πe2 3ε 0 c 3 ˆ r 2 (119) 24

25 (114) b (cm) ˆ r = 1 2π reiωt dt = 1 2π r dt, ωb v 0, ωb v (120) Ze Ze2 dt = r 4πε 0 m (120)(121) (119) dw dν = b dt Ze2 = (b 2 +v 2 t 2 ) 3/2 2πε 0 mbv (121) Z 2 e 6 12π 3 ε 3 0 c3 m 2 b 2 v 2, ωb v 0, ωb v (122) b b+db n e n i 2πvb db (122) d 3 W dνdvdt = d2 P dνdv bmax dw(b) = n e n i 2πv b db b min dν e 6 = 6π 2 ε 3 0c 3 m 2 v n en i Z 2 ln ( ) bmax b min (123) 25

26 b max b max = v 2πν (124) b min b min = Gaunt factor g ff Ze 2 1 2πε 0 mv, 2 2 mv2 13.6Z 2 ev h mv, 1 2 mv2 13.6Z 2 ev (125) g ff = ( ) 3 π ln bmax b min (123) g ff (126) d 2 P dνdv = e 6 6 3πε 3 0m 2 c 3 v n en i Z 2 g ff (127) Maxwell v 2 exp( mv 2 /2kT) dv (127) 1 2 mv2 hν v min = (2hν/m) 1/2 vmin d 2 d P 2 P dνdv = dνdv v2 exp( mv 2 /2kT) dv 0 v 2 exp( mv 2 /2kT) dv ( ) m 3/2 d 2 P = 4π 2πkT v min dνdv v2 exp mv2 dv 2kT = e 6 2π 6π 2 ε 3 0mc 3 3mkT n en i Z 2 e hν/kt ḡ ff (128) 26

27 (ḡ ff velocity averaged Gaunt factor) 0 e ax2 dx = x 2 e ax2 dx = 4π π a ( a 3/2 1 π) (129) (130) xe ax2 dx = 1 x 0 2a e ax2 0 (131) S ν = B ν (20) (26) j ν = 1 d 2 P 4πdνdV (29) j ν = α ν B ν (132) (133) e 6 α ν = 2π n e n i Z 2 48π 3 ε 3 (1 e hν/kt )ḡ 0mhc 3mkT ν 3 ff (134) hν kt e hν/kt 0 hν kt e 6 α ν = n e n i Z 2 48π 3 ε 3 ḡ 0mkc 3mkT 3 ν 2 ff (135) = n en i Z 2 T 3/2 ν 2ḡff (136) 27

28 L (cm) (18) Emission measure EM (cm 6 pc) 1pc = 3.086e+18 cm τ ν = α ν L (137) (Hii ) Z = 1, n i = n e EM n 2 e L (138) (137) EM (136) τ ν = (5.5e+16) EM T 3/2 ν 2ḡff (139) τ ν = 1 ν c EM ν c = (2.3e+8) ḡff (140) (43) T 3/4 I ν = 2kν2 T c 2 b = (3.07e 37)ν 2 T(1 e τ ν ) (3.1e 37)ν 2 T, ν ν c = (1.7e 20) EM (141) T ḡ ff, ν ν c ν 2 28

29 9 γm v = ev B (142) γ = (1 β 2 ) 1/2, β = v c (143) Gyration frequency ω B (rad Hz) v B α (142) v v rω B = v γmrωb 2 = ev B = vcosα = const. = vsinα = const. (144) ω B = eb γm (145) r = γm vsinα eb (146) Lorentz a = γ 3 a = 0 a = γ2 a = γ 2 ω B vsinα = γeb m vsinα (147) (86) P = e2 6πε 0 c 3 γ 2 e 2 B 2 m 2 v 2 sin 2 α = ε 0 σ T c 3 β 2 γ 2 B 2 sin 2 α (148) 29

30 sin 2 α 1 4π sin 2 α dω = 2 3 (149) (148) P = 2 3 ε 0σ T c 3 β 2 γ 2 B 2 = 4 3 σ Tcβ 2 γ 2 U B (150) U B (erg cm 3 ) U B = B2 2µ 0 = 1 2 ε 0c 2 B 2 (151) 1/γ t v v B (142) v r ω B γmr ω B 2 = const. = v = evbsinα (152) ω B = ω B sinα (153) r = r sinα (154) 30

31 t ω B t = 2 γ (155) t = 2 γω B sinα (156) t t A v c t A = ( 1 v c c t A = c t v t (157) ) t t 2γ 2 = 1 γ 3 ω B sinα (158) 1/ t A v c F dp 3 dν = e 3 ( Bsinα ν F (159) 4πε 0 mc νc) ν c = 3 4π γ3 ω B sinα = 3e 4πm γ2 Bsinα (160) F(x) = x = x K 5/3 (η) dη (161) ( x 2 ) 4π 1/3 3Γ = 2.13x ( 3) 1/3, x 1 1 (πx/2) 1/2 e x, x 1 F(x) dx = 8π 0 9 (162) 3 (159) ν (148)(β = 1) 31

32 (150) β = 1 E = γmc 2 P = de dt = 4σ T 3m 2 c 3U BE 2 (163) E(t) = E(0) 1+ t 1 (164) t 1/2 t 1/2 E(t) = 1 E(0) 2 t 1/2 = 3m2 c 3 UB 1 E(0) 1 (165) 4σ T spectral index p N(E) E p (166) dp tot dν = N(E) dp 0 dν de 0 γ p BF ( ν νc) dγ (167) x = ν/ν c (160) ν c γ 2 B ν x = ν c γ 2 B (168) ν x2dx γbdγ (169) (167) dp tot dν ν (p 1)/2 B (p+1)/2 x (p 3)/2 F(x) dx 0 ν (p 1)/2 B (p+1)/2 (170) 32

33 F ν ν s s = p 1 2 (171) (56) α ν = hν 0 4π [N(E hν 0)B 12 N(E)B 21 ]φ(ν)dν 0 de (172) φ(ν) = δ(ν ν 0 ) dp α ν = hν 4π [N(E hν)b 12 N(E)B 21 ] de (173) dν (55) dp dν = (54)(174) hν 0 A 21 φ(ν) dν 0 = hνa 21 (174) B 21 = c2 2hν 3A 21 = c2 dp 2h 2 ν 4 dν (175) (53) g p p+dp g(e)de = 4πp 2 dp = 4πE2 c 3 de (176) 33

34 (53)(176) B 12 = = g(e) g(e hν) B 21 = g(e) ( 1+ 2hν E ) g(e) hν dg(e) de 1 B 21 B 21 (177) N(E hν) = N(E) hν dn(e) de = N(E) 1 hν dn(e) (178) N(E) de (175)(177)(178) (173) α ν = c2 8πhν 3 = c2 8πν 2 ν 2 γ (p+1) BF (168)(169) N(E) 2hν E hν N(E) E 2 d N(E) dp de E 2 dν de ( ν νc) dn(e) de dp dν de dγ (179) α ν ν (p+4)/2 B (p+2)/2 x (p 2)/2 F(x) dx 0 ν (p+4)/2 B (p+2)/2 (180) (20)(170)(180) S ν = 1 4πα ν dp tot dν ν5/2 B 1/2 (181) (165) 3µG 5GeV t 1/2 (1G=0.1 g sec 1 C 1 ) 34

35 10 Compton scattering (ǫ 0,p 0 ) (ǫ,p), (mc 2,0) (γmc 2,p e ) p 0 = p+p e p e 2 = p 0 p 2 ( ) 2 ( ) (γmβc) 2 ǫ0 ǫ 2 ( )( ) ǫ0 ǫ = + 2 cosθ c c c c (γmc 2 ) 2 = (mc 2 ) 2 +ǫ 2 0 +ǫ 2 2ǫ 0 ǫcosθ (182) (182)(183) mc 2 +ǫ 0 = γmc 2 +ǫ (γmc 2 ) 2 = (mc 2 +ǫ 0 ǫ) 2 (183) ǫ = 1+ ǫ 0 mc (1 cosθ) 2 Compton wavelength λ c (cm) (184) ǫ 0 (184) λ = λ λ 0 = λ c (1 cosθ) (185) 35

36 λ c h mc = e 10 cm (186) Klein-Nishina formula dσ dω = r2 0ǫ 2 2 ǫ 2 0 ( ǫ0 ǫ + ǫ ) sin 2 θ ǫ 0 x = ǫ 0 /mc 2 (184) Ω σ = σ T ( 3 8 σ T 1 x Doppler effect 1 2x+ 26x2 ( ln2x+ 1 2 Inverse Compton scattering (187) ) +, x 1 5 ) (188), x 1 c ν = γ(c vcosθ) ν (189) ǫ = ǫγ(1 βcosθ) (190) n(ǫ 0 )dǫ 0 ǫ 0 ǫ 0 + dǫ 0 (cm 3 ) ndǫ 0 /ǫ 0 Lorentz ( ) ndǫ 0 ǫ 0 = n dǫ 0 ǫ 0 (191) Lorentz 36

37 ( ) de dt = de = cσ ǫ n dǫ dt 0 (192) Thomson σ = σ T, ǫ = ǫ 0 (192) (191)(190) de dt = cσ T ǫ 2n dǫ 0 0 ǫ 0 = cσ T ǫ 2ndǫ 0 0 ǫ 0 = cσ T γ 2 (1 βcosθ 0 ) 2 ǫ 0 n dǫ 0 (193) (193) (1 βcosθ 0 ) 2 = β2 (194) de dt = cσ Tγ 2 (1+ 1 ) 3 β2 U ph (195) U ph (erg cm 3 ) U ph = ǫ 0 n dǫ 0 (196) de 0 dt = cσ T ǫ 0 n dǫ 0 = cσ T U ph (197) 37

38 (195)(197) γ 2 1 = γ 2 β 2 [ ( P = cσ T U ph γ ] ) 1 3 β2 = 4 3 σ Tcβ 2 γ 2 U ph (198) (150) P synch P compt = U B U ph (199) Compton Thomson (190) ǫ = ǫ 0 ǫ 0 = ǫ 0 γ(1 βcosθ 0 ) ǫ = ǫ γ(1+βcosθ ) (200) ǫ = ǫ 0 γ 2 (1 βcosθ 0 )(1+βcosθ ) < 4γ 2 ǫ 0 (201) Compton ǫ 0 n 38

39 Compton dp dν = 3hcσ Tnxf(x) (202) x ν 4γ 2 ν 0 (203) f(x) = 2 (1 x) (204) 3 Tomson (113) f(x) = 2xlnx+x+1 2x 2 (205) (201) 0 < x < 1 (202) ν P = 3hcσ T n = 12σ T cγ 2 ǫ 0 n xf(x) 4γ 2 ν 0 dx xf(x) dx = 4 3 σ Tcγ 2 ǫ 0 n (206) ǫ 0 n = U ph (198)(β = 1) (199) (165) U B U ph t 1/2 = 3m2 c 3 4σ T U 1 ph E(0) 1 (207) 39

40 spectral index p N(E) E p (208) dp tot dν = N(E) dp 0 dν de γ p nxf(x) dγ (209) 0 (203) ν ν 0 x γ2 (210) (209) ν ν 0 x2dx γdγ (211) ( ) dp tot ν (p 1)/2 dν 1 n ν 0 0 x(p 1)/2 f(x) dx ν (p 1)/2 ν (p 1)/2 0 n (212) ν (p 1)/2 0 n ν (p 1)/2 0 n(ν 0 ) dν 0 (213) F ν ν s s = p 1 (214) 2 (171) 40

41 11 Maxwell E,D,H,B e i(k r ωt) divd = ρ ik D = ρ (215) divb = 0 ik B = 0 (216) roth = j+ D ik H = j iωd (217) t rote = B ik E = iωb (218) t D = ε 0 E, B = µ 0 H (219) ( ) E e i(k r ωt) m v = ee (220) v = ee iωm Condactivity σ (Ω 1 cm 1 ) n (221) j = nev = σe (222) σ = ine2 ωm (223) 41

42 Maxwell ( (217) k ) (222)(225) divj+ ρ t = 0 (224) k j = ωρ (225) ρ = σk E ω (226) (215)(217) (222)(226) iεk E = 0 (227) ik H = iωεe (228) ε ( ) ε = ε 0 ( 1 σ = ε 0 iε 0 ω 1 ω2 p ω 2 ω p (rad Hz) ) (229) ω 2 p = ne2 ε 0 m (230) 42

43 n r (108) n r = ε ε 0 = v ph (cm sec 1 ) 1 ω2 p ω 2 (231) v ph ω k = c n r (232) k = n rω = 1 ω c c 2 ωp 2 (233) ω < ω p k E exp ω p 1 ω2 r e iωt (234) c ω 2 p c/ω p = λ p /2π v g (cm sec 1 ) (233) ω = c 2 k 2 +ω 2 p v g = ω k = cn r (235) Dispersion measure DM (cm 3 pc) ω ω p L (cm) t p t p = L v g L c ω2 p 2ω 2 (236)

44 ω t p t p = Lω2 p nle2 ω = cω3 ε 0 mcω3 ω (237) DM nl (238) (L pc) ν (MHz) t p = (4.15e+3)DM (ν 2 ) (239) DM ( ) B 0 (220) m v = e(e+v B 0 ) (240) B 0 (z) (xy ) / 2 E = Ee iωt (e x ie y ) B 0 = B 0 e z v = ae (240) iωmae = e(e+ae B 0 ) 44 (241)

45 = e(e iab 0 E) e v = im(ω ±ω B ) E (242) ω B cyclotron frequency (145)(γ = 1) ω B = eb 0 m E B 0 (243) (e x ie y ) e z = e y ie x = i(e x ie y ) (244) (242) (221) (223) ω ω ± ω B (229) ε ( ) ωp ε R,L = ε (245) ω(ω ±ω B ) Faraday rotaion θ (rad) ω ω p, ω ω B (233) ω 2 p k R,L = ω 1 c ω(ω ±ω B ) ω 1 ω2 ( p 1 ω ) B c 2ω 2 (246) ω L (cm) / 45

46 ( θ) θ = 1 2 (k R k L )L = ω2 p ω B 2cω 2 L Rotation measure RM (rad cm 2 ) (247) Depolarization = nlb 0e 3 2ε 0 m 2 cω 2 (247) θ = RMλ 2 (248) RM = nlb 0e 3 8π 2 ε 0 m 2 c 3 = 81.2nLB 0 (249) (L pc, B 0 gauss) Faraday rotation θ π λ d λ d = 0.20(nLB 0 ) 1/2 (250) 46

47 12 1 Schrödinger h ψ 2m j=1 x 2 +(E V) = 0 (251) j V = Ze2 4πε 0 r (252) 1 ( m a ) E n (erg) Rydberg E n = RhcZ2 n 2 (253) R = R ( 1 m m a ) (254) R = me4 8ε 2 0h 3 c = e+5 cm 1 (255) 1 λ nn (cm) 1 λ nn ( 1 = RZ 2 n 1 ) 2 n 2 (256) Schrödinger h ψ 2m i j=1 x 2 +(E V) = 0 (257) ij V = e2 4πε 0 i Z r i + i 47 1 i <i r ii +H (258)

48 (H ) n : 1,2,3,4,5,6,7,... K,L,M,N,O,P,Q l : 0,1,2,3,...,n 1 n s,p,d,f,... m l : l,...,+l 2l+1 s : 1/2 m s : 1/2,+1/2 2 ( ) j : l+s,..., l s L : l 0,1,2,3,... S,P,D,F,... M L : m l L,...,+L 2L+1 S : s M S : m s S,...,+S 2S +1 J : L+S,..., L S (L,S 0 ) 48

49 m s m l (Zeeman ) L,S (2L+1)(2S +1) J 2J +1 i, +,2+,... ii,iii,... (Hi, Heii, Oiii ) (selection rule) L = ±1,0 ( L = 0 0 ) S = 0 ( ) J = ±1,0 ( J = 0 0 ) (permitted line) (forbidden line) ( [ ]) 2p 3 4 S3/2 o 2 n = 2 (L ) p 3 l = S +1 = 4 (S=3/2), 4 S L = 0 3/2 J = 3/2 o ( ) 49

50 Hi, Heii : 1s,(L,S) = (0,1/2) 1s 2 S 1/2 M L \M S +1/2 1/2 0 (0 ) (0 ) (0 m l,m s = 0,+1/2 ) : 2p,(L,S) = (1,1/2) 2p 2 P 3/2,1/2 Hei M L \M S +1/2 1/2 +1 (+1 ) (+1 ) 0 (0 ) (0 ) 1 ( 1 ) ( 1 ) : 1s 2,(L,S) = (0,0) 1s 2 1 S 0 M L \M S (0,0 ) ( ) : 1s2s,(L,S) = (0,1),(0,0) 1s2s 3 S 1, 1 S 0 M L \M S (0,0 ) (0,0 ),(0,0 ) (0,0 ) ( ) : 1s2p,(L,S) = (1,1),(1,0) 1s2p 3 P 2,1,0, 1 P 1 M L \M S (0,+1 ) (0,+1 ),(0,+1 ) (0,+1 ) 0 (0,0 ) (0,0 ),(0,0 ) (0,0 ) 1 (0, 1 ) (0, 1 ),(0, 1 ) (0, 1 ) 50

51 Nii, Oiii 1s 2 2s 2 2p 2 1s 2 2s 2 1 ( ) (L,S) = (2,0),(1,1),(0,0) 2p 2 1 D 2, 3 P 2,1,0, 1 S 0 M L \M S (+1,+1 ) +1 (+1,0 ) (+1,0 ),(+1,0 ) (+1,0 ) 0 (+1, 1 ) (+1, 1 ),(0,0 ),(+1, 1 ) (+1, 1 ) 1 ( 1,0 ) ( 1,0 ),( 1,0 ) ( 1,0 ) 2 ( 1, 1 ) Oii, Sii 1s 2 2s 2 2p 3,(L,S) = (2,1/2),(1,1/2),(0,3/2) 2p 3 2 D 5/2,3/2, 2 P 3/2,1/2, 4 S 3/2 M L \M S +3/2 +1/2 1/2 3/ (+1,+1,0 ) (+1,+1,0 ) +1 (+1,0,0 ) (+1,0,0 ) (+1,+1, 1 ) (+1,+1, 1 ) 0 (+1,0, 1 ) (+1,0, 1 ) (+1,0, 1 ) (+1,0, 1 ) (+1,0, 1 ) (+1,0, 1 ) (+1,0, 1 ) (+1,0, 1 ) 1 ( 1,0,0 ) ( 1,0,0 ) ( 1, 1,+1 ) ( 1, 1,+1 ) 2 ( 1, 1,0 ) ( 1, 1,0 ) 3 51

52 n+ n n n n Lyman Balmer Paschen Brackett Pfund Ly H Pa Br Pf n = 1,2,3,... α,β,γ,... n n (Å) Lyα Lyβ Lyγ Ly limit Hα Hβ Hγ H limit Paα Paβ Paγ Pa limit (256) 52

53 OIII NII 1 S0 1 S A 1 D2 TA D N P P 3/2 1/ OII P A 3/2 1/2 SII 2 P 5/2 3/2 2 D 5/2 3/2 2 D N TA S3/2 4 S3/2 [Oiii]λ5007, [Oii]λλ3727 (λλ 2 ) N/A/TA nebular/auroral/trans-auroral line 53

54 E e ( Λ,Σ )/ E v ( v)/ E r ( J) ( ) ( E v = hcω e v + 1 ) +... (259) 2 E r = h2 J(J +1) = hbj(j +1) (260) 8π 2 I (ω e :, I:, B: ) J = 2, 1,0,+1,+2 S,R,Q,P,O branch (v,j) = (1,4) (0,2) H 2 v=1 0S(2) ( 2 J ) 21cm (3 ) (1 ) 54

55 13 (50) i n i g i exp( E i /kt) n i n = g ie Ei/kT U (261) n = n i (262) U = g i e E i/kt (263) U Saha (50) ( v) (n = 1) χ dn + 1(v) n 1 = g+ 1 g e g 1 exp = 8πm3 n e h 3 g + 1 g 1 exp (χ+ 1 2 mv2 ) kt g e = 2dx 1dx 2 dx 3 dp 1 dp 2 dp 3 h 3 = 2 1 4πp 2 dp h 3 n e (χ+ 1 2 mv2 ) kt v 2 dv (2 : spin) (264) = 8πm3 v 2 dv n e h 3 (265) 55

56 (264) (130) v n + 1n e n 1 = ( 2πmkT h 2 )3/2 2g + 1 g 1 e χ/kt (266) (261) n + ( n e 2πmkT )3/2 n = 2U(T) + h 2 U(T) e χ/kt (267) (267) j j Hii Hii α nl ( nl) A n L,nL n L nl Einstein A nl n p n e α nl (T)+ n >n (266) L n n L A n L,nL = n nl )3/2 n 1 n =1 L A nl,n L (268) ( n p n e 2πmkT = e χ/kt (269) n 1S h 2 b n (50) n nl n 1S = b n (2L+1)e hν n1/kt (270) 56

57 n χ n = χ hν n1 (269)(270) n nl = b n (2L+1) (268) h2 2πmkT ( α nl (T) 2πmkT )3/2 (2L+1) h 2 3/2 e χ n/kt e χ n/kt n p n e (271) + b n A n L 2L +1,nL e (χ n χ n)/kt n >n L 2L+1 n 1 = b n (272) A nl,n L n =1 L T b n n b n = 1 n b 1 b n (271) n nl j nn = hν nn 4π n 1 L=0L =L±1 n nl A nl,n L = hν nn 4π n pn e α eff nn (273) (α eff nn effective recombination coefficient ) Case A Lyα 57

58 n = 1 n = 1 ((268)(272) n = 2 ) Case B Hii Case B Case A T (K) α eff Hβ (e-14 cm3 sec 1 ) Lyα/Hβ Hα/Hβ Hγ/Hβ Case B T (K) α eff Hβ (e-14 cm 3 sec 1 ) Lyα/Hβ Hα/Hβ Hγ/Hβ

59 n e, v ( ) 1 2 σ 12 n e vσ 12 n e Maxwell q 12 = 0 σ 12 v 3 exp( mv 2 /2kT) dv 0 v 2 exp( mv 2 /2kT) dv (274) 1,2 ( ) n 1,n 2 (50)(275) n e n 1 q 12 = n e n 2 q 21 (275) q 21 q 12 = n 1 n 2 = g 1 g 2 exp ( ) hν0 kt (276) (276) n e n 1 q 12 = n e n 2 q 21 +n 2 A 21 (277) 4π j = n 2 A 21 = n en 1 q 12 A 21 hν 0 n e q 21 +A 21 = n g en 1 A 2 21 g 1 exp ( hν 0 kt n e + A 21 q )

60 = Critical density n c (cm 3 ) n e n 1 q 12 (n e n c ) g n 1 A 2 21 g 1 exp ( hν ) 0 kt (ne n c ) (278) n c = A 21 q 21 (279) n e (278) i critical density n c = Doppler Broadening A 21 j<ia ij j iq ij (280) Doppler z (189) c = γ(c+vcosθ ) (281) ν ν vcosθ = v z, γ = 1, ν = ν 0 v z = c(ν ν 0) ν 0 (282) dv z = cdν ν 0 (283) 60

61 ν ν +dν (282)(283) exp m avz 2 dv z exp m ac 2 (ν ν 0 ) 2 2kT 2ν0kT 2 dν (284) line profile function φ(ν) φ(ν) = 1 e (ν ν 0) 2 / νd 2 (285) ν D π ν D = ν 0 c Gaussian 2kT (286) m a Natural Broadening Collisional Broadening (n ) Natural Broadening Collisional/Pressure Broadening line profile function (104) Lorentzian ν col (Hz) Γ/4π 2 φ(ν) = (ν ν 0 ) 2 +(Γ/4π) 2 (287) Γ = A nn +2ν col (288) n <n 61

62 Gaussian Lorentzian 3 broadening line profile function (282) Doppler ν 0 (1+v z /c) (287) ν 0 Maxwell φ(ν) = Γ/4π 2 [ν ν 0 (1+v z /c)] 2 +(Γ/4π) 2 exp( mv 2 z/2kt) dv z exp( mv 2 z /2kT) dv z = Voigt function 1 ν D π H(a,u) (289) a = Γ 4π ν D, u = ν ν 0 ν D (290) Gaussian Lorentzian H(a,u) a π e y2 dy a 2 +(u y) 2 (291) H(a,u) du = π (292) 62

63 14 r ρ M r φ (erg g 1 ) dm r dr = 4πr2 ρ (293) dφ dr = GM r r 2 (294) G = e 8 erg cm g 2 Poisson (293)(294) 1 d r 2 dr ( r 2dφ dr ) = G r 2 dm r dr r P = 4πGρ (295) dp dr = GM rρ r 2 (296) µ, m p m p = e 24 g P = ρ µm p kt (297) 63

64 R, M (293) M r = 4 3 πr3 ρ, M = 4 3 πr3 ρ (298) (296)(298) r = R P = 0 dp dr = 4 3 πrgρ2 (299) P = 2 3 πgρ2 (R 2 r 2 ) (300) P c T c (297)(298) P c = 2 3 πgρ2 R 2 = 3GM2 8πR 4 (301) T c = µm pgm 2kR (302) ( X,Y,Z ) ( /( +1)) 1/2 4/ µ = 2X Y Z = (303) 64

65 M = e+33 g, R = e+10 cm (302) T c = 0.74 e+7 K ( T c = 1.5 e+7 K) (294)(298) dφ dr = φ = GM 4 3 (r > R) r 2 MG πgρr = R r (r < R) 3 GM r (r > R) GM 2R 3 (3R 2 r 2 ) (r < R) (304) (305) (r = R ) W = 1 2 i j i Gm i m j = 1 m i φ i (306) r ij 2 i (306) R W = 1 ρφ4πr 2 dr = 3GM2 (307) 2 0 5R 3 1 kt 2 1/µm p (297)(300) U = R 0 3kT 2µm p ρ4πr 2 dr = R P4πr2 dr = 3GM2 10R = 1 2 W (308) 65

66 E = U +W = 1 2 W (309) L = de dt = 1 dw 2 dt = du dt (310) Eddington luminosity L E (erg sec 1 ) 1 GMmp r 2 = σ TL E 4πr 2 c (311) L E = 4πGMm pc σ T = (1.3 e+38) M M erg sec 1 (312) = (3.3 e+4) M M L ( L =3.85 e+33 erg sec 1 ) 66

67 15 Population synthetic model population synthetic model Star formation rate SFR (M yr 1 ) Instantaneous burst : SF R δ(t) (313) ( Exponential burst : SFR exp t ) (314) τ Constant formation : SF R = const. (315) Initial mass function IMF IMF M 1.35 (Salpeter) (316) M model SFR, IMF 67

68 0.1Gyr 0.3Gyr 1Gyr 3Gyr SFR: Instantaneous burst, IMF: Salpeter 1e+11M Balmer jump Balmer ( 3700Å) 4000Åbreak Ca 68

69 V-band (5500Å) A V (mag) A V = 2.5log ( ) Iobserved I intrinsic (317) B-band (4400Å) E(B V) (mag) E(B V) = A B A V = A V (318) R R dust size R 3.1 ( 4 6) dust (Mie ) (LMC) (SMC) dust A λ A V 0.5λ 1.1 UV(SMC),Optical 0.4λ 1.6 NIR Optical depth (17)(317) (319) I observed I intrinsic = 10 A λ/2.5 = e τ λ (320) e A λ τ λ 69

70 Screen/Slab dust A λ dust (Screen dust) (320) dust (Slab dust) I observed I intrinsic = ( A λx/2.5) dx = 1 10( A λ/2.5) ln10a λ /2.5 = 10 A λ /2.5 (321)

71 Hii SFR Hα, [Oii]λλ3727 L(Hα), L([Oii]) erg sec 1 SFR = (7.9 e 42)L(Hα) M yr 1 (322) SFR = (1.4 e 41)L([OII]) M yr 1 (323) Case B Hα/Hβ = 2.86 (10000K) (319)(320) A V log Hα/Hβ 2.86 A V ( ) A V 8 log Hα/Hβ 2.86 (324) 71

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

Report10.dvi

Report10.dvi [76 ] Yuji Chinone - t t t = t t t = fl B = ce () - Δθ u u ΔS /γ /γ observer = fl t t t t = = =fl B = ce - Eq.() t ο t v ο fl ce () c v fl fl - S = r = r fl = v ce S =c t t t ο t S c = ce ce v c = ce v

More information

B 1 B.1.......................... 1 B.1.1................. 1 B.1.2................. 2 B.2........................... 5 B.2.1.......................... 5 B.2.2.................. 6 B.2.3..................

More information

QMI_10.dvi

QMI_10.dvi ... black body radiation black body black body radiation Gustav Kirchhoff 859 895 W. Wien O.R. Lummer cavity radiation ν ν +dν f T (ν) f T (ν)dν = 8πν2 c 3 kt dν (Rayleigh Jeans) (.) f T (ν) spectral energy

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz 2 Rutherford 2. Rutherford N. Bohr Rutherford 859 Kirchhoff Bunsen 86 Maxwell Maxwell 885 Balmer λ Balmer λ = 364.56 n 2 n 2 4 Lyman, Paschen 3 nm, n =3, 4, 5, 4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

総研大恒星進化概要.dvi

総研大恒星進化概要.dvi The Structure and Evolution of Stars I. Basic Equations. M r r =4πr2 ρ () P r = GM rρ. r 2 (2) r: M r : P and ρ: G: M r Lagrange r = M r 4πr 2 rho ( ) P = GM r M r 4πr. 4 (2 ) s(ρ, P ) s(ρ, P ) r L r T

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 2, S 1 N 1 = S 2 N 2 2 (chemical potential) µ S N

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

QMI13a.dvi

QMI13a.dvi I (2013 (MAEDA, Atsutaka) 25 10 15 [ I I [] ( ) 0. (a) (b) Plank Compton de Broglie Bohr 1. (a) Einstein- de Broglie (b) (c) 1 (d) 2. Schrödinger (a) Schrödinger (b) Schrödinger (c) (d) 3. (a) (b) (c)

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

II

II II 28 5 31 3 I 5 1 7 1.1.......................... 7 1.1.1 ( )................ 7 1.1.2........................ 12 1.1.3................... 13 1.1.4 ( )................. 14 1.1.5................... 15

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ II p = mv p x > h/4π λ = h p m v Ψ 2 Ψ Ψ Ψ 2 0 x P'(x) m d 2 x = mω 2 x = kx = F(x) dt 2 x = cos(ωt + φ) mω 2 = k ω = m k v = dx = -ωsin(ωt + φ) dt = d 2 x dt 2 0 y v θ P(x,y) θ = ωt + φ ν = ω [Hz] 2π

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

Contents 1 Jeans (

Contents 1 Jeans ( Contents 1 Jeans 2 1.1....................................... 2 1.2................................. 2 1.3............................... 3 2 3 2.1 ( )................................ 4 2.2 WKB........................

More information

輻射の量子論、選択則、禁制線、許容線

輻射の量子論、選択則、禁制線、許容線 Radiative Processes in Astrophysics 005/8/1 http://wwwxray.ess.sci.osaka- u.ac.jp/~hayasida Semi-Classical Theory of Radiative Transitions r r 1/ 4 H = ( cp ea) m c + + eφ nonrelativistic limit, Coulomb

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2 9 E B 9.1 9.1.1 Ampère Ampère Ampère s law B S µ 0 B ds = µ 0 j ds (9.1) S rot B = µ 0 j (9.2) S Ampère Biot-Savart oulomb Gauss Ampère rot B 0 Ampère µ 0 9.1 (a) (b) I B ds = µ 0 I. I 1 I 2 B ds = µ 0

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

(Blackbody Radiation) (Stefan-Boltzmann s Law) (Wien s Displacement Law)

(Blackbody Radiation) (Stefan-Boltzmann s Law) (Wien s Displacement Law) ( ) ( ) 2002.11 1 1 1.1 (Blackbody Radiation).............................. 1 1.2 (Stefan-Boltzmann s Law)................ 1 1.3 (Wien s Displacement Law)....................... 2 1.4 (Kirchhoff s Law)...........................

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

i E B Maxwell Maxwell Newton Newton Schrödinger Newton Maxwell Kepler Maxwell Maxwell B H B ii Newton i 1 1.1.......................... 1 1.2 Coulomb.......................... 2 1.3.........................

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t) Radiation from moving harges# Liénard-Wiehert potential Yuji Chinone Maxwell Maxwell MKS E x, t + B x, t = B x, t = B x, t E x, t = µ j x, t 3 E x, t = ε ρ x, t 4 ε µ ε µ = E B ρ j A x, t φ x, t A x, t

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

master.dvi

master.dvi 4 Maxwell- Boltzmann N 1 4.1 T R R 5 R (Heat Reservor) S E R 20 E 4.2 E E R E t = E + E R E R Ω R (E R ) S R (E R ) Ω R (E R ) = exp[s R (E R )/k] E, E E, E E t E E t E exps R (E t E) exp S R (E t E )

More information

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat / Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiation and the Continuing Failure of the Bilinear Formalism,

More information

untitled

untitled - k k k = y. k = ky. y du dx = ε ux ( ) ux ( ) = ax+ b x u() = ; u( ) = AE u() = b= u () = a= ; a= d x du ε x = = = dx dx N = σ da = E ε da = EA ε A x A x x - σ x σ x = Eε x N = EAε x = EA = N = EA k =

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb r 1 r 2 r 1 r 2 2 Coulomb Gauss Coulomb 2.1 Coulomb 1 2 r 1 r 2 1 2 F 12 2 1 F 21 F 12 = F 21 = 1 4πε 0 1 2 r 1 r 2 2 r 1 r 2 r 1 r 2 (2.1) Coulomb ε 0 = 107 4πc 2 =8.854 187 817 10 12 C 2 N 1 m 2 (2.2)

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

http://www1.doshisha.ac.jp/ bukka/qc.html 1. 107 2. 116 3. 1 119 4. 2 126 5. 132 6. 136 7. 1 140 8. 146 9. 2 150 10. 153 11. 157 12. π Hückel 159 13. 163 A-1. Laguerre 165 A-2. Hermite 167 A-3. 170 A-4.

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

sec13.dvi

sec13.dvi 13 13.1 O r F R = m d 2 r dt 2 m r m = F = m r M M d2 R dt 2 = m d 2 r dt 2 = F = F (13.1) F O L = r p = m r ṙ dl dt = m ṙ ṙ + m r r = r (m r ) = r F N. (13.2) N N = R F 13.2 O ˆn ω L O r u u = ω r 1 1:

More information

1 B () Ver 2014 0 2014/10 2015/1 http://www-cr.scphys.kyoto-u.ac.jp/member/tsuru/lecture/... 1. ( ) 2. 3. 3 1 7 1.1..................................................... 7 1.2.............................................

More information

02-量子力学の復習

02-量子力学の復習 4/17 No. 1 4/17 No. 2 4/17 No. 3 Particle of mass m moving in a potential V(r) V(r) m i ψ t = 2 2m 2 ψ(r,t)+v(r)ψ(r,t) ψ(r,t) Wave function ψ(r,t) = ϕ(r)e iωt steady state 2 2m 2 ϕ(r)+v(r)ϕ(r) = εϕ(r)

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

Mott散乱によるParity対称性の破れを検証

Mott散乱によるParity対称性の破れを検証 Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2 Hanbury-Brown Twiss (ver. 1.) 24 2 1 1 1 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 3 3 Hanbury-Brown Twiss ( ) 4 3.1............................................

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0 5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â = Tr Âe βĥ Tr e βĥ = dγ e βh (p,q) A(p, q) dγ e βh (p,q) (5.2) e βĥ A(p, q) p q Â(t) = Tr Â(t)e βĥ Tr e βĥ = dγ() e βĥ(p(),q())

More information

4/15 No.

4/15 No. 4/15 No. 1 4/15 No. 4/15 No. 3 Particle of mass m moving in a potential V(r) V(r) m i ψ t = m ψ(r,t)+v(r)ψ(r,t) ψ(r,t) = ϕ(r)e iωt ψ(r,t) Wave function steady state m ϕ(r)+v(r)ϕ(r) = εϕ(r) Eigenvalue problem

More information

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf SFG 1 SFG SFG I SFG (ω) χ SFG (ω). SFG χ χ SFG (ω) = χ NR e iϕ +. ω ω + iγ SFG φ = ±π/, χ φ = ±π 3 χ SFG χ SFG = χ NR + χ (ω ω ) + Γ + χ NR χ (ω ω ) (ω ω ) + Γ cosϕ χ NR χ Γ (ω ω ) + Γ sinϕ. 3 (θ) 180

More information

量子力学A

量子力学A c 1 1 1.1....................................... 1 1............................................ 4 1.3.............................. 6 10.1.................................. 10......................................

More information

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional 19 σ = P/A o σ B Maximum tensile strength σ 0. 0.% 0.% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional limit ε p = 0.% ε e = σ 0. /E plastic strain ε = ε e

More information

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d m v = mg + kv m v = mg k v v m v = mg + kv α = mg k v = α e rt + e rt m v = mg + kv v mg + kv = m v α + v = k m v (v α (v + α = k m ˆ ( v α ˆ αk v = m v + α ln v α v + α = αk m t + C v α v + α = e αk m

More information

I ( ) 2019

I ( ) 2019 I ( ) 2019 i 1 I,, III,, 1,,,, III,,,, (1 ) (,,, ), :...,, : NHK... NHK, (YouTube ),!!, manaba http://pen.envr.tsukuba.ac.jp/lec/physics/,, Richard Feynman Lectures on Physics Addison-Wesley,,,, x χ,

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

215 11 13 1 2 1.1....................... 2 1.2.................... 2 1.3..................... 2 1.4...................... 3 1.5............... 3 1.6........................... 4 1.7.................. 4

More information

2009 2 26 1 3 1.1.................................................. 3 1.2..................................................... 3 1.3...................................................... 3 1.4.....................................................

More information

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef 4 213 5 8 4.1.1 () f A exp( E/k B ) f E = A [ k B exp E ] = f k B k B = f (2 E /3n). 1 k B /2 σ = e 2 τ(e)d(e) 2E 3nf 3m 2 E de = ne2 τ E m (4.1) E E τ E = τe E = / τ(e)e 3/2 f de E 3/2 f de (4.2) f (3.2)

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e ( ) Note 3 19 12 13 8 8.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R, µ R, τ R (1a) L ( ) ) * 3) W Z 1/2 ( - )

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100 positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc

More information

A

A A04-164 2008 2 13 1 4 1.1.......................................... 4 1.2..................................... 4 1.3..................................... 4 1.4..................................... 5 2

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information