(Frequecy Tabulatios)

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "1 1 3 1.1 (Frequecy Tabulatios)................................ 3 1........................................ 8 1.3....................................."

Transcription

1

2 (Frequecy Tabulatios) ( ) ( ) χ t F

3

4 (Frequecy Tabulatios) (samplig) (sample) : (frequecy table) x i x i (frequecy) f i f 1 + f + + f k =

5 4 1 x 1 f 1 x f.. x k f k x i a b a b (class iterval) a b b a (class iterval width) a + b (midpoit) f i / (relative frequecy) f i F i = f 1 + f + + f i (frequecy distributio) : (histogram) (cumulative distributio fuctio)

6 1.1. (Frequecy Tabulatios) 5 1.1: 1.: Sturges = 1 + log 10 log 10 (1.1) 50 k k = 1 + log log 10 = log = (1.699) = ( - )/ ( )/6.64 = : x x 1, x,..., x (total) T = x 1 + x + x = x i x = x 1 + x + x = 1 x i = T (mea) x x 1, x,..., x k f 1, f,..., f k T = x 1 f 1 + x f + + x f

7 6 1 x = x 1f 1 + x f + + x f = 1 k x i f i (media) x i m i (mode) (1.1) ( 1.1)

8 1.1. (Frequecy Tabulatios) (g/cm )

9 (dispersio) 5 f i f i / F i F i / T x fi x i s s s s : x i (i = 1,,..., k) f i x x : s = (x 1 x) f 1 + (x x) f + + (x k x) f k = 1 k (x i x) f i (variace) : s = s = 1 k (x i x) f i (stadard deviatio) s = (x 1 x) f 1 + (x x) f + + (x k x) f k 1 1 k = (x i x) f i 1

10 1.. 9 x x 1, x,..., x s = (x 1 x) + (x x) + + (x k x) = 1 (x i x) 1. s = 1 s = 1 x i (x) (x i x) = 1 (x i x i x + x ) ( = 1 x i x x i + ( = 1 ) x i xx + x = 1 x i x ) x x s s x 1.3 x 67 s x 8.5 ȳ 53 s y 1.6 A A z i = x i x s

11 10 1 {z i } 0 s 1 z eglish = z math = = = A. (x, y) (x 1, y 1 ), (x, y ),, (x, y ) (covariace) (correratio coefficiet) s xy = 1 (x i x)(y i y) = 1 r = s xy s x s y s x x s y y x i y i xy 1. p/100 x p 5% Q 1 1, 50% Q, 75% Q

12 : x y x y

13 x i, y i x y (x i, y i ) (correratio diagram) x i y i x i y i (positive correratio) x i y i x i y i (egative correratio) x x 1, x,..., x y y 1, y,..., y : (x 1, y 1 ), (x, y ),..., (x, y ) y ( (liear regressio)): y = ax + b x i y ( ŷ i ) ŷ i = ax i + b x i ( ) y i y i ŷ i d i d i = y i y i = y i ax i b d i = (y i ax i b)

14 a, b (method of least square) (y i ax i b) a, b a, b (y i ax i b) F (a, b) = (y i ax i b) y = f(x) y = f (x) = 0 a b F a F b = = [(y i ax i b)( x i )] = (y i ax i b)x i [(y i ax i b)( 1)] = (y i ax i b) x = P xi x i y i a x i b x i = 0 y i a x i b = 0 P, y = yi x i y i a x i bx = 0 y ax b = 0 y ax b = 0 x i y i a x i (y ax)x = 0 ( ) x i y i xy = a x i x 1 ( 1 x i y i xy = a ) x i x s xy a x as x s xy = as x

15 14 1 a a = s xy as x y ax b = 0 b b = y ax = y s xy as x x x y y y = s xy s (x x) x {(x i, y i ) (i = 1,,..., ) y x a yx = s xy s x = T xy T x T y x i T x y x l y y = a xx (x x) x,y y y 3 x 1 : x : x 3 : y 3 x 1, x, x 3 y x 1, x, x 3 y = b 0 + b 1 x 1 + b x + b 3 x 3

16 : x y x y

17

18 17.1 x 1, x,..., x X X = x i p i X X P (X = x i ) X x F (x) X.1 F (x) = P (X x) 6 E = 1 P (E) = 1 6 X = E X ( ) ( ) i ( ) 6 i p i = P (X = i) = i 6 6 X (biomial distributio) X B(6, 1 6 ) X p i X P (X = i) = ( ) p i (1 p) i i X X B(.p) X X X X x 1, x,..., x (X = x i ) p 1, p,..., p P (X = x i ) = p i (i = 1,,..., ) pi = 1, (p i 0) X f

19 18 X x i x 1 x x P (X = x i ) = p i = f(x i ) p 1 p p X x 1 < x < < x F (x r ) f F 1. 0 p i = f(x i ) 1 (i = 1,,..., ) F (x r ) = P (X x r ) = p 1 + p + + p r =. F (x ) = P (X x ) = p 1 + p + + p = 1 3. P (a < X b) = F (b) F (a) 4. a < b = F (a) < F (b) X ( ) µ = E(X) = k x i p i r σ = V (X) = E ( (X µ) ) = E(X ) E(X). E(X) = k x ip i, E(Y ) = l j=1 y jq j E(X + Y ) = E(X) + E(Y ) P (X = x i, Y = y j ) p ij { l j=1 p k ij = p i p ij = q j k l j=1 p ij = k p i = l j=1 q j = 1 p i E(X + Y ) = = = k l (x i + y j )p ij j=1 k l l k (x i p ij ) + (y j p ij ) j=1 j=1 k l x i p i + y j q j = E(X) + E(Y ) j=1.3 E((X µ) ) = E(X ) (E(X))

20 E((X µ) ) = E(X Xµ + µ ) = E(X ) µe(x) + µ E(1) = E(X ) E(X)E(X) + E(X) = E(X ) E(X) a, b (a < b) P r (a X b) P r (a X b) = b a f(x)dx f(x) (, ) f(x) (probability desity fuctio) f(x) 0 X < X x f(x)dx = 1 F (x) = P r (X x) F (x) X (probability distributio) X ( ) X µ = E(X) = σ = V (X) = E ( (X µ) ) = g(x) = 1 πσ EXP [ xf(x)dx (x µ) f(x)dx ] (x µ) σ, < x < X X N(µ, σ ) X N(3, )

21 0 (ormalizatio) X E(X) 0 V (X) 1 Z = X E(X) V (X) E(Z) = 0, V (Z) = 1 P r (Z z) P r (Z z) = P r (Z 0) + P r (0 < Z z) P r (Z 0) 0.5 P r (0 < Z z).1:.4 X N(60.9,.9 ) (1) P (X 63.8) () P (6.3 < X 63.0)

22 .1. 1 (1) () P (X 63.8) = P ( X = P (Z ).9 ) = P (Z 1) = P (Z 0) + P (0 Z 1) = = P ( < X ) = P ( < Z.1.9 = P (0.48 < Z 0.7) = P (0 Z 0.7) P (0 Z 0.48) = =

23 4 1. X N(80, 6 ) (a) P r (X 90) (b) P r ( X 80 1). A N(10, 1 ) ( ) 50(l/ )

24 (populatio) 6 (sample) 6 Π 6 X (Π, X) (x 1, x,..., x ) x i X X i (X 1, X,..., X ) (X 1, X,..., X ) X i (Π, X) X X 1, X,..., X X i (i = 1,,..., ) E(X i ) = µ, V (X i ) = σ X 1, X,..., X X 1, X,..., X X = 1 S = 1 X i (X i X) X µ S σ

25 V (X) = E(X ) E(X) = E( 1 ( Xi ) µ = 1 E(X X + (X 1 X + + X 1 X )) µ = 1 E(Xi ) + E(X i X j ) µ 1 i,j = 1 (σ + µ ) + ( )µ µ = σ σ 3.1 ( ) X µ σ λ > 1 3. P ( X µ λσ) 1 λ P ( X µ < λσ) 1 1 λ µ, σ (Π, X) X X µ σ P ( X µ < σ 5 ) 0.9 X σ P ( X µ < λσ ) 1 1 λ λ = 1 5 P ( X µ < σ 5 ) X 1, X, X 3,..., X

26 X = 1 [X 1 + X + X X ] S = 1 [(X 1 X) + (X X) + + (X X) ( ) ( ) 1 θ {x 1, x,..., x } T (x 1, x,..., x ) (X 1, X,..., X ) ˆθ = T (X 1, X,..., X ) θ θ ˆθ = T (X 1, X,..., X ) ˆθ θ E(ˆθ) = E(T (X 1, X,..., X )) = θ N(µ, σ ) U 3.3 X = 1 X E(X + Y ) = E(X) + E(Y ) E( X) = µ. =1 X i, U = 1 1 (X i X) E( X) = E(X 1 ) + E(X ) + + E(X ) = µ σ U S = 1 (X i X) = 1 U U S σ

27 x 1, x,..., x X 1, X,..., X (maximum likelihood) x 1, x, x 3 µ x 1, x, x 3 X 1, X, X 3 P (X 1 = x 1, X = x, X 3 = x 3 ) L X 1, X, X 3 L = P (X 1 = 1)P (X = x )P (X 3 = x 3 ) = e µ µx 1 x 1! µx µx3 e µ e µ x! x 3! = e 3µ µx1+x+x3 x 1!x!x 3! µ L µ x 1, x, x 3 µ L = L(µ) dl dµ = 3e 3µ µx1+x+x3 x 1!x!x 3! dl dµ = 0 3µ µx1+x+x3 1 + (x 1 + x + x 3 )e x 1!x!x 3! = 3L + µ 1 (x 1 + x + x 3 )L = L µ ( 3µ + x 1 + x + x 3 ) = 0 µ = 1 3 (x 1 + x + x 3 ) L 3.5 N(µ, σ ) x 1, x,..., x σ µ N(µ, σ ) f(x) = 1 (x µ) exp{ πσ σ } ( 1 L = P (X 1 = x 1 ) P (X = x ) = exp { (x 1 µ) + + (x µ) }) πσ σ x 1, x,..., x, σ dl dµ = 1 σ {(µ x 1) + (x µ) + + (µ x )}L = 1 σ {µ (x 1 + x + + x )}L = 0

28 3.. 7 µ = 1 (x 1 + x + + x ) = x

29 , 11, 133, 14, 16, 118, 11, 15, 131, 10(cm)

30 θ [θ 1, θ ] θ θ 1, θ α (0 < α < 1) P r (θ 1 < θ < θ ) = 1 α (θ 1, θ ) θ θ 1, θ 100(1 α)% [θ 1, θ ] θ [θ 1, θ ] θ 1 α N(µ, σ ) σ µ X 1, X,..., X X i N(µ, σ ) µ (σ ) S = 1 S = E(X) = µ, V (X) = σ X N(µ, σ ) (X i X) E(S ) = 1 σ 1 S E(S ) = σ α = % X N(µ, σ ) Z = X µ N(0, 1) σ / P r ( Z z α ) = 1 α = 0.95 z α P r (Z z α ) = α

31 30 3 z α α = 0.05 z α z α = 1.96 X µ Z = σ / z α µ σ σ X z α µ µ X + z α 3.1: 3.6 8, 4, 31, 7,. 95%. σ = 6.5 X i X i N(µ, 6.5) X N(µ, σ /5) X X = 1 13 [ ] = 5 5 = 6.4 Z = X µ N(0, 1) σ /5 95% P r ( Z z α ) = z 0.05 = X z α σ 5 µ X + z α σ 5

32 /5 µ /5 4.1 µ 8.59 σ (σ ) α = % µ, σ σ σ S σ T = X µ S / 1 t t 1,α/ P r ( T t 1,α/ )) = 1 α P r (T t 1,α/ ) = α t 1,α/ t α = 0.05 = 10 t 9,0.05/ µ X t 1,α/ S t 9,0.05/ =.6 X µ t 1,α/ S / µ X + t 1,α/ S

33 BOD(ppm) σ = 6.5(ppm) = 15 X = 7.ppm 95% 145.3, 145.1, 145.4, %

34 3.4. ( ) ( ) A p A p (X 1,..., X ) { 1 A X i = 0 Ā X = X X X A X A X p p (X 1,..., X ) X = X X X B(, p) X ( ) N(p, p(1 p)) X = ˆp N p, p(1 p) ˆp p p(1 p) P ˆp p p(1 p) N(0, 1) z α = 1 α p(1 p) p(1 p) ˆp z α p p + z α p ˆp p 100(1 α)% ( ˆp z α ˆp(1 ˆp), ˆp + z α ˆp(1 ˆp) ) 3. ( ) X B(, p) X N(p, p(1 p)) 3.7

35 p 95% ˆp = = 0.18 z α = z 0.05 = 1.96 ( ) (0.18)(0.8) (0.18)(0.8) , (0.15, 0.1)

36 3.5. ( ) ( ) p = P (A) A ( ) x p 100(1 α)% (p 1, p ) ( ) m 1 f, 1 f 1 + m 1 f + m 1 = ( x + 1), = x ( 1, ) F F f 1 F P (F > f 1 ) = α

37 % %

38 X, Y N(µ 1, σ1), N(µ, σ) ax + by N(aµ 1 + bµ, a σ 1 + b σ ) 3.3 X 1, X,..., X N(µ, σ ) X = X 1 + X + + X N(µ, σ ) X 1 + X + + X N(µ, σ ) 3.8 X = 1 (X 1 + X + + X ) N(µ, σ σ ) = N(µ, ) 10cm 4.5cm cm X i X i N(10, 4.5 ) 50 X 3.3 X N(10, ) P (X > 10.5) = P (Z > ) = P (Z > 0.948) = 0.5 P (0 < Z < 0.958) = X i [ ] X 1, X,..., X µ σ X = X 1 + X + + X > 100 N(µ, σ )

39 χ χ χ () χ f (x) Γ(x) 1 f (x) = Γ( ) x 1 e 1 x x > 0 0 x 0 Γ(x) = χ 0 t x 1 e t dt (x > 0) 3.4 X 1, X,..., X N(0, 1) χ = X 1 + X + + X χ E(χ ) =, V (χ ) = 3.5 (χ ) χ, χ m,m χ χ = χ +χ m + m χ S 3.6 N(µ, σ ) {X 1, X,..., X } Y = 1 σ (X i X) = S σ 1 χ P (S 1.5) X i N(µ, 1) Y = 0S 1 = 0 (X i X)

40 3.7. χ χ P (S 1.5) = P (0S 8.5) = P (χ ) χ P (χ 19 > 7.0) = 0.10 P (χ 19 > 30.14) = 0.05 P (χ ) = ( )

41 t 3.1 f (x) f (x) = +1 γ( ) πγ( x +1 + )(1 ) ( 1) T t 3 E(T ) = 0, V (T ) = 3.7 X 1, X,..., X N(µ, σ ) U U = S = 1 1 (X i X) T = X µ U/ 1 t 3.8 Z χ χ Z χ T = Z χ m / t t t() t t P r (T c) P r (Z c) χ χ / 1 T T

42 3.9. F F 3. f m, (x) f m, (x) = 0, γ( m+ ) γ( m )γ( )mm x m 1 (mx+) m+ (x > 0) F m, (m, ) F E(F m, ) = m ( > ) V (F m, ) = (m + ) m( ) ( 4) ( > 4) 3.9 X 11, X 1,..., X 11 N(µ 1, σ 1) 1 X 1 U 1 X 1,..., X N(µ, σ ) X U X 1 = X = 1 1 i X 1i 1 i X i, U 1 = 1 1 1, U = 1 1 (X 1i X 1 ) i (X i X ) i F = U 1 /σ 1 U /σ = σ U 1 σ 1 U F ( 1 1, 1) 3.10 F 1 (0.05) = F 5 10(0.05) F 5 10(0.05) = F 1 (1 α) 3.11 F 1 (1 α) = 1 F 1 (α) F 5 11(1 0.05) F 5 11(1 0.05) = 1 5 (0.05) = = 0.3 F 11

43

44 ESP p 5 X X B(5, p) p = 0. p > H 0 : p = 0. ( ) P r (X 3) = P r (X = 3) + P r (X = 4) + P r (X = 5) ( ) ( ) ( ) = (0.) 3 (0.8) + (0.) 4 (0.8) + (0.) 5 = H 0 H 0 H 0 (sigificace level) α α 0.05, H 0 ( ) H 0 X P r (X 4) = X 4 (critical regio) H 0 : p = 0. (ull hypothesis) H 1 : p > 0. (alterative hypothesis)

45 44 4 θ H 0 : θ = θ α H 1 : θ > θ 0, H 1 : θ < θ 0, H 1 : θ θ 0 θ (1) N(µ, σ ) (X 1, X,..., X ) X N(µ, σ ) µ (a) σ µ ( α) Z = X µ N(0, 1) σ / (b) σ µ ( α) () T = X µ t( 1) S / N(µ, σ ) (X 1, X,..., X ) σ (a) µ σ ( α) χ = 1 σ (X i µ) χ α, (b) µ σ ( α) χ = S σ χ α, 1

46 (a) σ µ ( α) H 0 : µ = µ 0 3 (1) H 1 : µ > µ 0 () H 1 : µ < µ 0 (3) H 1 µ µ 0 ( µ = µ 0 ) Z 0 = X µ 0 N(0, 1) σ / α P r (Z 0 > z α ) = α z α α (1) Z 0 > z α (1) Z 0 > z α () Z 0 < z α (3) Z 0 > z α , % 1 µ H 0 : µ = 64.5 H 1 : µ > 64.5 X i X i N(µ, 0) X = 1 [ ] = 533/8 = X N(µ, 0/8). Z 0 = /8 = = 1.8

47 : Z 0 1

48 mm 0.0mm mm α = 0.05 µ 95% 1 ( mm) α = % 4. X µ 1 σ 1 X 1, X,..., X 1 X S 1 Y µ σ Y Y 1, Y,..., Y Ȳ S 1. µ 1 µ (a) σ1, σ X Y N X N(µ 1, σ 1 1 ), Ȳ N(µ, σ ) ( µ 1 µ, σ σ ) Z = ( X Ȳ ) (µ 1 µ ) σ 1 / 1 + σ / N(0, 1) 4. A 30 B cm 146.4cm 4.8cm 0.05 A N(µ 1, 4.8 ), B N(µ, 4.8 ) 1 = 30, = 50 X N(µ 1, ), Ȳ N(µ, ) H 0 : µ 1 = µ H 1 : µ 1 µ α = 0.05

49 48 4 H 0 z 0.05/ = 1.96 Z = ( X Ȳ ) (µ 1 µ ) σ 1 / 1 + σ / Z 0 = N(0, 1) / /50 = Z 0 = 1.6 < z 0.05/ = 1.96 H 0 (b) σ 1, σ σ 1 = σ X 1,..., X 1, Y 1,..., Y S 1, S S 1 = (X i X), S = 1 (Y i 1 Ȳ ) i ˆσ = ( 1 1)S 1 + ( 1)S 1 + S1 = 1 (X i X), S = 1 (Y i 1 Ȳ ) i ˆσ = 1S 1 + S 1 + ˆσ (a) T = ( X Ȳ ) (µ 1 µ ) ˆσ / 1 + ˆσ / t( 1 + ) i i 1 + t 4.3 A,B. 5 X A = 97.5%, XB = 95.3% S A = 1.3%, S B = 1.56% 0.05 µ A %, µ B % H 0 : µ 1 = µ H 1 : µ 1 µ

50 α = 0.05 T = ( X Ȳ ) (µ 1 µ ) ˆσ / 1 + ˆσ / t( 1 + ), ˆσ = 1S 1 + S 1 +. H 0 ˆσ = 5(1.3)+5(1.56) 5+5 = 1.748% T 0 = / /5 =.634 t 0.05/,8 =.3060 T 0 = < t 0.05/,8 =.3060 H 0 (c) σ 1, σ T = ( X Ȳ ) (µ 1 µ ) S 1 /( 1 1) + S /( 1) t(ϕ), 1 ϕ = c (1 c) , 1 c = 1 + ( 1 1)S ( 1)S1. σ 1/σ 1 S 1 σ 1 χ ( 1 1), S σ χ ( 1) F = σ S 1 σ1 S F ( 1 1, 1) 1. H 1 : σ 1 σ. H 1 : σ 1 > σ 3. H 1 : σ 1 < σ W = {F : F > F (α )} {F : F < F (1 α )} W = {F : F > F (α)} W = {F : F < F (1 α)} F (1 α) F (1 α) = 1 F (α)

51 A,B g.48g 5% A = 10, S A = 5.3, S = 10 9 S A B = 16, S B =.4, S = S B H 0 : σ 1 = σ H 1 : σ 1 σ α = 0.05 H 0 F 9 15(0.05) = 3.17 F = σ S 1 σ1 S F ( 1 1, 1) F 0 = 10(5.3) 9 16(.4) 15 =.1967 F 0 =.1967 < F 9 15(0.05/) = 3.17 H 0

52 A B A 10 B 1 A B A B N(µ 1, σ 1 ), N(µ, σ ) H 0 : µ 1 = µ 5% A B A 10 B 1 A B A B N(µ 1, σ 1 ), N(µ, σ ) 5% H 0 : σ 1 = σ 4.3 ( ) A p A p (X 1,..., X ) { 1 A X i = 0 Ā X = X X X A X A p p 0 (0 p 0 1) H 0 : p = p 0 H 1 : p p 0 p (X 1,..., X ) X = X X X B(, p) X ( ) N(p, p(1 p)) X = ˆp N p, p(1 p) Z = ˆp p p(1 p) N(0, 1)

53 p 1 6 5% H 0 : 1 p = 1 6 H 1 : p 1 6 α = 0.05 H 0 ˆp = = 0.18 Z = ˆp p p(1 p) N(0, 1) Z 0 = (1 1 6 ) 600 = Z 0 < Z 0.05 = 1.96 H 0 A, B 1 C p 1, p 1, X 1, X H 0 : p 1 = p H 1 : p 1 p p 1, p p 1 = p = p, 1 p = q 1, X 1, X (N( 1 p, 1 pq), N( p, pq) X 1 = X 1 1 X = X (N(p, pq 1 ) (N(p, pq ) X 1 X N(0, ( )pq) 1 1 Z = X 1/ 1 X / N(0, 1) ( )p(1 p)

54 p 4.6 p = X 1 + X % p 1 p p 1 = , p = H 0 : p 1 = p H 1 : p 1 p α = 0.05 Z = X 1/ 1 X / N(0, 1) ( )p(1 p) H 0 p = = 1 3 Z 0 = 10/ /500 ( ) 1 3 (1 1 3 ) = Z 0 < Z 0.05 = 1.96 H 0

55 % 3,000 5% 5% % 4.4 (goodess of fit test) X (1) k A 1, A,..., A k A i P (A i ) P (A i ) = p i p 1 + p + + p k = 1 A 1, A,..., A k 1,,..., k ( ) p 1 1 1,,..., p p k k =! k 1!! k! p 1 1 p p k k k = (multiomial distributio) A i X i 4.7 P (X 1 = 1, X =,..., X k = k ) =! 1!! k! p1 1 p p k k ( 6 1,1,1,1,1,1) ( ) 6 1, 1, 1, 1, 1, 1 ( 1 6 )6 = 6! 6 6 = = 5 34 A 1, A,..., A k P (A i ) = p i A i p i = m i A i X i m 5 χ = (X 1 m 1 ) m 1 + (X m ) m + + (X k m k ) m k

56 χ (k 1) m i X i i χ χ m i H 0 : p 1 = p 10, p = p 0,..., p k = p k0 (p i0 p 10 + p p k0 = 1 ) H 1 : p 1 = p 11, p = p 1,..., p k = p k1 (p 11, p 1,..., p k1 ) (p 10, p 0,..., p k0 ) H 0 A i m i m i = p i0 i m i 5 A i x i k χ (x i p i0 ) = > χ α,k 1 H 0 p i H 0 : (p 1, p, p 3, p 4, p 5, p 6 = 1 6, 1 6, 1 6, 1 6, 1 6, 1 6 ) H 1 : (p 1, p, p 3, p 4, p 5, p 6 1 6, 1 6, 1 6, 1 6, 1 6, 1 6 ) α = 0.05 H 0 χ = 6 (X i p i ) p i = 6 X i p i χ 0 = = = 5.56 χ 0.05,6 1 = 1.83 χ 0 = 5.56 < χ 0.05,5 = H 0

57 A : B : C : D = 9 : 3 : 3 : 1 5% A B C D () H 0 : D D θ 1, θ,..., θ i µ, σ A 1, A,..., A k (X 1, X,..., X k ) (x 1, x,..., x k ) θ i θ i = ˆθ i (x 1, x,..., x k ) (i = 1,,..., l) θ i A 1, A,..., A k m 1, m,..., m k m i = p i0. k χ (X i m i ) = χ χ k l 1 H % H 0 : P (λ) α = 0.05 P (λ) λ k p k kp k = E(X) = λ k=0 m i

58 k f k kf k p k m k p k f k k kf k λ λ λ 1 k kf k = 1 00 = 0.61 k x k m k k 3 m k 5 χ m i 5 k 1 H 0 χ = (x i m i ) i=0 χ 0 = ( ) = m i ( ) (6 5) 5 χ 0.05,3 1 1 = 3.84 χ 0 = < χ 0.05,1 = 3.84 H 0 λ = 1 (3) A, B A, B A 1,..., A k B 1,..., B l A i B j x ij B 1 B B l A 1 x 11 x 1 x 1l x 1 A x 1 x x l x A A k x k1 x k x kl x k

59 58 4 x i., x.j k l (cotigecy table) A B A i, B j X ij A i, B j p i, q j A i, B j P ij A, B A, B H 0 P ij = P r (A i B j ) = P r (A i )P r (B j ) = p i q j p i, q j ˆp i = x i., ˆq j = x.j H 0 χ = k j=1 l (X ij P ij ) (k 1)(l 1) x ij χ P ij χ 0 = = k j=1 k j=1 l (x ij ˆp i ˆq j ) l ˆp i ˆq j { x ij ˆp i ˆq j x ij + ˆp i ˆq j } k = l j=1 x ij 1 x i. x.j

60 % 350 A 1, A, A 3 3 B 1, B, B 3, B 4 4 5% B 1 B B 3 B 4 A A A N(µ, σ ) σ Z = X µ N(0, 1) σ / N(µ, σ ) σ σ S T = X µ t( 1) S / N(µ, σ ) µ χ = 1 σ (X i µ) χ () N(µ, σ ) µ χ = S σ χ ( 1)

61 60 4 N(µ 1, σ 1),N(µ, σ ) σ 1, σ Z = ( X Ȳ ) (µ 1 µ ) σ 1 / 1 + σ / N(0, 1) N(µ 1, σ 1),N(µ, σ ) σ 1, σ T = ( X Ȳ ) (µ 1 µ ) ˆσ / 1 + ˆσ / t( 1 + ), ˆσ = 1S 1 + S 1 +. N(µ 1, σ 1),N(µ, σ ) F = σ S 1 σ1 S F ( 1 1, 1) A X X B(, p) X N(p, p(1 p)) ( ). p Z = X p p(1 p) N(0, 1) p = X 1+X 1 + A, B 1 C p 1, p 1, X 1, X Z = X 1/ 1 X / N(0, 1) ( )p(1 p) A 1, A,..., A k P (A i ) = p i A i p i = m i A i X i m 5 χ = k (X i p i ) p i = k X i p i χ (k 1) H 0 : D D θ 1,..., θ l A 1, A,..., A k (X 1,..., X k ) (x 1,..., x k ) θ i θ i A i m 1,..., m k χ = k (X i m i ) χ (k l 1) p i

62 A i, B j X ij A i, B j p i, q j A i, B j P ij P ij 5 χ = k l j=1 X ij P ij P ij χ ((k 1)(l 1)), P ij = p i q j

63

64 = 1 + log 100 log = = = = : x = 1 [ ] 100 = =

65 : 5.:. T x = 841 T y = 806 x = y = T xx = x i = T yy yi = s x = 4 T xx (x) = 5.88 s y = 4 T yy (y) = 0.34 T xy = 4 x i y i = 3719 s xy = 1 T xy T x T y = = r = s xy = s x s y = 0.71

66 65 3 = 1 + log log 4 log = 1 + log = = 5.58 x = = 17.0 x 17 y 65 5 y 10 = = : x y T x = 841 T y = 806 x = y = T xx = x i = T yy yi = s x = 4 T xx (x) = 5.88 s y = 4 T yy (y) = T xy = x i y i = 3719 s xy = 1 T xy T x = 1 4 T y = r = s xy = s x s y = 0.71

67 66 5 x y y = (x 35.04) = 0.56(x 35.04) y = 0.56x (a) P r (X 90) = P r ( X 80 6 ) = P r (Z 1.67) = P r ( < Z < 0) + P r (0 Z 1.67) = 0.95 (b) P r ( X 80 1) = P r ( X ) 6 = P r ( Z ) = P r (0 Z ) = (0.477) = 0.95 () X X N(10, 1 ) ( ) 50(l/ ) P r (X 50) ( ) X P r (X 50) = P r = P r (Z 1.90) = 1 P r(0 < Z < 1.96) = = 0.05 X = 1 ( ) = 1(cm) 10 U = 1 ( (110 1) + (11 1) ) ) 9 = (cm) S = 9 10 U = S = BOD X X N(µ, 6.5) 15 X = 7. X N(µ, )

68 67 X Z = X µ = 7.5 µ P r ( Z z α ) = 0.95 z α z α = % Z = 7.5 µ µ σ = 6.5 X i X i N(µ, 6.5) X N(µ, σ /5) X X = 1 13 [ ] = 5 5 = 6.4 Z = X µ N(0, 1) σ /5 95% P r ( Z z α ) = z 0.05 = X z α σ 5 µ X + z α σ /5 µ /5 4.1 µ µ = 146 σ X i X i N(146, σ ) X N(146, σ /4) X X = 1 58 [ ] = 4 4 = S T = X µ t 1,α/ S /4

69 68 5 S S = 1 3 [( ) + ( ) + ( ) + ( ) ] = 1 ( ) = % P r ( T t 1,α/ ) = t 3,0.005/ = X t 3,0.05/ S 4 µ X + t 3,0.05/ S /4 µ / µ ˆp = = 0. z α = z 0.05 = 1.96 X N(p, pq ) α P ( X p pq z α ) = 1 α 4 p(1 p) p(1 p) X z α X p p p X + z α p(1 p) p(1 p) ( p z α, p + z α ( ) (0.)(1 0.) (0.)(1 0.) , (0.174, 0.6) 1 ˆp = = 0.63 z α = z 0.05 = 1.96 X N(p, pq ) α P ( X p pq z α ) = 1 α p(1 p) p(1 p) X z α X p p p X + z α p(1 p) p(1 p) ( p z α, p + z α

70 69 ( ) (0.63)(1 0.63) (0.63)(1 0.63) , (0.568, 0.678) 1 X X N(µ, 0.0 ) 16 X X = 7.09, X N(µ, 0.0 /16) H 0 : µ = 7 H 1 : µ 7 α = 0.05 σ H 0 Z 0 = Z = X µ σ / N(0, 1) /16 = 4(0.09) = : z 0.05 = 1.96 H 0 95% µ

71 µ 7.19 X X N(µ, ) 8 X X = 1 ( ) = α = 0.05 µ σ H 0 : σ = H 1 : σ > χ = S σ χ α, 1 H 0 S = 1 8 [( ) + + ( ) ] = χ 0 = 8(0.001) = 10.5 χ 0 > χ 0.05,7 = H 0

72 71 5.4: 95% χ /, σ χ 0.05/, σ σ σ 1 = σ A = 10, X = 8, S A = B = 1, Ȳ = 76, S B = H 0 : µ 1 = µ H 1 : µ 1 µ α = 0.05 T = ( X Ȳ ) (µ 1 µ ) t A + B ˆσ A + ˆσ B

73 7 5 H 0 t 0.05/,0 =.3 T 0 = ˆσ = AS A + BS B A + B = = / / T 0 = 1.77 < t 0.05/,0 =.09 H 0 II. A = 10, X = 8, SA = 54.41, S A = B = 1, Ȳ = 76, S B = 59.17, S B = σ 1 < σ H 0 : σa = σ B H 1 : σa < σ B α = 0.05 H 0 F ,10 1,1 1 = F = σ B S A σa S F A 1, B 1 B F 0 = = = 1 F 0.05,1 1, = 0.3 F 0 = > F ,10 1,1 1 = 0.3 H 0 F α,1, = 1 F 1 α,, 1 1 A : B : C : D = 9 : 3 : 3 : 1 H 0 : (p 1, p, p 3, p 4 = 9 16, 3 16, 3 16, 1 16 ) H 1 : (p 1, p, p 3, p , 3 16, 3 16, 1 16 ) α = 0.05

74 73 H 0 χ = 4 (X i p i ) p i = 4 X p i χ 0 = = = χ 0.05,4 1 = 7.81 χ 0 = < χ 0.05,3 = 7.81 H 0 1 H 0 : P (λ) α = 0.05 P (λ) λ k p k kp k = E(X) = λ k=0 k f k kf k p k m k p k f k k kf k λ λ λ 1 k kf k = = 0.77 k f k m k

75 74 5 k = 4 m k 5 χ m i 5 k 3 1 H 0 χ 0 = ( ) = χ = 3 (x i m i ) i=0 (99 99) 99 m i + ( ) (13 1, 78) 1.78 χ 0.05,3 1 1 = 3.84 χ 0 = < χ 0.05,1 = 3.84 H 0 λ = 1 H 0 : H 1 : α = 0.05 H 0 χ = 350 (X ij P ij ) P ij χ 0 = 1 350[ 159 ( ) ( ) ( )] 1 = (3 1) (4 1) = 6 χ 0.05,6 = χ 0 = > χ 0.05,6 = 1.59 H 0

populatio sample II, B II? [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2

populatio sample II, B II?  [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2 (2015 ) 1 NHK 2012 5 28 2013 7 3 2014 9 17 2015 4 8!? New York Times 2009 8 5 For Today s Graduate, Just Oe Word: Statistics Google Hal Varia I keep sayig that the sexy job i the ext 10 years will be statisticias.

More information

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46..

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46.. Cotets 6 6 : 6 6 6 6 6 6 7 7 7 Part. 8. 8.. 8.. 9..... 3. 3 3.. 3 3.. 7 3.3. 8 Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3.

More information

(I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) : 2 Typeset by Akio Namba usig Powerdot. 2 / 47

(I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) : 2 Typeset by Akio Namba usig Powerdot. 2 / 47 4 Typeset by Akio Namba usig Powerdot. / 47 (I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) : 2 Typeset by Akio Namba usig Powerdot. 2 / 47 (I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) : 2 (radom variable):

More information

June 2016 i (statistics) F Excel Numbers, OpenOffice/LibreOffice Calc ii *1 VAR STDEV 1 SPSS SAS R *2 R R R R *1 Excel, Numbers, Microsoft Office, Apple iwork, *2 R GNU GNU R iii URL http://ruby.kyoto-wu.ac.jp/statistics/training/

More information

3 3.3. I 3.3.2. [ ] N(µ, σ 2 ) σ 2 (X 1,..., X n ) X := 1 n (X 1 + + X n ): µ X N(µ, σ 2 /n) 1.8.4 Z = X µ σ/ n N(, 1) 1.8.2 < α < 1/2 Φ(z) =.5 α z α

3 3.3. I 3.3.2. [ ] N(µ, σ 2 ) σ 2 (X 1,..., X n ) X := 1 n (X 1 + + X n ): µ X N(µ, σ 2 /n) 1.8.4 Z = X µ σ/ n N(, 1) 1.8.2 < α < 1/2 Φ(z) =.5 α z α 2 2.1. : : 2 : ( ): : ( ): : : : ( ) ( ) ( ) : ( pp.53 6 2.3 2.4 ) : 2.2. ( ). i X i (i = 1, 2,..., n) X 1, X 2,..., X n X i (X 1, X 2,..., X n ) ( ) n (x 1, x 2,..., x n ) (X 1, X 2,..., X n ) : X 1,

More information

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law I (Radom Walks ad Percolatios) 3 4 7 ( -2 ) (Preface),.,,,...,,.,,,,.,.,,.,,. (,.) (Basic of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

4 4. A p X A 1 X X A 1 A 4.3 X p X p X S(X) = E ((X p) ) X = X E(X) = E(X) p p 4.3p < p < 1 X X p f(i) = P (X = i) = p(1 p) i 1, i = 1,,... 1 + r + r

4 4. A p X A 1 X X A 1 A 4.3 X p X p X S(X) = E ((X p) ) X = X E(X) = E(X) p p 4.3p < p < 1 X X p f(i) = P (X = i) = p(1 p) i 1, i = 1,,... 1 + r + r 4 1 4 4.1 X P (X = 1) =.4, P (X = ) =.3, P (X = 1) =., P (X = ) =.1 E(X) = 1.4 +.3 + 1. +.1 = 4. X Y = X P (X = ) = P (X = 1) = P (X = ) = P (X = 1) = P (X = ) =. Y P (Y = ) = P (X = ) =., P (Y = 1) =

More information

2 CHAPTER 2. ) ( ) 2 () () 2.1.1 10 Octave rand() octave:27> A=rand(10,1) A = 0.225704 0.018580 0.818762 0.634118 0.026280 0.980303 0.014780 0.477392

2 CHAPTER 2. ) ( ) 2 () () 2.1.1 10 Octave rand() octave:27> A=rand(10,1) A = 0.225704 0.018580 0.818762 0.634118 0.026280 0.980303 0.014780 0.477392 Chapter 2 2.1 (cf. ) (= ) 76, 86, 77, 88, 78, 83, 86, 77, 74, 79, 82, 79, 80, 81, 78, 78, 73, 78, 81, 86, 71, 80, 81, 88, 82, 80, 80, 70, 77, 81 10? () ( 1 2 CHAPTER 2. ) ( ) 2 () () 2.1.1 10 Octave rand()

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

0 (1 ) 0 (1 ) 01 Excel Excel ( ) = Excel Excel =5+ 5 + 7 =5-5 3 =5* 5 10 =5/ 5 5 =5^ 5 5 ( ), 0, Excel, Excel 13E+05 13 10 5 13000 13E-05 13 10 5 0000

0 (1 ) 0 (1 ) 01 Excel Excel ( ) = Excel Excel =5+ 5 + 7 =5-5 3 =5* 5 10 =5/ 5 5 =5^ 5 5 ( ), 0, Excel, Excel 13E+05 13 10 5 13000 13E-05 13 10 5 0000 1 ( S/E) 006 7 30 0 (1 ) 01 Excel 0 7 3 1 (-4 ) 5 11 5 1 6 13 7 (5-7 ) 9 1 1 9 11 3 Simplex 1 4 (shadow price) 14 5 (reduced cost) 14 3 (8-10 ) 17 31 17 3 18 33 19 34 35 36 Excel 3 4 (11-13 ) 5 41 5 4

More information

24 6 I., X, x X. Radom Samplig with Replacemet ( ) 1,.,, 1 X 1, 2 X 2,..., X., X 1, X 2,..., X ( ).,.,,. Estimate of Populatio Parameters ( ),..,,.. 6

24 6 I., X, x X. Radom Samplig with Replacemet ( ) 1,.,, 1 X 1, 2 X 2,..., X., X 1, X 2,..., X ( ).,.,,. Estimate of Populatio Parameters ( ),..,,.. 6 23 第 6 章 母数の推定 I 二項母集団の母比率 6.1 Audiece Ratig Survey (視聴率調査) テレビ局では視聴率の獲得にしのぎを削っているようである. 果たして, コンマ以下の数字に 意味はあるのだろうか? 2016 年 4 月 25 日 (月) 5 月 1 日 (日) ドラマ (関東地区) 視聴率ベスト 10 番組名 放送局 連続テレビ小説 とと姉ちゃん 真田丸 日曜劇場

More information

1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1

1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1 1 21 10 5 1 E-mail: qliu@res.otaru-uc.ac.jp 1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1 B 1.1.3 boy W ID 1 2 3 DI DII DIII OL OL 1.1.4 2 1.1.5 1.1.6 1.1.7 1.1.8 1.2 1.2.1 1. 2. 3 1.2.2

More information

10:30 12:00 P.G. vs vs vs 2

10:30 12:00 P.G. vs vs vs 2 1 10:30 12:00 P.G. vs vs vs 2 LOGIT PROBIT TOBIT mean median mode CV 3 4 5 0.5 1000 6 45 7 P(A B) = P(A) + P(B) - P(A B) P(B A)=P(A B)/P(A) P(A B)=P(B A) P(A) P(A B) P(A) P(B A) P(B) P(A B) P(A) P(B) P(B

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6 26 11 5 1 ( 2 2 2 3 5 3.1...................................... 5 3.2....................................... 5 3.3....................................... 6 3.4....................................... 7

More information

…K…E…X„^…x…C…W…A…fi…l…b…g…‘†[…N‡Ì“‚¢−w‘K‡Ì‹ê™v’«‡É‡Â‡¢‡Ä

…K…E…X„^…x…C…W…A…fi…l…b…g…‘†[…N‡Ì“‚¢−w‘K‡Ì‹ê™v’«‡É‡Â‡¢‡Ä 2009 8 26 1 2 3 ARMA 4 BN 5 BN 6 (Ω, F, µ) Ω: F Ω σ 1 Ω, ϕ F 2 A, B F = A B, A B, A\B F F µ F 1 µ(ϕ) = 0 2 A F = µ(a) 0 3 A, B F, A B = ϕ = µ(a B) = µ(a) + µ(b) µ(ω) = 1 X : µ X : X x 1,, x n X (Ω) x 1,,

More information

untitled

untitled 3,,, 2 3.1 3.1.1,, A4 1mm 10 1, 21.06cm, 21.06cm?, 10 1,,,, i),, ),, ),, x best ± δx 1) ii), x best ), δx, e,, e =1.602176462 ± 0.000000063) 10 19 [C] 2) i) ii), 1) x best δx

More information

統計学のポイント整理

統計学のポイント整理 .. September 17, 2012 1 / 55 n! = n (n 1) (n 2) 1 0! = 1 10! = 10 9 8 1 = 3628800 n k np k np k = n! (n k)! (1) 5 3 5 P 3 = 5! = 5 4 3 = 60 (5 3)! n k n C k nc k = npk k! = n! k!(n k)! (2) 5 3 5C 3 = 5!

More information

チュートリアル:ノンパラメトリックベイズ

チュートリアル:ノンパラメトリックベイズ { x,x, L, xn} 2 p( θ, θ, θ, θ, θ, } { 2 3 4 5 θ6 p( p( { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} K n p( θ θ n N n θ x N + { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} log p( 6 n logθ F 6 log p( + λ θ F θ

More information

3 3.1 *2 1 2 3 4 5 6 *2 2

3 3.1 *2 1 2 3 4 5 6 *2 2 Armitage 1 2 11 10 3.32 *1 9 5 5.757 3.3667 7.5 1 9 6 5.757 7 7.5 7.5 9 7 7 9 7.5 10 9 8 7 9 9 10 9 9 9 10 9 11 9 10 10 10 9 11 9 11 11 10 9 11 9 12 13 11 10 11 9 13 13 11 10 12.5 9 14 14.243 13 12.5 12.5

More information

untitled

untitled 17 5 16 1 2 2 2 3 4 4 5 5 7 5.1... 8 5.2... 9 6 10 1 1 (sample survey metod) 1981 4 27 28 51.5% 48.5% 5 10 51.75% 48.24% (complete survey ( ) ) (populatio) (sample) (parameter) (estimator) 1936 200 2 N

More information

1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1

1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1 I, A 25 8 24 1 1.1 ( 3 ) 3 9 10 3 9 : (1,2,6), (1,3,5), (1,4,4), (2,2,5), (2,3,4), (3,3,3) 10 : (1,3,6), (1,4,5), (2,2,6), (2,3,5), (2,4,4), (3,3,4) 6 3 9 10 3 9 : 6 3 + 3 2 + 1 = 25 25 10 : 6 3 + 3 3

More information

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x >

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x > 5.1 1. x = a f (x) a x h f (a + h) f (a) h (5.1) h 0 f (x) x = a f +(a) f (a + h) f (a) = lim h +0 h (5.2) x h h 0 f (a) f (a + h) f (a) f (a h) f (a) = lim = lim h 0 h h 0 h (5.3) f (x) x = a f (a) =

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

a q q y y a xp p q y a xp y a xp y a x p p y a xp q y x yaxp x y a xp q x p y q p x y a x p p p p x p

a q q y y a xp p q y a xp y a xp y a x p p y a xp q y x yaxp x y a xp q x p y q p x y a x p p p p x p a a a a y y ax q y ax q q y ax y ax a a a q q y y a xp p q y a xp y a xp y a x p p y a xp q y x yaxp x y a xp q x p y q p x y a x p p p p x p y a xp q y a x p q p p x p p q p q y a x xy xy a a a y a x

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................ 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

第85 回日本感染症学会総会学術集会後抄録(III)

第85 回日本感染症学会総会学術集会後抄録(III) β β α α α µ µ µ µ α α α α γ αβ α γ α α γ α γ µ µ β β β β β β β β β µ β α µ µ µ β β µ µ µ µ µ µ γ γ γ γ γ γ µ α β γ β β µ µ µ µ µ β β µ β β µ α β β µ µµ β µ µ µ µ µ µ λ µ µ β µ µ µ µ µ µ µ µ

More information

α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn A, B A B A B A B A B B A A B N 2

α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn A, B A B A B A B A B B A A B N 2 1. 2. 3. 4. 5. 6. 7. 8. N Z 9. Z Q 10. Q R 2 1. 2. 3. 4. Zorn 5. 6. 7. 8. 9. x x x y x, y α = 2 2 α x = y = 2 1 α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn

More information

3 3 i

3 3 i 00D8102021I 2004 3 3 3 i 1 ------------------------------------------------------------------------------------------------1 2 ---------------------------------------------------------------------------------------2

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980 % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2006.11.20 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

1 1 1 1 1 1 2 f z 2 C 1, C 2 f 2 C 1, C 2 f(c 2 ) C 2 f(c 1 ) z C 1 f f(z) xy uv ( u v ) = ( a b c d ) ( x y ) + ( p q ) (p + b, q + d) 1 (p + a, q + c) 1 (p, q) 1 1 (b, d) (a, c) 2 3 2 3 a = d, c = b

More information

2 p T, Q

2 p T, Q 270 C, 6000 C, 2 p T, Q p: : p = N/ m 2 N/ m 2 Pa : pdv p S F Q 1 g 1 1 g 1 14.5 C 15.5 1 1 cal = 4.1855 J du = Q pdv U ( ) Q pdv 2 : z = f(x, y). z = f(x, y) (x 0, y 0 ) y y = y 0 z = f(x, y 0 ) x x =

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi I (Basics of Probability Theory ad Radom Walks) 25 4 5 ( 4 ) (Preface),.,,,.,,,...,,.,.,,.,,. (,.) (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios,

More information

t14.dvi

t14.dvi version 1 1 (Nested Logit IIA(Independence from Irrelevant Alternatives [2004] ( [2004] 2 2 Spence and Owen[1977] X,Y,Z X Y U 2 U(X, Y, Z X Y X Y Spence and Owen Spence and Owen p X, p Y X Y X Y p Y p

More information

36.fx82MS_Dtype_J-c_SA0311C.p65

36.fx82MS_Dtype_J-c_SA0311C.p65 P fx-82ms fx-83ms fx-85ms fx-270ms fx-300ms fx-350ms J http://www.casio.co.jp/edu/ AB2Mode =... COMP... Deg... Norm 1... a b /c... Dot 1 2...1...2 1 2 u u u 3 5 fx-82ms... 23 fx-83ms85ms270ms300ms 350MS...

More information

2

2 1 12123456789012345678901234 12123456789012345678901234 12123456789012345678901234 12123456789012345678901234 12123456789012345678901234 12123456789012345678901234 12123456789012345678901234 12123456789012345678901234

More information

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1 II 2014 1 1 I 1.1 72 r 2 72 8 72/8 = 9 9 2 a 0 1 a 1 a 1 = a 0 (1+r/100) 2 a 2 a 2 = a 1 (1 + r/100) = a 0 (1 + r/100) 2 n a n = a 0 (1 + r/100) n a n a 0 2 n a 0 (1 + r/100) n = 2a 0 (1 + r/100) n = 2

More information

研究シリーズ 第34号

研究シリーズ 第34号 personal income distribution 64 life stage 4134 (R.E.Mouer) 21 38 32 1 30 2 37 44 45 3 65 1 30 1. 12 3 4 5 4 8 5 2 28 1 37 38 5 1 41 34 2 30 4 2 5 38 66 38 2 40 38 6 1 1 5 3 34 67 12 3 31 3 52 8 3 1 1

More information

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3 13 2 13.0 2 ( ) ( ) 2 13.1 ( ) ax 2 + bx + c > 0 ( a, b, c ) ( ) 275 > > 2 2 13.3 x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D >

More information

5 36 5................................................... 36 5................................................... 36 5.3..............................

5 36 5................................................... 36 5................................................... 36 5.3.............................. 9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi II (Basics of Probability Theory ad Radom Walks) (Preface),.,,,.,,,...,,.,.,,.,,. (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

16 5 14 12 1 15 3 6 16 5 2 3 16 3 1 11 1.1 11 1.2 12 2 21 2.1 21 2.2 26 2.3 211 2.4 226 3 31 3.1 31 3.1.1 33 3.1.2 39 3.2 311 3.3 313 3.4 315 4 41 4.1 41 4.2 42 4.3 43 4.3.1 44 4.3.2 434 4.3.3 440 4.3.4

More information

calibT1.dvi

calibT1.dvi 1 2 flux( ) flux 2.1 flux Flux( flux ) Flux [erg/sec/cm 2 ] erg/sec/cm 2 /Å erg/sec/cm 2 /Hz 1 Flux -2.5 Vega Vega ( Vega +0.03 ) AB cgs F ν [erg/cm 2 /s/hz] m(ab) = 2.5 logf ν 48.6 V-band 2.2 Flux Suprime-Cam

More information

d dt A B C = A B C d dt x = Ax, A 0 B 0 C 0 = mm 0 mm 0 mm AP = PΛ P AP = Λ P A = ΛP P d dt x = P Ax d dt (P x) = Λ(P x) d dt P x =

d dt A B C = A B C d dt x = Ax, A 0 B 0 C 0 = mm 0 mm 0 mm AP = PΛ P AP = Λ P A = ΛP P d dt x = P Ax d dt (P x) = Λ(P x) d dt P x = 3 MATLAB Runge-Kutta Butcher 3. Taylor Taylor y(x 0 + h) = y(x 0 ) + h y (x 0 ) + h! y (x 0 ) + Taylor 3. Euler, Runge-Kutta Adams Implicit Euler, Implicit Runge-Kutta Gear y n+ y n (n+ ) y n+ y n+ y n+

More information

地域総合研究第40巻第1号

地域総合研究第40巻第1号 * abstract This paper attempts to show a method to estimate joint distribution for income and age with copula function. Further, we estimate the joint distribution from National Survey of Family Income

More information

168 13 Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad

168 13 Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad 13 Maxwell Maxwell Ampère Maxwell 13.1 Maxwell Maxwell E D H B ε 0 µ 0 (1) Gauss D = ε 0 E (13.1) B = µ 0 H. (13.2) S D = εe S S D ds = ρ(r)dr (13.3) S V div D = ρ (13.4) ρ S V Coulomb (2) Ampère C H =

More information

0.45m1.00m 1.00m 1.00m 0.33m 0.33m 0.33m 0.45m 1.00m 2

0.45m1.00m 1.00m 1.00m 0.33m 0.33m 0.33m 0.45m 1.00m 2 24 11 10 24 12 10 30 1 0.45m1.00m 1.00m 1.00m 0.33m 0.33m 0.33m 0.45m 1.00m 2 23% 29% 71% 67% 6% 4% n=1525 n=1137 6% +6% -4% -2% 21% 30% 5% 35% 6% 6% 11% 40% 37% 36 172 166 371 213 226 177 54 382 704 216

More information

10 117 5 1 121841 4 15 12 7 27 12 6 31856 8 21 1983-2 - 321899 12 21656 2 45 9 2 131816 4 91812 11 20 1887 461971 11 3 2 161703 11 13 98 3 16201700-3 - 2 35 6 7 8 9 12 13 12 481973 12 2 571982 161703 11

More information

Grund.dvi

Grund.dvi 24 24 23 411M133 i 1 1 1.1........................................ 1 2 4 2.1...................................... 4 2.2.................................. 6 2.2.1........................... 6 2.2.2 viterbi...........................

More information

example2_time.eps

example2_time.eps Google (20/08/2 ) ( ) Random Walk & Google Page Rank Agora on Aug. 20 / 67 Introduction ( ) Random Walk & Google Page Rank Agora on Aug. 20 2 / 67 Introduction Google ( ) Random Walk & Google Page Rank

More information

2002 7 i 1 1 2 3 2.1............................. 3 2.1.1....................... 5 2.2............................ 5 2.2.1........................ 6 2.2.2.................... 6 2.3...........................

More information

untitled

untitled 10 log 10 W W 10 L W = 10 log 10 W 10 12 10 log 10 I I 0 I 0 =10 12 I = P2 ρc = ρcv2 L p = 10 log 10 p 2 p 0 2 = 20 log 10 p p = 20 log p 10 0 2 10 5 L 3 = 10 log 10 10 L 1 /10 +10 L 2 ( /10 ) L 1 =10

More information

Microsoft Word - 触ってみよう、Maximaに2.doc

Microsoft Word - 触ってみよう、Maximaに2.doc i i e! ( x +1) 2 3 ( 2x + 3)! ( x + 1) 3 ( a + b) 5 2 2 2 2! 3! 5! 7 2 x! 3x! 1 = 0 ",! " >!!! # 2x + 4y = 30 "! x + y = 12 sin x lim x!0 x x n! # $ & 1 lim 1 + ('% " n 1 1 lim lim x!+0 x x"!0 x log x

More information

untitled

untitled B2 3 2005 (10:30 12:00) 201 2005/10/04 10/04 10/11 9, 15 10/18 10/25 11/01 17 20 11/08 11/15 22 11/22 11/29 ( ) 12/06 12/13 L p L p Hölder 12/20 1/10 1/17 ( ) URL: http://www.math.tohoku.ac.jp/ hattori/hattori.htm

More information

統計的仮説検定とExcelによるt検定

統計的仮説検定とExcelによるt検定 I L14(016-01-15 Fri) : Time-stamp: 016-01-15 Fri 14:03 JST hig 1,,,, p, Excel p, t. http://hig3.net ( ) L14 Excel t I(015) 1 / 0 L13-Q1 Quiz : n = 9. σ 0.95, S n 1 (n 1)

More information

,..,,.,,.,.,..,,.,,..,,,. 2

,..,,.,,.,.,..,,.,,..,,,. 2 A.A. (1906) (1907). 2008.7.4 1.,.,.,,.,,,.,..,,,.,,.,, R.J.,.,.,,,..,.,. 1 ,..,,.,,.,.,..,,.,,..,,,. 2 1, 2, 2., 1,,,.,, 2, n, n 2 (, n 2 0 ).,,.,, n ( 2, ), 2 n.,,,,.,,,,..,,. 3 x 1, x 2,..., x n,...,,

More information

2004 2 µ i ν it IN(0, σ 2 ) 1 i ȳ i = β x i + µ i + ν i (2) 12 y it ȳ i = β(x it x i ) + (ν it ν i ) (3) 3 β 1 µ i µ i = ȳ i β x i (4) (least square d

2004 2 µ i ν it IN(0, σ 2 ) 1 i ȳ i = β x i + µ i + ν i (2) 12 y it ȳ i = β(x it x i ) + (ν it ν i ) (3) 3 β 1 µ i µ i = ȳ i β x i (4) (least square d 2004 1 3 3.1 1 5 1 2 3.2 1 α = 0, λ t = 0 y it = βx it + µ i + ν it (1) 1 (1995)1998Fujiki and Kitamura (1995). 2004 2 µ i ν it IN(0, σ 2 ) 1 i ȳ i = β x i + µ i + ν i (2) 12 y it ȳ i = β(x it x i ) +

More information

34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 1.2 1 関 数 値 0.8 0.6 0.4 0.2 0 15 10 5 0 5 10

34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 1.2 1 関 数 値 0.8 0.6 0.4 0.2 0 15 10 5 0 5 10 33 2 2.1 2.1.1 x 1 T x T 0 F = ma T ψ) 1 x ψ(x) 2.1.2 1 1 h2 d 2 ψ(x) + V (x)ψ(x) = Eψ(x) (2.1) 2m dx 2 1 34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2

More information

2 1 17 1.1 1.1.1 1650

2 1 17 1.1 1.1.1 1650 1 3 5 1 1 2 0 0 1 2 I II III J. 2 1 17 1.1 1.1.1 1650 1.1 3 3 6 10 3 5 1 3/5 1 2 + 1 10 ( = 6 ) 10 1/10 2000 19 17 60 2 1 1 3 10 25 33221 73 13111 0. 31 11 11 60 11/60 2 111111 3 60 + 3 332221 27 x y xy

More information

86 6 r (6) y y d y = y 3 (64) y r y r y r ϕ(x, y, y,, y r ) n dy = f(x, y) (6) 6 Lipschitz 6 dy = y x c R y(x) y(x) = c exp(x) x x = x y(x ) = y (init

86 6 r (6) y y d y = y 3 (64) y r y r y r ϕ(x, y, y,, y r ) n dy = f(x, y) (6) 6 Lipschitz 6 dy = y x c R y(x) y(x) = c exp(x) x x = x y(x ) = y (init 8 6 ( ) ( ) 6 ( ϕ x, y, dy ), d y,, dr y r = (x R, y R n ) (6) n r y(x) (explicit) d r ( y r = ϕ x, y, dy ), d y,, dr y r y y y r (6) dy = f (x, y) (63) = y dy/ d r y/ r 86 6 r (6) y y d y = y 3 (64) y

More information

第86回日本感染症学会総会学術集会後抄録(II)

第86回日本感染症学会総会学術集会後抄録(II) χ μ μ μ μ β β μ μ μ μ β μ μ μ β β β α β β β λ Ι β μ μ β Δ Δ Δ Δ Δ μ μ α φ φ φ α γ φ φ γ φ φ γ γδ φ γδ γ φ φ φ φ φ φ φ φ φ φ φ φ φ α γ γ γ α α α α α γ γ γ γ γ γ γ α γ α γ γ μ μ κ κ α α α β α

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

96 7 1m =2 10 7 N 1A 7.1 7.2 a C (1) I (2) A C I A A a A a A A a C C C 7.2: C A C A = = µ 0 2π (1) A C 7.2 AC C A 3 3 µ0 I 2 = 2πa. (2) A C C 7.2 A A

96 7 1m =2 10 7 N 1A 7.1 7.2 a C (1) I (2) A C I A A a A a A A a C C C 7.2: C A C A = = µ 0 2π (1) A C 7.2 AC C A 3 3 µ0 I 2 = 2πa. (2) A C C 7.2 A A 7 Lorentz 7.1 Ampère I 1 I 2 I 2 I 1 L I 1 I 2 21 12 L r 21 = 12 = µ 0 2π I 1 I 2 r L. (7.1) 7.1 µ 0 =4π 10 7 N A 2 (7.2) magnetic permiability I 1 I 2 I 1 I 2 12 21 12 21 7.1: 1m 95 96 7 1m =2 10 7 N

More information

(w) F (3) (4) (5)??? p8 p1w Aさんの 背 中 が 壁 を 押 す 力 垂 直 抗 力 重 力 静 止 摩 擦 力 p8 p

(w) F (3) (4) (5)??? p8 p1w Aさんの 背 中 が 壁 を 押 す 力 垂 直 抗 力 重 力 静 止 摩 擦 力 p8 p F 1-1................................... p38 p1w A A A 1-................................... p38 p1w 1-3................................... p38 p1w () (1) ()?? (w) F (3) (4) (5)??? -1...................................

More information

Einmahl and Magnus (2007) Records in athretics through extreme-value theory. 04:35

Einmahl and Magnus (2007) Records in athretics through extreme-value theory. 04:35 ( ) r-taka@maritime.kobe-u.ac.jp Einmahl and Magnus (2007) Records in athretics through extreme-value theory. 04:35 0 2 4 6 8 10 12 14 102 104 106 108 Age Castillo, Hadi, Balakrishnan and Sarabia (2004)

More information

サイバニュース-vol134-CS3.indd

サイバニュース-vol134-CS3.indd NEWS 2012 WINTER 134 No. F=maF ma m af Contents N, X θ 1,θ 2 θ N 0θ i π/2 X i X 0 Θ i Θ 1 = 2θ 1 Θ 2 = 2(θ 1 θ 2) NX N X 0 Θ N N Θ N = 2{θ 1 θ 2θ 3 θ N } Θ N = 2π A 1A 2B 2B 1 mm 3 α α = π /m A 1A

More information

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 B =(1+R ) B +G τ C C G τ R B C = a R +a W W ρ W =(1+R ) B +(1+R +δ ) (1 ρ) L B L δ B = λ B + μ (W C λ B )

More information

4

4 4 5 6 7 + 8 = ++ 9 + + + + ++ 10 + + 11 12 WS LC VA L WS = LC VA = LC L L VA = LC L VA L 13 i LC VA WS WS = LC = VA LC VA VA = VA α WS α = VA VA i WS = LC VA i t t+1 14 WS = α WS + WS α WS = WS WS WS =

More information

IV.dvi

IV.dvi IV 1 IV ] shib@mth.hiroshim-u.c.jp [] 1. z 0 ε δ := ε z 0 z

More information

DSGE Dynamic Stochastic General Equilibrium Model DSGE 5 2 DSGE DSGE ω 0 < ω < 1 1 DSGE Blanchard and Kahn VAR 3 MCMC 2 5 4 1 1 1.1 1. 2. 118

DSGE Dynamic Stochastic General Equilibrium Model DSGE 5 2 DSGE DSGE ω 0 < ω < 1 1 DSGE Blanchard and Kahn VAR 3 MCMC 2 5 4 1 1 1.1 1. 2. 118 7 DSGE 2013 3 7 1 118 1.1............................ 118 1.2................................... 123 1.3.............................. 125 1.4..................... 127 1.5...................... 128 1.6..............

More information

12 2 E ds = 1 ρdv ε 1 µ D D S S D B d S = 36 E d B l = S d S B d l = S ε E + J d S 4 4 div E = 1 ε ρ div B = rot E = B 1 rot µ E B = ε + J 37 3.2 3.2.

12 2 E ds = 1 ρdv ε 1 µ D D S S D B d S = 36 E d B l = S d S B d l = S ε E + J d S 4 4 div E = 1 ε ρ div B = rot E = B 1 rot µ E B = ε + J 37 3.2 3.2. 213 12 1 21 5 524 3-5465-74 nkiyono@mail.ecc.u-tokyo.ac.jp http://lecture.ecc.u-tokyo.ac.jp/~nkiyono/index.html 3 2 1 3.1 ρp, t EP, t BP, t JP, t 35 P t xyz xyz t 4 ε µ D D S S 35 D H D = ε E B = µ H E

More information

76 3 B m n AB P m n AP : PB = m : n A P B P AB m : n m < n n AB Q Q m A B AQ : QB = m : n (m n) m > n m n Q AB m : n A B Q P AB Q AB 3. 3 A(1) B(3) C(

76 3 B m n AB P m n AP : PB = m : n A P B P AB m : n m < n n AB Q Q m A B AQ : QB = m : n (m n) m > n m n Q AB m : n A B Q P AB Q AB 3. 3 A(1) B(3) C( 3 3.1 3.1.1 1 1 A P a 1 a P a P P(a) a P(a) a P(a) a a 0 a = a a < 0 a = a a < b a > b A a b a B b B b a b A a 3.1 A() B(5) AB = 5 = 3 A(3) B(1) AB = 3 1 = A(a) B(b) AB AB = b a 3.1 (1) A(6) B(1) () A(

More information

aisatu.pdf

aisatu.pdf 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

More information

本文/報告2

本文/報告2 1024 QAM Demodulator Robust to Phase Noise of Cable STB Tuners Takuya KURAKAKE, Naoyoshi NAKAMURA and Kimiyuki OYAMADA ABSTRACT NHK R&D/No.127/2011.5 41 42 NHK R&D/No.127/2011.5 a ka k I a Q kk a k a I

More information

i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1...........................

i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1........................... 2008 II 21 1 31 i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1............................................. 2 0.2.2.............................................

More information

yy yy ;; ;; ;; ;; ;; ;; ;; ;; ;; ;; ;; ;; ;; ;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ; ; ; ;; ;; ;; ;;; ;;; ;;; ;; ;; ;; ;; ;; ; ; ; ; ; ; ;

More information