Size: px
Start display at page:

Download "3 0 4 3 5 6 6 7 7 8 4 9 6 0 30 33 34 3 36 4 4 5 44 6 47 7 54 8 56 9 60 0 6 64 67 3 70 4 7 5 75 6 80"

Transcription

1

2

3 7 8 3

4 elemet, set A, A A, A A, A A, b, c, {, b, c, }, x P x, P x x {x P x}, A x, P x {x A P x} 3 { {,, 3,, } } N, {, 3,,, 0,,, 3,, } Z, p p, q Z, q 0 Q, R, {x + yi x, y R} C q 4 A, B x A x B x B x A, A B A B, A B, A B B A A B x A x B 3, 5 A, B uio, cup A B, itersectio, cp A B A B {x x A x B}, A B {x x A x B} A, B A B A B {x x A x B} 3 A, A, A 3,, A,, A {x x A }, A, A {x x A } A 6, b R b,, b,, b], [, b, [, b],,, [,,, b,, b], b {x R < x < b},, b] {x R < x b}, [, b {x R x < b}, [, b] {x R x b},, {x R x > }, [, {x R x },, b {x R x < b},, b] {x R x b},, b,,,, b, [, b], [,,, b] 7 X, Y, X Y, X Y, f : X Y X f Y x X f : X Y Y fx, x f f : X Y g : Z W, X Z Y W, x X fx gx, f g 8 X, Y, Z, f : X Y, g : Y Z x X, gfx Z X Z f g g f X x x X, id X X

5 3 f : X Y, g f id X, f g id Y g : Y X f, g f 4 f : X Y, Y c, fx c x X, f 5 f : X Y, fx fy x, y X x y, f 6 9 f : X Y, f f f : X Y g, y Y fgy f gy id Y y y f x, z X fx fz, x id X x g fx gfx gfz g fz id X z z f f, y Y fx y x X y Y fx y x X g : X Y y Y f gy fgy y id Y y f g id Y x Y fx y, gy x g fx gfx gy x id X x, g f id X g f g, h : Y X f f h id Y, g f id X, y Y gy gid Y y gf hy gfhy g fhy id X hy hy h g, f f : X Y, f : Y X { },, C, α C ε > 0 N, > N α < ε, { },, α, lim α z C, z < lim z 0 z 0 z 0 z > z > 0, k k + z z + +, ε > 0 k > ε z < ε 3 { },,, {b },,, c C lim + b lim + lim b, lim c c lim lim b lim lim b, lim b 0 lim b lim lim b lim α, lim b β, ε N, N, > N α < ε, > N b β < ε N, N N 3 > N 3 α < ε b β < ε + b α + β α + β β α + β β < ε + ε ε, lim + b α + β, N 4 > N 4 α < ε + c c cα c cα ε c + c < ε lim c cα

6 ε N 5, N 6, N 7, > N 5 α < + β, > N ε 6 b β < + α, > N 7 α < N 5, N 6, N 7 N 8 > N 8 α+α α + α + α, b αβ b β+ αβ b β + α β + α ε + α + ε + β β < ε + ε ε, lim b αβ, β 0 N 9, N 0, > N 9 b β < ε β, > N 0 b β < β N 9, N 0 N > N β β b + b β b + b < β + b b > β, β b β b β < b β β < ε lim b β lim b lim b b lim lim 4 { },,, {b },, b α β α β N b lim lim b {c },,, N c b, lim {c },, lim c lim lim b lim α, lim b β α > β N, N, > N α < α β, > N b β < α β N, N N 3 > N 3 α β < α b β < α β b < α+β <, N b α β ε, N 4, N 5, > N 4 α < ε, > N 5 b α < ε N 4, N 5 N 6 α α c α b α b α, > N 6 c α < ε {c },, α 5 ε > 0 N, m, > N m < ε, { },, 6 { },, lim α, ε N, > N α < ε m, > N m m α + α m α + α < ε + ε ε { },, 7 S C, r, x S x r S { },,, {,,,, }, { },, S R, M, x S x M S, M S, L, x S x L S 3 { },,, {,,,, }, { },,, {,,,, }, { },, 8 { },,, < < < k < k+ < { k } k,,, { k } k,, { },, 9 { },, α α { k } k,, { },, ε > 0, N N α < ε < < < k < k k k, k N k α < ε { k } k,, α 3

7 0 S S U, ε > 0 M ε, S M U M ε, S M U, ε 0 > 0, M U M ε 0, S S, M ε 0 ] M ε 0 U M U S, M ε 0 ], S, M ε 0 ] M ε 0 U, S, K ε 0 ] K U, K M ε 0 S, M + ε 0 ], S, M ε 0 ], S, ε > 0 M ε, S M U { },,, ρ > 0, k k mk ρ k > m k > k {s l },, s m, s s l+ m sl, s l+ sl l,,, s > s, s l+ > s l+ > s l, sl sl > ρ l,, sp p sl sl + p sl+ sl + s > pρ + s l, { },, { sp } p,, { },,, i ii iii iv v vi i ii; { },, { },, i { },,, 3 { },, lim ii iii; S S U U, { },,,,, U > > > i i, S i,,, 0 M U M, S U, + < + < M + U +, M, +, S S U { },,, ii α lim, x S x 4 α x α U, U, β < α β U, β] S β, S, α α,, α, S α β > k k β, α k, β, S, β, S U iii iv; S S {x R x S} S c c S, S d d S S l 4

8 , S {M R x S x M} L L {M R M L} {M R x S x M} {M R x S x M} {M R y S y M} L S iii L µ µ L iv S, S {M R x S x M} U U {M R M U} {M R x S x M} {M R x S x M} {M R y S y M} U S iv U µ µ U iii iii i; { },, S {,,,, } S α, ε > 0, α α ε S N > α ε N { },, > N α ε < α, { },, α i v; { },, {α },, {β },,,,, β α + β α i [α, β ] i, [α, β ] α, β α, α,, α k, β, β,, β k,,, k [α k, α k+β k ], [ α k+β k, β k ] i i i [α k, α k+β k ] i α k+ α k, β k+ α k+β k α k+, β k+, α k+ α k+β k, β k+ β k α k+, β k+ α k α k+, β k β k+ β k+ α k+ β k α k k β α, i [α k+, β k+ ] i {α },, [α, β ], {α },, lim α α β α + + β α lim β α, < < < k, j,,, k j [α j, β j ], i [α k+, β k+ ] i, k+ [α k+, β k+ ] k+ k { },, { k } k,,, k α k k β k 4 α v vi; { },, N, m, > N m <, m > N N+ < m < N+ +,,,, N, N+ A,,,, N, N+ + B, A B { },, { },, { k } k,, lim k k α, ε > 0 N, N k > N k α < ε, p, q > N p q < ε k > N k > N k N + N +, p > N p α p k + k α < ε + ε ε { },, α vi i;,,, iii, vi,, 3 S, S S, S, S S 5

9 4 {c },,, c + ib, b R,,, {c },,, { },,, {b },, {c },,, { },,, {b },,, b c + b, m, b b m c c m leqq m + b b m 5 {c },,, c + ib, b R,,,, { },, {b },, v { },, { k } k,, {b },, {b k } k,, v {b k } k,, {b ki } i,, 9 { k } k,, { ki } i,, 3 {c },, {c ki } i,, 6 {c },,, c + ib, b R,,,, { },, {b },, 4, vi { },, {b },, 3 {c },, 7 { },, C, α C S k lim S α, α k 3, 8, b, + b + b, c c c C S k k, T k k b S k + T k k + b, cs k k c 3 +b lim S k+t k lim S k+ lim T k + b, k k k c lim cs k c lim S k c k k 9 { } 0,, 0, S k k { } 0,, S k+ S k + k k+ S k, S k+ S k k+ k+ S k {S k+ } k0,,, {S k } k0,, S k+ S k k+ S k, k, l S k+ S l k l S k+ S l+ S l, k l S k+ S k S l {S k+ } k0,, {S k } k0,, i, ii, lim S k α S k+ S k k+ lim k+ 0 lim S k+ α k k k lim S k α k 0, ε > 0 N N, m > N m k < ε k 6

10 S k k m S m S m k, {S k } k,, k, ε > 0 N N, m > N m k < ε 6, { k } k,, { },,, k k k 3 { },, { k } k,, k k k k,, 0 ε > 0 N N, m > N m k < ε m k m k < ε 0 k k k s l l k {s l } l,,, s l l k k k l m m m m, i {s l } l,, 3 t l l k, s l l k l,,, l ml k k {,,, l } {,,, ml} t l s ml k {t l } l,, i k k k p,, k p k, k kp, l k, k,, kl µl k, k,, kl µl l N µl {,,, l} { k, k,, kl } {,,, µl } {,,, N } {,,, N } {,,, l} {l +, l +,, mn} S l l k, T l l mn k S l T N k k k k k s mn s l k N, k >l k N, k >l kl+ k s N µl S l T N s s l k {s l } l,, s, ε > 0 N l > N s s l < ε {T l } l,,, ε > 0 N l, m > N T l T m < ε N N N 3, l > N 3 S l T l S l T µl + T µl T l < s s l + ε < ε lim l S l lim l T l { },, {c },,,, c, N N r <, N + c r 3 N N r <, N r S k k k,, S k k k c c {S k } k,, i 7

11 N N N+ N+ N N+ N r N N c N r N N {c },,,, c, c N + N r 3 N r N c {c },,,, r N c, c N + r r, N S S {,,, k, } i j i j,, 3, k k, S, S {m, m,, m k, } i j m i m j mk k k k S S S 3 α S k k,, N S k N, k l S k S l s k S S k, k s k α S k { k,i i,, } i < j k,i < k,j, t k k,i, t k,l i k i l k,i, m, l N m t k,l, l m t k k { m t k } m,, t k s k t k k N k s k k k ε > 0 0, N N m > N m i < ε i α < ε > N i ε {,,, N} S S S M i m M N m > M s k α m s k N+ N+ i + i α N+ i + i α < ε k k i i in+ i s k α k i k i 4 m, b c k m0 0 c k c k m b m0 0 k0 k0 m+k m b k m0 m b k m, p i i l, q i i b l, r i i c l, α, β, i p i α, q i β l0 l0 l0 r i c k k0 i l0 k0 l k b l k p i q i αβ {r i } i0,, 8

12 , d l l k0 k b l k, e i i d l, {e i } i0,, l0 Cuchy S l, T b l, S i i l, T i i b l, R i i c l, S i T i R i u,v i u+v>i l0 u b v i li+ l0 d l e i e i l0 l0 l0 u,v i u+v>i u b v, ST R i S S i T + S i T T i + S i T i R i, ST R i S S i T + S i T T i + e i e i i, S S i, T T i 0, S i S, {e i } i0,, Cuchy e i e i 0 lim i R i ST 5 z C, z! { } 0,,, lim 0 z! exp z expz + w exp zexp w, exp 0, exp z exp z z!, b w! { } 0,,,, {b } 0,,,, 4 c k m+k exp zexp w c k k0 m b, m+k z m m! k0 lim z + 0 z!, exp : C C m, b m0 0 c k c k m b m0 0 w! m+k k! k m k0 z m w k! z + wk c k k! z + wk expz + w, exp 0 exp zexp z expz + z exp 0 exp z exp z 7 x m > x x x k k! < xm m! km x m m! x! x x x x m m x m+ < x m m! < x x x m x x! < xm m! x x xm m! 8 x C, + x { },, m+ lim, m+ km x k k! < x,, < exp x lim exp x + k k k+ k! <, < + x k + x + k k x k k! k0 x! 0, x m m! k m+ km k x k k! < exp x i + > i + + k k x k k! + + k + x k k! + + k + + x+ +! k > 0 x k k! k k 9

13 k x k k! x K K! < ε 4 kk K ε 4+ x K K, ε > 0, 7 K > x 3 K N, K 0 < ε < 4, K >, > K K K < ε, k K k k 4+ x K K 7 K k! + K k! <, K K k3 N 0 < ε <, > N x k k! x k k! k k0 < k K k K k K k x k k! x k k! x k k! k k + k + x k k! kk kk K ε + ε 4+ x K 4 < ε 4 k! k K x k x k! k k! k x + x K ε 4+ x K K K + x K K! k K + ε 4 < ε 4 k! + ε 4 < ε 4 + ε 4 ε k x k k! < ε, x k k! exp x k, ε > 0 N N > N < ε k0 k0, exp x x k k! + x k k! exp x < ε + ε ε k0 k0 3 3 X, Y C, p, q C, f : X Y ε > 0 δ > 0 0 < x p < δ x X fx q < ε, f p q, lim fx q 3 p C, r > 0 Bp ; r {x C x p < r}, lim fx q, ε > 0 δ > 0 x Bp ; δ X x p fx Bq ; ε 33 X, Y C, p, q C, f : X Y, lim fx q, p { },,, N, p X lim f q lim fx q { },, N, p X, p ε > 0 δ > 0 0 < x p < δ x X fx q < ε, N > N p < δ > N 0 < p < δ, X f q < ε, lim f q lim fx q, ρ > 0,, 0 < p < f q ρ X { },, p, N, p X, lim f q p { },,, N, p X lim f q lim f q 0

14 34 f, g : X Y, lim fx, lim gx, 4 lim gx 0 lim fx + gx lim fx + lim gx 3 lim fxgx lim fx lim gx lim cfx c lim fx 4 lim fx gx lim fx lim gx ε, lim fx, lim gx b δ, δ > 0 0 < x p < δ x X fx < ε, 0 < x p < δ x X gx b < ε δ, δ δ, 0 < x p < δ x X fx + gx + b fx + gx b < ε + ε ε lim fx + gx + b δ > 0 0 < x p < δ x X fx < ε + c, 0 < x p < δ x X cfx c c fx < ε c + c < ε, lim cfx c 3 δ > 0 0 < x p < δ x X fx <, δ, δ 3 > 0 0 < x p < δ x X fx < + b, 0 < x p < δ 3 x X ε gx b < + δ, δ, δ 3 δ, 0 < x p < δ x X fx fx + fx + < + fxgx b fxgx b + bfx fx gx b + b fx < b + b < ε + ε ε 4 b 0 δ > 0 0 < x p < δ x X gx b < b δ > 0 0 < x p < δ x X gx b < ε b δ, δ δ, 0 < x p < δ x X b b gx + gx < b b + gx gx > gx b gx b b gx < ε b b ε lim gx b, 3 35 f : X Y, p X, lim fx fp, f p p X f, f 34, 36 f, g : X Y p X, f + g, cf, fg : X Y p X, x X gx 0, f g : X Y p X,,,, 0 37 f : X Y, g : Y Z lim fx, g lim fx, lim gfx g lim fx, f p X, g fp, g f p, lim fx q ε > 0, g q, δ > 0 y q < δ y Y gy gq < ε lim fx q ρ > 0 0 < x p < ρ x X fx q < δ 0 < x p < ρ x X gfx gq < ε lim gfx q 38 f : X R [, b] X, f fb, f fb d, fc d c, b p, q [, b] y fp fq, y fp f p+q ε ε ε p+q f fq, up, q up, q 3p+q 4, up, q p+3q 4

15 , up, q p+q q p 4, y f up, q q p 4 f up, q + q p 4 x 0, x,, x, x 0, x b, x +b, x 0, x,, x 3 i 0,,, x i+ x i b i i,, y f x i b i f xi + b i x u x b, x + b x, x x b, y f x b f x + b, x+k x k x +i+ x +i k b < b +i b +i vi, lim x c i0 i0 i0, x 0, x,, [, b] 4 c [, b] fc y y f x b y f x + b 0, x b, x + b c 33 4 y fc 0, fc y 39 f : X R M, x X fx M fp M p X, M f, m, x X fx M fp M p X, M f 30 [, b] f : [, b] R S {y R fx y x [, b] }, f > [, b] v, [, b] { },, { k } k,, lim p k p, f lim f p k fp f k > k k, {f k } k,,, S, iii S M, l fb l > M l b l [, b] v, [, b] {b l } l,, {b lk } k,, lim b l p k q, f lim fb l p k fq M k M l k < fb lk M, {fb lk } k,, M M fq q X, M f f 3 X f : X R x < y fx fy, f, x < y fx < fy, f, f x < y fx fy, f, x < y fx > fy, f 3 [, b] f : [, b] R f,, f [f, fb], [fb, f] b f f fb f < fb f, x, b f < fx < fb, fx < f fx < p < f p, [, x] fc p c, x, fx < p < f < fb, [x, b] fd p d x, b fc fd p, c < x < d, f fx > fb,, x, b f < fx < fb

16 x < y b, f < fy, [, y] fx < fy f f < fb f f, f, f 33 I I, b, [, b],, b], [, b,, b,, b],,, [,, R, f : I R f, c, d I, c < d 3, f [c, d], f,, x, y I, x < y, c x p, d y q, f [p, q], [c, d] [p, q] f [p, q], x, y [p, q] fx < fy, f 34 I f : I J f : J I f 33 f, f,, p J, q f p [q r, q] I r > 0, f, [q r, q] [fq r, p], 0 < ε < r, f fq ε, p] q ε, q], δ p fq ε p δ < x p q ε < f x q [q, q + r] I r > 0, δ fq + ε p p x < p + δ q f x < q + ε, f p 35 X C, X D, D X p X, D p 36 X, Y C, f, g : X Y D X, x D fx gx f g p X, D { },, p,, f g f, g fp lim f lim g gp, f g 4 5 exp : C C exp z 4 x R exp x x, y R, x < y exp x < exp y 3 exp : C C 0 4 y, exp x y x x R exp x 0 z!, 6, x! R 6 exp x exp x + x exp x 0 exp x exp x expx + x exp 0 exp x 0 exp x x < y, 6 exp y exp x exp yexp x exp yexp x expy x 0 + y x! > exp x < exp y 3 y x!

17 3 z, p C, z p < exp z exp p expp+z p exp p exp pexpz p exp p exp p expz p exp p z p! exp p z p z p! < exp p z p! exp p z p exp z p < exp z exp p < exp p exp z p, z p exp z exp p 4 exp + +! > exp exp exp > exp exp < y > 0 m < y < m,, exp m < y < exp exp x y x m,, 3 [ m, ],, 3, 4, x exp x R 0, exp : R 0,, exp, exp e 4 exp : R 0,, log : 0, R 43 f : X Y X, Y R f : Y X, f, f : X Y X, Y R f : Y X, f x, y Y, x < y f y f x f y ff y ff x x x < y f x < f y f 44 logexp x x, explog y y x R, y 0, log : 0, R log 0 3 x, y 0,, logxy log x + log y logexp x x, explog y y log exp exp 0 log logexp 0 0 exp 43 log 3 z log x + log y exp z explog x + log y explog xexplog y xy logxy logexp z z log x + log y 45, exp : R 0, exp x expx log 46 exp x + y exp xexp y, exp exp x y exp xy x, exp x x 3 0 < <, exp, >, exp 4 exp : R 0,, log : 0, R log x log x log, exp exp x + y expx + y log expx log + y log expx log expy log exp xexp y exp exp x y expy logexp x expy logexpx log expyx log exp xy exp explog,, exp exp exp exp 0 exp 0, y x exp xexp x exp 0 exp x exp x exp exp, exp x x p q p, q exp x q exp qx exp p p, x p q X q p exp x x 4

18 3 x < y 0 < <, log < 0 x log > y log, exp exp x expx log > expy log exp y >, log > 0 x log < y log exp x expx log < expy log exp y 4 exp log exp y 0, exp log y exp log explog y y, x R log exp x logexpx log log log y log x log log x log exp x R exp x, x+y x y, x y xy 47 log : 0, R 48, b, x, y, z log xy log x+log y, log b z z log b log xy log x + log y log 44 3 log b z logexp b z logexpz log b log z log b log z log b log z log b log 49 f : R R, x, y R fx + y fx + fy f R, x R fx fx x, h R, fx+h fx fx+fh fx fh f+fh f f+h f, f h 0, fx+h fx 0 f x, x fx fx x f f f f0 f0 + 0 f0 + f0 f0 0 f + f f + f0 0 f f f f, f f x x p q p, q g : R R gx fx, qfx fqx fp fp fx fx gx x R lim x { },, f, g, fx f lim lim f lim g g lim gx 40 f : R R, x, y R fx + y fxfy f R, fb 0 b R, x R fx expx log f fc 0 c R, x R fx fx c + c fx cfc 0, fb 0 b R, x R fx 0 fx f x + x f x 0, x R fx > 0, g : R R gx log fx, 37 g R, 44 3, g 49 x R log fx gx gx x log f fx expx log f 4 f : 0, R, x, y R fxy fx + fy f R, x R fx fexp log x g : R R gx fexp x, 37 g R, 6 3, g 49 x R fexp x gx gx fexp x fx fexp log x 5 fx fp fp+h fp 5 X, Y R, p X f : X Y, lim x p lim h 0 h, f p f p, f p 5

19 5, p p r, p + r X r > 0 X,, 53 f : X Y X, f, x X f x f, f : X R 54 exp x e x e x expx+h exp x h exp x exp h h exp x h exp x h! exp x h! exp x h expx+h exp x h exp x exp x h exp xexp h exp x h exp x h! h <! e exp x h, h 0 expx+h exp x h exp x x x x+h x h x k h k x k k h k h k x k h 0 x+h x h x k 55 f : X Y p X, 0 < x p < c fx fp < K x p c, K, f p fx fp lim x p f p c > 0, p c, p+c X 0 < x p < c fx fp x p f p < 0 < x p < c fx fp f px p < x p, fx fp fx fp f px p + f px p fx fp f px p + f px p < x p + f p x p + f p x p, A + f p fx fp x p 56 f : X Y p X lim x p 0 f : X Y p X, lim x p lim fx fp x p f p fx fp lim x p f p 0 lim lim fx fp x p fx fp f px p fx fp x p fx fp x p 0 lim x p fx fp x p fx fp + lim x p +, lim x p fx fp x p, lim x p 0, f p 57 f, g : X R p X, 4, x X gx 0 f + g p f p + g p rf p rf p r R 3 fg p f pgp + fpg p 4 f g p f pgp fpg p gp lim lim gx gp x p f+gx f+gp x p f p + g p fx+gx fp+gp lim x p lim fx fp x p + gx gp x p rfx rfp rfx rfp lim x p lim x p lim r fx fp fx fp x p r lim x p rf p 3 55 g p lim gx gp lim fx fp x p gx + fp gx gp x p lim fgx fgp x p lim fx fp x p + lim fxgx fpgp x p fx fp gx gp lim x p lim gx + fp lim x p f pgp + fpg p 6

20 4 lim g x g p x p g p g p gp lim gx gp x p lim, 3 gx+gp gxgpx p f g gx gp x p lim p f g p f p gx gp lim g p + fp g p gp g p f p gp fp g p gp f pgp fpg p gp 58 f : X Y, g : Y Z p X, fp Y g f : X Z p, g f p g fpf p φx fx fp f px p, ψy gy gfp g fpy fp, y fx g fx g fp gfx gfp g fpfx fp + ψfx g fpf px p + g fpφx + ψfx, g fx g fp x p g fpf p + g fp φx x p + ψfx x p 55 0 < x p < c fx fp < K x p c, K ψy y fp 0, ε > 0, 0 < y fp < δ ψy y fp < ε K δ lim y fp, y fp < δ ψy ε K y fp δ c δ K, 0 < x p < δ fx fp < K x p < Kδ δ ψfx ε K fx fp < ε x p, ε > 0, 0 < x p < δ ψfx x p < ε δ, lim x p 0 ψfx φx g fx g fp, lim x p 0, lim x p g fpf p 59 X, Y f : X Y f, p X, f p 0 f fp, f fp f p f,, x p fx fp lim fx fp x p f x p p 0 lim fx fp f p, ε > 0 0 < x p < δ x p fx fp f p < ε δ 34 f fp δ > 0, 0 < y fp < δ f y p < δ, 0 < y fp < δ f y f fp y fp f f p < ε, y f fp y fp f p lim y fp 6 6 X, Y R, f : X Y, p X r, x p r, p+r X fx fp, f p, fp f, r, x p r, p + r X fx fp, f p, fp f f f, f f 6 f :, b R p, b,, f p 0 f p r, r < p, b p x p r, p + r fx fp p r, b p r, { },,, {b },,, p r, p+r, f, fb fp f fp 0, fb fp p f p lim fb fp r f fp p p f fp r 0, p 33 4 f p 0 f p lim fb fp b p 4, f p 0 f p 0 f p 7

21 63 Rolle f : [, b] R,, b, f fb f c 0 c, b f f, fp, fq p, q [, b], fq f fb fp, fp > f fb, p, b f p 6 f p 0, c p fq < f fb, q, b f q 6 f q 0, c q 3 fq f fb fp, f, c, b f c 0 64 Cuchy f, g : [, b] R,, b gb g, x, b f x g x 0 fb f gb g f c g c c, b F : [, b] R F x fb fgx gb gfx, F 63, F c 0 c, b F x fb fg x gb f x, fb fg c gb gf c, g c 0, gb g 0 f c 0, g c 0, fb f gb g f c g c, gx x 65 f : [, b] R,, b, fb f f cb c, b 66 f : [, b] R,, b x, f x 0, f x, b], [, x] fx f f cx c, x f c 0 fx f f f 67 f : [, b] R,, b x x, b, f x 0 f, f x > 0 f x, b, f x 0 f, f x < 0 f x < y b [x, y] fy fx f cy x c x, y, p, b, f p 0 fx fy, f p > 0 fx > fy 68 X, Y R, p, q R, f : X Y ε > 0, p < x < p + δ p δ < x < p x X fx q < ε δ > 0, q lim fx lim fx x p x p ε > 0, x > N x < N x X fx q < ε N R, q lim fx lim fx x x 33 8

22 69 X, Y R, p, q R, f : X Y lim fx q lim fx q, p { },,, x p x p N, > p < p X lim f q lim fx q lim fx q, { },, lim x x lim lim f q 60 X, Y R, p R, f : X Y M R, 0 < x p < δ x X fx > M fx < M δ > 0 lim fx lim fx M R, p < x < p + δ x X fx > M fx < M δ > 0 lim fx lim fx x p x p 3 M R, p δ < x < p x X fx > M fx < M δ > 0 lim fx lim fx x p x p 4 M R, x > N x X fx > M fx < M N R lim x fx lim x fx 5 M R, x < N x X fx > M fx < M N R lim fx lim fx x x 6 p R, r > 0, f, g, g, g 0 f, g : p, p + r R f, g : p r, p R lim fx lim gx 0 lim fx lim gx 0, x p x p x p x p f lim x x p g x lim f x fx x p g x lim x p gx lim fx f x p gx lim x x p g x lim f x x p g x f, g : p, R f, g :, p R lim gx 0 lim, lim x f x g x lim x x fx lim x f x g x lim x fx gx lim x x fx lim gx 0 x fx gx lim x f lim x x g x 3 f, g : p, p + r R f, g : p r, p R lim fx lim gx lim fx lim gx x p x p x p x p f x x p, lim g x lim f x x p lim g x x p f x g x lim x p 4 f, g : p, R f, g :, p R lim, lim x f lim x x g x x f x g x lim x x fx gx lim x p fx gx lim x p fx lim gx lim x f x g x lim x fx gx lim x x fx f x g x f x g x lim gx x fx gx lim x f lim x p g x A, ε > 0 p < x < p + δ f x g x A < ε δ > 0 fx p < x < p + r gx p < x < p + r f, ḡ : [p, p + r R fx, ḡx, 0 x p 0 x p f, ḡ x p, p + r, [p, x] 64, fx fx f0 gx ḡx ḡ0 f c ḡ c f c g c c p, x p < c < x p < x < p + δ fx gx A f c g c A < ε, lim gx lim f x g x f, g : p r, p R x p fx x p r > 0 r > p, φ, ψ : 0, r R φx f x, ψx g x, lim φx lim f x 0 x 0 x lim fx 0, lim ψx lim g x x 0 x 0 x lim gx 0, x φ x x f x, f x g x 9

23 ψ x x g x lim φ x x 0 ψ x lim f x g x lim fx x gx x 0 f x g x lim f x x g x φx lim x 0 ψx lim φ x x 0 ψ x φx, lim x 0 ψx lim, x 0 f 3 A lim x x p g x, ε > 0 0 < δ < r p < y < p + δ f y g y A < ε f y g y A <, p < q < p+δ q, f q g q A < f q < A +, 0 < δ < q p p < x < p+δ gx > ε fq + gq A + g q p < x < p+δ [x, q] 64, fx fq gx gq f c g c c x, q, x < c < q < p + δ f c g c A < ε gx > ε fq + gq A + fq gx + gq gx A + < ε fq gx gq f c gx g c fq gx + gq gx f c g c < fq gx + gq gx A + < ε fx fq gx gq fx gx fq gx gq fx gx gx fq gx gq f c gx g c fx gx f c g c fq gx gq f c gx g c, fx gx A fx gx f c g c + f c g c A fq gx gq f c gx g c + f c g c A < ε + ε ε 4 r > 0 r > p, φ, ψ : 0, r R φx f x, ψx g x, 3 6 I f : I R p, q I p < q t 0,, tfp + tfq f tp + tq, f I, tfp + tfq f tp + tq, f I, f p, q I p < q t 0,, tfp+tfq > f tp+tq, f I, tfp+tfq > f tp + tq, f I 63 I f : I R I, f I, f, f, f I f I p, q I p < q, t 0,, x t tp + tq, tfp + tfq fx t fx t fp tfq fp, fx t fq tfq fp x t p tq p > 0, x t q tq p < 0 fx t fp x t p fq fp q p fx t fq x t q fx lim t fp fx fp t 0 x t p lim x p x t p f fx p, lim t fq fx fq t 0 x t q lim x q x t q f q t 0 f p fq fp q p f q, f p, q I p < q, t 0,, [p, tp + tq], [ tp + tq, q], f tp+tq fp tq pf c, fq f tp+tq tq pf d c p, tp+tq, d tp + tq, q, tfp + tfq f tp + tq tf tp + tq fp + tfq f tp + tq ttq pf d f c c < d, f tfp + tfq f tp + tq, tfp + tfq > f tp + tq 64 I f : I R I f I, I p x I fx f px p + fp f I, p I p x I t 0, x t tx + tp, tfx + tfp fx t tfx fp fx t fp 0

24 tx p x t p, x < p fx fp x p fx t fp x t p, x > p fx fp x p fx t fp x t p t 0 x t p x < p fx fp f p, x > p fx fp x p f p x p, fx fp f px p I p x I fx f px p+fp p, q p < q I, fq f pq p + fp fq fp q p f p, fp f qp q + fq f q, f p f q, f 63 f fq fp q p I x p 7 7 f : X R f : X R 0 f 0 f f r : X R 0 r <, f : X R X, f f f f, f, f, f 7 x α αα α + x α e x e x log x! x si x si x + π cos x cos x + π α 0, α α αα α +! 73 f, g : X R, fg k0 f k g k k, 57 3 fg r, 57,, 3 r i + r i r+ i fg r r k0 r f k+ g r k + f k g r k+ k k0 r f k+ g r k + k r+ r r r f i g r i+ + f i g r i+ i i i i0 r r r f i g r i+ + f r+ g + fg r+ + i i i r r r fg r+ + + f i g r i+ + f r+ g i i i r r r fg f i g r i+ + f r+ g i i i r r + r+ r + fg r+ + f i g r i+ + f r+ g i i i r f i g r i+ i i0 r k0 r k0 f i g r i+ r k f k g r k r f k g r k+ k r +

25 74 f : [, b] R, b λ, p, x [, b], 0 < θ < fx fp + x p K k f k p k! x p k + f p + θx p θ λ x p! λ λ fx fp x p λ fx fp + k F : [, b] R F t fx ft k f k p k! x p k K, f k p x p k x p λ + K k! λ k f k t k! x t k K x t λ λ, F x F p 0 x < p, F x, p, x > p, F p, x 63, F c 0 c p x θ c p x p 0 < θ <, c p + θx p F f t! t x t + Kx t λ t < x f t! x t Kt x λ t > x, x < p c > x K f c! c x λ f p+θx p! θ λ p x λ fx fp + k f k p k! x p k + f p + θx p! θ λ x p λ x > p c < x K f c! x c λ f p+θx p! θ λ x p λ fx fp + k f k p k! x p k + f p + θx p! θ λ x p λ f p+θx p θ λ x p! λ, R x 75 f : [, b] R, b, f p, b ε > 0, δ > 0 0 < x p < δ fx fp f k t x t k < ε x p k! k f p, δ > 0 0 < t p < δ f t f p < ε!, 74, λ fx fp+ f k p k! x p k + f p+θx p! x p 0 < θ < k 0 < x p < δ 0 < p + θx p p θ x p < δ fx fp f k t k! x t k! f p + θx p f p x p < ε x p 76 f :, b R, f p, b f p f p f p 0, f p 0, f p, f p > 0 f p, f p < 0 f p k

26 75 ε f p! f p! x p, δ > 0 0 < x p < δ f p! x p < fx fp < f p x p +! f p! x p p < x < p + δ, 0 < x p < δ f p f p f!! x p p < fx fp < + f p!! x p, p δ < x < p f p + f p f!! x p p < fx fp < f p!! x p f p > 0, 0 < x p < δ fx fp > f p! x p > 0, f p f p < 0, 0 < x p < δ fx fp < f p! x p < 0, f p, f p > 0 p < x < p + δ fx fp > f p! x p > 0, p δ < x < p fx fp < f p! x p < 0, f p f p < 0, f p 77 f : [, b] R, b p, x [, b], N, λ > 0, 0 < θ < fx fp + k f k p k!, lim R x lim fx fp + k fp + x p k + f p + θ x p θ λ x p! λ f p+θ x p θ λ x p! λ 0, fx fp + k f k p x p k k! f k p k! x p k R x k 78 α R x < f k p k! x p k f p 0 α x x 0, lim α x, lim α x 0 + lim α + x x <, 79 e x, si x, cos x, + x α α R, log + x 0 fx e x, x R, λ f k 0, R x x! eθx, 7 lim R x 0, e x + x! fx si x, x R, λ f k 0 0, f k+ 0 k, R x x! si θ x + π, 7 lim R x 0, si x x+ +! 0 3

27 3 fx cos x, x R, λ f k 0 k, f k+ 0 0, R x x! cos θ x + π, 7 lim R x 0, cos x x! 4 fx + x α, f k 0 k! α k x + θ x α, λ R x α α θ + θ x α x > i < x < 0, 0 < θ + θ x α θ +θ x + θ x α < + θ x α α 0 < θ + θ x α < + θ x α λ R x α α θ + θ x α x < α x α x 0, λ R x α, 78 lim R x 0 α < 0 < θ < + θ x 0 < θ + θ x α < + θ x α < + x α λ R x α α α θ + θ x α x < αx + x α x, 78 lim R x 0 ii 0 < x <, > α 0 < + θ x α < λ R x α x + θ x α < α x, 78 lim R x 0, x < lim R x 0, + x α f k 0 0 α x 5 fx log + x, f0 0, k! k k k, λ R x x +θ x, λ R x + θ x +θ x i < x < 0, 0 < θ +θ x < +θ < x +x λ R x θ x +θ x < x +x, lim R x 0 ii 0 x, 0 x +θ x < λ R x, lim R x 0, < x lim R x 0, log + x x x +θ x < 8 8 x x 0 8 { x 0 } 0,,, x < x 0 x C, x K > 0, 0,,, x 0 < K, x x 0 x x 0 < K x x 0, x x 0 < K x x 0 0 x 0 83 x x, M {r x < r 0, x, M, x } {0} x 0

28 8, x R 0 R, x < R x, x > R 0 x 0 84 φ, <, lim φ 0 k, lim k 0 <, α log α > 0 e α α j j j! > αk+ k+ k+! j0, k+! 0 lim α k+ k 0 85 φ 0, 0 x R, 0 k < k+!k k+! α k+ k+ α k+ x φx 0 φx S 0 R, S, φ 0, φ x < R, x < r < R r, x r < 84 lim φ x r 0, > N φ x r < N > N φx φ x r r < r r, φx 0 S < R S R φ > N φ > N x < S, > N x < φx, φx, x R < S R S R S x R, f : R, R R fx x, x < R f fx+h fx x lim h 0 h x k k kk k k, x+h x h x h k h k x k h k h k x k h k h k x k h h + x k k k x < R, h < R x h, 85 h + x, fx+h fx h x x+h x h x x+h x h x 0 0 h h + x h h + x lim x fx+h fx h x R, fx x f : R, R R, f 0! 86 f k x k k! + k+ 0 k + x k f k 0 k k! 88 x x R 0 lim +, lim + R lim, lim R 0 5

29 lim + r x C, lim +x+ x lim + x r x, r > 0, x < r x, r 0 x x 0 r > 0 x > r, < c < r x c N > N k > c > N x > c N N x N, x > +x + x N x + k 0 r > 0 N x N c N N x + c N x N c c k N x N+ 0 0 x r r 0 x 0 0 r x C, lim x lim x r x, 3 r > lim 0, x < r 0 x, r 0 x x r > 0 x > r, < c < r x c N > N x > c k > N x > c, x > N x + k c N x + cn+ c ck N 0 0 N+ x r > 0 x r r 0 x 0 89 { } 0,, 0 f :, C fx x, lim x x fx 0 8, x, x ε > 0 0 N N < ε 0,,, N M, ε N M+ε < x < x N < ε M+ε < ε M x fx x N x + 0 x x x N x + xx M x N + ε < ε limx fx x 80 x x R, f : R, R C fz z R, lim fx R x R 0 s R x R, R, fx s x R x R x R 0 j0 R x j R sk k R k 0 j k j k j j0 R x R 0 0 j k 0 0 j0 k j0 j x j R j R x R j k s k s j x R s x k R s x j R R x j R s x j R s x j j R j0 j0 j0 j0 j0 j0 s s j x j R fx s R x R s s j x j R lim s s j 0 gy s s j y j j0 j0 j j0 89 limfx s lim R x x R x R R s s j x j R R lim y gy 0 y j0 9 9 X, Y C f : X Y, f ε > 0, δ > 0 x y < δ fx fy < ε 6

30 9 f : [, b] C, ε > 0 ; δ > 0 x y < δ fx fy ε x, y [, b] δ x y < fx fy ε x, y [, b] {x },,, {y },, v, {x k } k,,, {y k } k,, 0 < < < k < p lim x k, q lim y k x k, y k [, b] k k 4 p, q [, b] x k y k < k k, 4 p q 0 p q f 33, lim fx k lim fy k fp k k, fx k fy k ε, k 0 ε > 0 f : X R, M, x X fx M, f, X S, {y y fx x S } sup x S fx, if x S fx 93 0 b { i } i0,,, [, b], 0,,,,,, i, ξ i [ i, i ] ξ {ξ i } i,,, { i } i0,,,, { j } j0,,,m [, b] 0,,,, 0,,, m [, b], { 0,,, } { 0,,, m}, 3 f : [, b] R [, b] { i } i0,,, ξ {ξ i } i,,, Sf,, ξ i fξ i i i,, ξ f f, [, b] { i } i0,,, m i if x [i, i] fx, M i sup x [i, i] fx, Sf, M i i i, Sf, m i i i f, i 4 f : [, b] R, R, f, R b fxdx ε > 0, δ > 0 < δ [, b] ξ Sf,, ξ R < ε 94 f : [, b] R [, b], ξ Sf,, ξ b fxdx Sf,, ξ b fxdx + {i } i0,,,, ξ {ξ i } i,,,, [ k, k ] f ξ i i k, ξ k [ k, k ] fξ k k k fξ i i i i k Sf,, ξ b fxdx +, f [ k, k ] [, b] [ k, k ] 95 f : [, b] R, { i } i0,,,, { j } j0,,,k [, b] Sf, Sf, Sf, Sf, M sup x [,b] fx, m if x [,b] fx i i Sf, Sf, k M m, Sf, Sf, k M m 3 ξ Sf, Sf,, ξ Sf, 7

31 , i i s i s i m i if x [i, i ] fx, M i sup x [i, i] fx, m j if x [ j, j ] fx, M j s i sup x [ j, j ] fx, [ i, i ] [ j, j ] m i js i + m s i +, m s i +,, m s i, M i M s i +, M s i +,, M s i s i m i i i m i j j s i m j j j Sf, m i i i i s i js i + M i j j s i i js i + s i js i + js i + m j j j l js i + m j j j Sf, M i i i M j j j Sf, M i i i i s i i js i + M j j j l M j j j Sf, Sf, Sf, m j M j j {b j } j0,,,k+, m j if x [b j,b j ] fx, M j sup x [b j,b j ] fx, i b si s i i, i, i, s i m js i + j b j b j s i js i + m i b j b j s i js i + M m, i, i s i s i js i + m j b j b j m i i i Mb j b j mb j b j M m i i js i + m j b j b j m i i i 0, k i Sf, Sf, p+ m j b j b j m i i i i s i m j b j b j m i i i k M m i js i + Sf, Sf, k M m Sf, Sf, k M m 3 ξ {ξ i } i,,, m i fξ i M i 96 f : [, b] R 95 {x x Sf, [, b] }, {x x Sf, [, b] }, b fxdx, b fxdx, f, 97 f : [, b] R ε > 0, δ > 0 < δ [, b] b fxdx Sf, < ε Sf, b fxdx < ε L b fxdx, U b fxdx, ε > 0, L ε < Sf,, Sf, < U + ε [, b], 0 95 L ε < Sf, 0 Sf, 0 < U + ε M sup x [,b] fx, m if x [,b] fx, 0 {c k } k0,,,p [, b] { i } i0,,, 95 Sf, 0 Sf, p M m, Sf, Sf, 0 p M m < ε p M m L Sf,, Sf, U < ε + p M m < ε 98 f : [, b] R, b fxdx b fxdx f, b fxdx b fxdx b fxdx f b fxdx b fxdx b fxdx b fxdx b fxdx, R 97, ε > 0, δ > 0 < δ [, b] R Sf, < ε Sf, R < ε, < δ, ξ 95 3 R ε < Sf, < Sf,, ξ < Sf, < R + ε Sf,, ξ R < ε f, b fxdx R 8

32 f, L b fxdx, U b fxdx 97, ε > 0, δ > 0 < δ [, b] L Sf, < ε Sf, U < ε { i } i0,,, < δ [, b] m i if x [i, i ] fx, M i sup x [i, i] fx, i,,, fξ i m i < ε b, M i fζ i < ε b ξ i, ζ i [ i, i ] ξ {ξ i } i,,,, ζ {ζ i } i,,,, Sf,, ξ Sf, fξ i m i i i < ε b i i ε, Sf, Sf,, ζ i i M i fξ i i i < i i ε b i i ε, < δ 0 L Sf, < ε ε < Sf, Sf,, ξ 0 ε < L Sf,, ξ < ε, 0 Sf, U < ε ε < Sf,, ζ Sf, 0 ε < Sf,, ζ U < ε ε < L U < ε, ε L U 99 f : [, b] R, ε > 0, Sf, Sf, < ε [, b] f 98 b fxdx b fxdx 97 ε > 0, Sf, Sf, < ε [, b] ε > 0, Sf, Sf, < ε [, b], Sf, b fxdx b fxdx Sf, 0 b fxdx b fxdx Sf, Sf, < ε ε b fxdx b fxdx 98 f 90,, f : [, b] R 9, ε > 0, δ > 0 x y < δ fx fy < ε b < δ [, b] { i} i0,,, m i if x [i, i] fx, M i sup x [i, i ] fx, M i fp i, m i fq i p i, q i [ i, i ] M i m i < f ε b Sf, Sf, < ε 99 f : [, b] R [, b] { i } i0,,, m i if x [i, i] fx, M i sup x [i, i] fx, m i f i, M i f i Sf, Sf, f i f i i i f i f i fb f, ε > 0, i < ε fb f+ i [, b] Sf, Sf, < ε 99 f f 93 9 f : [, b] R b fxdx lim i b f + b i lim i b f + b i 9 f : [, b] R, fx C b fxdx lim i b C Cb k, f : [0, t] R fx x k t fxdx 0 x [k] xx x x + k,, x k x [k], x k, x k x [k] + k kj x [j] kj, x + [k+] x [k+] k + x [k], x,,,, [k+] 0 i [k] k+ + [k+] i k i [k] + k kj i [j] k+ + [k+] + k kj j+ + [j+] i i i i 9

33 t 0 i fxdx lim i k k +, k+ k+ i t t i k t k+ lim k+ i i k tk+ k+ lim k+ i i k k+ 0 f, g : X R, f g : X R f gx fx gx 0 f, g : X R sup x X f gx sup x X fx sup x X gx, if x X f gx if x X fx, if x X gx x X fx, gx f gx sup x X f gx, if x X fx, if x X gx f gx sup x X fx, sup x X gx sup x X f gx, if x X fx, if x X gx if x X f gx sup x X fx, sup x X gx < sup x X f gx, sup x X fx, sup x X gx < f gx 0 < sup x X f gx x 0 f gx 0 fx 0 gx 0, sup x X fx < fx 0 sup x X gx < gx 0, sup x X f gx sup x X fx sup x X gx 0 f, g : [, b] R, α, β R αf + βg : [, b] R, b αfx + βgxdx α b fxdx + β b gxdx f g, fg : [, b] R c > 0, x [, b] fx > c, f : [, b] R b fxdx A, b gxdx B ε > 0 δ > 0, [, b] < δ ε ε, ξ, Sf,, ξ A < α + β + Sg,, ξ B < α + β + < δ, Sαf + βg,, ξ αa + βb αsf,, ξ A + βsg,, ξ B α Sf,, ξ A + β Sg,, ξ B < ε α + β α + β + < ε αf +βg, b αfx+βgxdx αa + βb x [, b] fx, gx C C [, b], S Sf g, Sf g, Sf, Sf, + Sg, Sg,, Sfg, Sfg, CSf, Sf, + Sg, Sg,, f, S f, Sf, Sf, fx > c > 0 c, ε > 0, Sf, Sf, < Sg, < ε +C ε +C Sg, Sf g, Sf g, < ε Sfg, Sfg, < ε 99 f g, fg Sf, Sf, < c ε S f, S f, < ε 99 f { i } i0,,,, M i sup x [i, i ] fx, M i sup x [i, i ] gx, 0 sup x [i, i ]f gx M i M i, λ, λ,, λ k, µ, µ,, µ k {λ, λ,, λ k } {µ, µ,, µ k } {,,, } sup x [λ s, λ s ] f gx M λs, sup x [µ s, µ s ] f gx M µ s m i if x [i, i ] fx, m i if x [i, i ] gx, p i if x [i, i ]f gx p i m i, m i Sf g, Sf g, k M λs λs λs + k M µ s µs µs p i i i s k M λs p λs λs λs + k M µ s p µs µs µs k M λs m λs λs λs + k M µ s s s m µ s µs µs Sf, Sf, + Sg, Sg, s s i s 30

34 x, y [ i, i ] fxgx fygy fx fygx + fygx gy fx fy gx + fy gx gy C fx fy + gx gy CM i m i + M i m i q i if x [i, i]fgx, Q i sup x [i, i ]fgx, Q i q i CM i m i + M i m i Sfg, Sfg, CSf, Sf, + Sg, Sg, c > 0, x [, b] fx > c x, y [ i, i ] fx fy fx fy fx fy < c M i m i S f, S f, c Sf, Sf, 03 f, g : [, b] R x [, b] fx gx, b fxdx b gxdx g f c [, b], fc < gc b fxdx < b gxdx E, x < y b E [x, y] [, b] x E fx gx b fxdx b gxdx [, b] ξ Sf,, ξ Sg,, ξ, b fxdx gxdx b g f c [, b], fc < gc h g f h c hc > 0 δ > 0 x c δ, c + δ [, b] hx hc < hc < δ 6 [, b] { i} i0,,, ξ {ξ i } i,,, c δ < c, [ k, k ] c δ, c δ 3, [ l, l ] c δ 3, c k, l ξ k, ξ k+,, ξ l c δ, c k i l hξ i > hc, l k > δ 3 Sh,, ξ > l hc i i hc l k > δhc 6 0 ik b gxdx b fxdx b δhc hxdx 6 > 0 c δ < b, [ k, k ], + δ 3, [ l, l ] + δ 3, + δ k, l, b gxdx b fxdx > 0 x E fx 0 b fxdx 0 R b fxdx, ε > 0, δ > 0 < δ 6 [, b] { i} i0,,, ξ Sf,, ξ R < ε ξ i E i,,, ξ {ξ i } i,,,, Sf,, ξ 0 R < ε ε > 0 R 0 04 f : [, b] R f x fx f : [, b] R, b fxdx b fx dx f f f 0 f, x [, b] fx fx fx 03 b fxdx b fx dx c b [, c] { i } i0,,,, [c, b] {b i } i0,,,m, ξ {ξ i } i,,,, ξ {ξ i } i,,,m, c i i 0 i, c i b i i m + [, b] {c i } i0,,,m+ +, ζ i ξ i i, ζ i ξ i + i m + + {ζ i } i,,,m+ ξ + ξ, Sf, +, ξ + ξ Sf,, ξ + Sf,, ξ 05 c [, b] f : [, b] R f [, c] [c, b] f [, b], b fxdx c fxdx+ b c fxdx f [, b] f [, c] [c, b] 94, f [, c], [c, b], M, x [, b] fx M ε > 0 0 < δ ε 4M < δ 3

35 [, c], < δ [c, b],, ζ, η Sf,, ζ c fxdx < ε 4 Sf,, η b c fxdx < ε 4 < δ [, b] { i } i0,,, ξ {ξ i } i,,, {b i } i0,,,l, {c i } i0,,, l+ l c l b i i i < l, b l c 0 c, c i i+l i > 0, ζ {ζ i } i,,,l, η {η i } i,,, l+ ζ i ξ i i < l, ζ l η c, η i ξ i+l i >,, [, c], [c, b], < δ, ζ, η, Sf,, ξ Sf,, ζ Sf,, η fξ l fc l l, Sf,, ξ c fxdx b c fxdx fξ l fc l l + Sf,, ζ c fxdx + Sf,, η b c fxdx < Mδ + ε < ε,, { + c i} i0,,,, ξ { + c i} i,,,, { c + b c i} i0,,,, ξ { c + b c i}, i,,,, [, c], [c, b], ξ, ξ, S Sf,, ξ, S Sf,, ξ, {S },,, {S },, R b fxdx, ε > 0, δ > 0 < δ [, b], ξ Sf,, ξ R < ε b, m > δ c < δ, b c < δ + m < δ Sf, + m, ξ +ξ m R < ε S S m Sf, + m, ξ +ξ m Sf, m + m, ξ m + ξ m Sf, + m, ξ + ξ m R + R Sf, m + m, ξ m + ξ m < ε S S m < ε {S },,, {S },, V vi, lim S R, lim S R ε > 0, δ > 0, > b δ S R, S R < ε [, c] < δ, ξ +, + < δ Sf,, ξ R Sf, +, ξ +ξ R + R Sf, +, ξ +ξ + Sf,, ξ R < ε, f [, c], c fxdx R f [c, b], b c fxdx R 06 f : [, b] R, b fxdx b fxdx fxdx, b b fxdx c fxdx + b fxdx, b, c c f [, b] c d b, 05 f [c, b] 05 f [c, d] f [, b] 07 f : [, b] R, c < d b, f p c, d, f [, b] E, c < d b E c, d f : [, b] R,, b f, 06 94, x [, b] fx < M M [, b] {α i } i,, {β i } i,, i,, α i < β i x, y [α i, β i ] fx fy < M i α, β b x, y [α, β ] fx, fy < M fx fy < M α < α < < α i < β i < < β < β, s,,, i x, y [α s, β s ] fx fy < M s α i < u < v < β i u, v, 99, Sf, Sf, < Mv u i [u, v] { j } j0,,, u 0 < < < v, M j sup x [j, j] fx, m j if x [j, j ] fx M m, M m,, M m M j m j, M j m j v u M j m j j j Sf, Sf, < Mv u i M j m j < M i, α i j, β i j α i, β i α i < α i < β i < β i, x, y [α i, β i ] fx fy < M i 3

36 {α i } i,,, {β i } i,,, lim α i lim β i p [ lim α i, lim β i ] i i i i ε > 0 i i p α i, β i δ < p α, β p δ > 0 ε M x p < δ x p δ, p + δ [α i, β i ] fx fp < M i ε f p f :, b R, F :, b R F f, F f f : [, b] R, c [, b] F : [, b] R F x x ftdt c F f p, b F p, F p fp, f, F f 94, M, x [, b] fx M 06, 04, 03, 9 F x + h F x x+h ftdt x c c ftdt x+h ftdt x x+h ft dt x x+h Mdt h M h 0 F x + h F x, F x ε > 0 δ > 0 p δ, p + δ [, b] h < δ fp + h fp < ε F p+h F p h < δ h fp p+h h ftdt p c c ftdt p+h fpdt p h ft fpdt h ft fp dt h εdt ε lim h fp p+h p p+h p p+h p h 0 F p+h F p 3 f, F : [, b] R F, b x, F x fx b fxdx F b F Gx x ftdt G : [, b] R, x, b G x fx F x 66, G F, G 0 b ftdt Gb G F b F 4 f, g :, b R, b x, f, g :, b R p, q, b q p f xgxdx fqgq fpgp q p fxg xdx g :, b R, b x, g :, b R p, q, b g p, q M, m, f : [m, M] R q p fgtg tdt gq fxdx gp f g fg fg, p q 3 I p, q F, G : I R F x x p fgtg tdt, Gx gx ftdt gp, F x fgxg x G x 66 F G F p Gp 0 F G, F q Gq 5 f : [, b] R, φ : [, b] R x [, b] φx 0 b fxφxdx fc b φxdx c, b f, f M, m, x [, b] m fx M φx 0 mφx fxφx Mφx 03 m b φxdx b fxφxdx M b φxdx m b φxdx < b fxφxdx < M b φxdx m < b fxφxdx b < M fp M, fq m φxdx p, q [, b], p q fc b fxφxdx b φxdx c p < q 33

37 p < c < q b, p > q q < c < p b, c, b, b fxφxdx fc b φxdx Z {x x, b, φx 0}, φ, b C b fxφxdx M b φxdx, fc M c, b, c, x, b fx < M 03 x C fxφx Mφx, x Z C Z, b fxφxdx m b φxdx, fc m c, b, c C Z C Z 07, c < d b Z c, d C c, d, x Z fxφx φx 0 03 b fxφxdx b φxdx 0 C Z, c, b b fxφxdx fc b φxdx 6 f :, b R, f :, b R, x, p, b fx fp + i k fx fp + k f i p x p i + i! i! x p x t f tdt f i p i! x p i + x k! p x tk f k tdt 3 fx fp+ x p f tdt, k, k r,, 4 x p x tr f r tdt x p r x tr f r tdt r x pr f r p+ x r p x tr f r+ tdt, k r + 7 x R, f : R, R R fx x 0, x < R x 0 ftdt x+ + x+ R, F 86, F f F x 0 0 ftdt F x I, f : I R I [, b I, b], t I f [, t] [t, b], t b lim fxdx lim t b t t fxdx, f I, b fxdx b t fxdx lim t b fxdx b b fxdx lim fxdx t b t I [, I, b], t I f [, t] [t, b], t b lim fxdx lim t t t fxdx, f I, fxdx b fxdx t fxdx lim t fxdx b fxdx lim b fxdx t t 3 I, b < b, s, t, b f [s, t], c I c fxdx b fxdx, c b fxdx b fxdx c fxdx + b c fxdx 06 b fxdx c 34

38 f : [, b] R, b, f :, b R s, t, b s < t 3 t s f xdx ft fs, f lim fs f, s lim ft fb f [, b], b t b f xdx fb f 3 I, f : I [0,, I I [, b I, b], b {p },,, p < b p >, α b fxdx {α },, f I b fxdx lim α I [, I, b], {p },,, lim p lim p, α b fxdx lim α b fxdx {α },, f I fxdx lim α b {b },,, p < b, β b fxdx {β },, R lim α, ε > 0, > N α > R ε N {p },, {b },, b b N p N+ N > N b b N p N+ β b fxdx pn + fxdx + b p fxdx α N N + + > R ε {β },, R 69 f I b fxdx lim α lim b {b },, 4 I, f, g : I [0,, f I, g I x I fx gx f I fx I [, b I, b], lim x b gx lim fx x gx f I I [, I, b], lim x fx gx lim x fx gx f I I [, b, b b {b },, b < b, α b fxdx, β b gxdx {α },,, {β },, 06 03,, α β {β },, b gxdx {α },, {α },, 69 f b {b },, lim, f I, b], I, b fx lim x b gx C, < c < b c < x < b fx gx C < c < x < b fx < C + gx f [c, b 05 f I I, b], I [,, I, b] 5 f :, [0, fx x, g, h : [, ] R gx x, hx + x g, h :, R g x x, h x +x, x [0, fx g x, x, 0] fx h x g, h [0, ], [, 0] 4 f, 0], [0, p, q > 0, 0 xp x q dx p, q x x p x q [0, ] R, 0 < p < fx x p x q, gx x p f, g : 0, xp ] R g p [0, ] fx g lim x 0 gx lim x 0 xq 4 0 x p x q dx 0 < q < x p x q dx, p, q > 0, 0 xp x q dx 35

39 3 s > 0, 0 x s e x dx x 0, ] x s e x x s, x s xs s [0, ] 0 xs dx 4 0 xs e x dx x [,, fx x s e x, gx e x f, g : [, [0, N s, x fx gx xs e x x N e x 84 x lim x xn e 0 lim fx x gx 0 4 x s e x dx x s e x dx 0 3 m R m {x, x,, x m x, x,, x m R m } x x, x,, x m, y m y, y,, y m dx, y dx, y x j y j m m 3 u, u,, u m, v, v,, v m R, u j v j u j m vj, m m m u j vj u j v j u i vj u i u j v i v j i j i<j i<ju i vj u i u j v i v j + u jvi i<ju i v j u j v i 0 3 x, y, z R m, dx, z dx, y + dy, z x x, x,, x m, y y, y,, y m R m, x k y k dx, y m x j y j 3 x x, x,, x m, y y, y,, y m R m m m, x j yj dx, y x x, x,, x m, y y, y,, y m, z z, z,, z m, u j x j y j, v j y j z j m m m j,,,, u j + v j x j z j u j + v j u j + vj m m 78 u j + vj, x k y k m m x j y j m u j + v j m u j m x j y j,, m vj m u j v j 0 m 3 R 3 0, x j dx, 0 dx, y + dy, 0 dx, y + yj m m m m x j yj dx, y yj x j dy, x dx, y, 33 φ : [, b] R m m R m t [, b] φt φ t, φ t,, φ m t, φ j : [, b] R j,,, m, φ j 36

40 34 R m φ : [, b] R m [, b] { i } i0,,, sφ, dφ i, φ i i S φ {x x sφ, [, b] }, φ, S φ φ m φ, φ, φ φ 35 φ : [, b] R,, b, φ :, b R φ, M, x, b φ x M, φ V V Mb { i } i0,,, [, b], φ i φ i φ c i i i c i i, i, sφ, φ i φ i φ c i i i M i i Mb i S φ Mb 36 R m φ : [, b] R m, φ j φ j, [, b], sφ, sφ, [, b], sφ k, sφ, m sφ j, 3 φ, φ 4 φ φ j : [, b] R,, b, φ j :, b R φ { i } i0,,,, { i } i0,,,k, i 0,,, i s i s i s i 3 dφ i, φ i dφ l, φ l, i 0,,, ls i + sφ, sφ, { i } i0,,,, 3 φ k i φ k i dφ i, φ i m φ j i, i,,, sφ k, sφ, m sφ j, i i φ j i 3 φ L,, k,,, m [, b] sφ k, sφ, L S φk φ k φ, φ,, φ m, φ j L j, [, b] sφ, m sφ j, m L j S φ R m φ : [, b] R m, c [, b], φ : [, c] R m, φ : [c, b] R m φ t φt t [, c], φ t φt t [c, b] φ, φ φ, φ, φ, φ L, L, L, L L + L φ L, [, c], [c, b], + [, b], sφ,, sφ, sφ, + sφ, sφ, + L, S φ, S φ, φ φ, φ, φ L, L, L + L L φ φ L, L, [, b] { i } i0,,,, k c k k, [, c], [c, b] {b i } i0,,,k, {c i } i0,,, k+ 37

41 i 0 i k c i 0 b i, c i sφ, dφ c i k i, φ i i+k i k + i k i dφ i, φ i +dφ k, φ k + dφ k, φc + ik+ ik+ dφ i, φ i k i dφ i, φ i +dφc, φ k + dφ i, φ i sφ, + sφ, L + L, S φ L + L, φ, L, L L + L φ, φ, φ, L L + L R m φ : [, b] R m,, p, q [, b] p q φ p,q t φt φ p,q : [p, q] R m L φ p, q, p > q L φ p, q L φ q, p 38 R m φ : [, b] R m, φ j φ j, p, q, r [, b], L φ p, q m L φj p, q L φ p, r L φ p, q + L φ q, r [p, q] { i } i0,,, 3 dφ i, φ i m φ j i φ j i, i,,, sφ p,q, m sφ j p,q, m L φj p, q L φ p, q m L φj p, q L φ p, r L φ p, q + L φ q, r φ : [, b] R, φ φ, φ +, φ : [, b] R φ + x L φ, x, φ x φx L φ, x φ φ + + φ x, y [, b], x < y, 38 φ + y L φ, y L φ, x + L φ x, y L φ, x φ + x, φ x φ y φx L φ, x φy + L φ, y L φ x, y φy φx L φ x, y sφ x,y, {x, y} 0 φ +, φ φ f + g f : [, b] R, g : [, b] R [, b] { i } i0,,,, sφ, i φ i φ i i f i f i + g i g i f i f i + g i g i f i f i g i + g i fb f gb + g i i S φ fb f gb + g 30 90, 3 R m φ : [, b] R m j φ j, j φ j,, b j φ j :, b R, M, x, b j,,, m φ j x M p, q [, b] L φp, q mm q p x [, b] L φ p, x φ, φ j t, b, p [, b], x [, b] L φp, x m t, t φ j t 36 3 φ, L φ p, q m L φj p, q mm q p x, y [, b], L φ p, x L φ p, y L φ x, y mm y x 38

42 , ε > 0, δ > 0 t δ, t+δ, b x t < δ φ j x φ j t < ε m 0 < h < δ h, [t, t + h] { i } i0,,,, 0 L φ t, t + h sφ, < hε, [ i, i ] φ j i φ j i φ j c i i i c i i, i h i i m sφ, h φ j t m m φ j i φ j i φ j t i i i m φj i φ j i φ j t i i i m φ j c i φ j t i i < i i m ε 4m i i < hε m L φt, t + h h φ m j t L φ t, t + h sφ, + sφ, h φ j t < hε L φ p, t + h L φ p, t h m φ j t L φ t, t + h h i m φ j t < ε δ < h < 0, [t + h, t] { i } i0,,,k, 0 < L φ t + h, t sφ, < hε m sφ, + h φ j t < hε, L φ p, t + h L φ p, t h m φ j t L φ t + h, t h m φ j t < ε L φ p, t + h L φ p, t m lim φ j h 0 h t 3 R m φ : [, b] R m φ j : [, b] R x, b, φ,x : [, x] R m L φ, x, x, b L φ, x φ, φ j b, φ lim x b L φ, x x, b, φ x,b : [x, b] R m L φ x, b, x, b L φ x, b φ, φ j, φ lim x L φ x, b M, j,,, m x [, b] φ j x M x L φ, x, lim L φ, x L, x b { i } i0,,, [, b] k < b, [, k ] { i } i0,,,k sφ, sφ, + dφ k, φb L φ, k + m φ j k φ j b L + mm S φ L + mm, φ φ j b, ε > 0 L ε < L φ, p p, b, L φ, p ε < sφ, [, p], L ε < sφ, b [, b] sφ, sφ, > L ε 39

43 [, b], c, b c < x < b j,,, m φ j x φ j b < ε m b d c, d < p < b p [, b], b [, p], sφ, sφ, sφ, + dφp, φb L φ, p + m φ j p φ j b < L + ε ε > 0 sφ, L, L S φ 33 R m φ : [, b] R m j φ j j φ j,, b b m, φ j :, b R φ j t dt, b m φ, φ φ j t dt c, b 36 4, x, c, y c, b φ x,c : [x, c] R m, φ c,y : [c, y] R m L φ x, c, L φ c, y, 3 3 L φ x, c c x m φ j t dt, L φ c, y y c m φ j t dt c m b m lim L φ x, c φ j t dt, lim L φ c, y φ j t dt, 3 x y b c c m b m, φ,c : [, c] R m, φ c,b : [c, b] R m, φ j t dt, φ j t dt c 37, 34 φ : [, ] R φt t, t, φ,,, φ t t, φ t t, φ t, φ t t t φ t + φ t dt dt t dt t, 5 33, φ, r, θ, ψ : [, b] R,, b, r, θ, ψ :, b R φ t rt si θt cos ψt, φ t rt si θt si ψt, φ 3 t rt cos θt φ : [, b] R 3 φ t + φ t + φ 3t r t + rt θ t + rt ψ t si θt, φ b r t + rt θ t + rt ψ t si θt dt 35 R m φ : [, b] R m, L, φ, L φ ε > 0, δ > 0 < δ [, b] L sφ, < ε L sφ, 0 > L [, b] 0 0 [, b], sφ, L < sφ, 0 L, sφ, < sφ, 0, 36 L S φ φ ε > 0, L sφ, < ε [, b], L S φ 36 f :, b R, δ > 0 x y < δ fx fy < b δ, c i + ib, x c i δ, c i + δ, b 40

44 fx fx fc i + fc i < + fc i fc, fc,, fc M c δ + b δ, c i+δ c i+ δ δ b δ > 0, c +δ + b +δ b b +δ b, b c i δ, c i + δ, x, b fx < + M f i 37 R m φ : [, b] R m j φ j j φ j,, b, φ j :, b R 35 L , φ φ L, ε > 0, L sφ, < ε [, b], δ > 0 x y < δ φ j x φ j y < ε mb < δ [, b] { i } i0,,, { i } i0,,,k, i 0,,, i s i s i, l,,, k, i,,, φ j l φ j l φ j ξ l l l, φ j i φ j i φ j ζ i i i ξ l l, l, ζ i i, i s i + l s i l, l i, i ξ l ζ i < i i < δ φ j ξ l φ j ζ i < sφ, sφ, ε mb <, 3 i i s i ls i + s i ls i + s i i ls i + s i i ls i + s i i ls i + m φ j l φ m j l φ j i φ j i l m l φ j ξ l s i m s i φ j ζ i l m l φ j ξ m l φ j ζ i m l l φ jξ l φ jζ i l ε l b ε 0 L sφ, L sφ, + sφ, sφ, L sφ, + sφ, sφ, < ε, L , φt t, t R φ : [, ] R f : [, ] R fx x dt 0 t, x > 0 fx φ [0, x], f x fx, π f dt 0, f π t, f f π f : [, ] [ π, π ] φ f : [ π, π ] [, ], ψ : [ π, π ] [0, ] ψx φx, φ0 0, φ π, φ π, ψ0, ψ π ψ π x π, π, φ x f φx φx ψx, ψ x φ xφx φx φ φx, ψ [ π, 0], [0, π ], φ φx x ψx ψ ψx x + φx 4

45 φ0 0, ψ0, x [ π, π ] N φx x+ +! + N ψn+ N θ x x N+, ψx N +! 0 0 < θ, θ < 0 ψ N+ θ i x N φx x+ +! x N+ N N +!, ψx 0 N x N+ N+!, x N N! 0 x [ π, π ], z C φx x+ +!, ψx x x x! + N ψn θ x N!! x N N!! si z i expiz exp iz z+ +!, cos z expiz + exp iz 0 expiz cos z + i si z, x [ π, π ] si x φx, cos x ψx 4 z, w C si 0 0, si π, cos 0, cos π 0 si z si z, cos z cos z, cos z + si z 3 siz + w si z cos w + cos z si w, cosz + w cos z cos w si z si w 0 z si x φx, cos x ψx φ0 0, φ π, ψ0, ψ π si z si z, cos z cos z si z i expiz exp iz, cos z expiz + exp iz, exp iz expiz cos z + si z 3 si z cos w+cos z si w expiz exp izexpiw+exp iw 4i + expiz+exp izexpiw exp iw 4i expiz + w exp iz w siz + w i 4 si x cos x, cos x si x si z cos z si z, cos z cos z, si 3z 3 si z 4 si 3 z, cos 3z 4 cos 3 z 3 cos z 3 si z + π cos z, siz + π si z, siz + π si z, cos z + π si z, cosz + π cos z, cosz + π cos z 4 si π si π 0, cos π, cos π, si π 4 cos π 4, si π 6, cos π 6 3, si π 3 3, cos π w z, si z cos z si z cos z si z, cos z cos z 4 3 w z, si z cos z si z, cos z cos z, cos z + si z si π φ π, cos π ψ π 0 si z + π cos z, cos z + π si z siz + π si z + π + π cos z + π si z, cosz + π cos z + π + π si z + π cos z, siz + π siz + π + π siz + π si z, cosz + π cosz + π + π cosz + π cos z 4 3, 3, 5, 6 z 0 si 0 φ0 0, cos 0 ψ0 si π si π 0, cos π, cos π, z π 4 cos π 4 si π 4, cos π 4 0,! x N 4

46 x [ π, π ] cos x ψx [0, ] cos π 4 cos π 4 si π 4 si π 4 3, 4 z π 6 3 si π 6 4 si3 π 6, 4 cos3 π 6 3 cos π 6 0 si π 6 + si π 6 0, cos π 6 4 cos π 6 3 0, si π 6 φ π 6 > 0, cos π 6 ψ π 6 > 0 si π 6, cos π 6 3, z π 6 si π 3 3, cos π 3 x [ π, π] 4 3 si x cos x π ψ x π [ π, π] si x [ π x [ π, π ] 4 3 si x cos x + π ψ x + π, π] si x [ π, π] si x 0 x 0, ±π si siz + π si z si z + π cos z 43 si x 0 x π, cos x 0 x π + π si [ π, π ] φ,, f f si cos x cos x si π x si [ π, π ], cos [0, π] cos [0, π] cos : [, ] [0, π] 44 si 0 cos 0, si cos 0 π, si π, cos π, si cos 3 π 6, si cos π 4, si 3 cos π 3 x [, ] cos x + si x π 3 x, si x x, cos x x x [, ] si π cos x coscos x x π cos x si x 3 si x x f cos x + si x π cos x x D {x R x π + π Z} 43 D cos x 0 t : D R t x si x cos x 45 x D tx + π t x, t x t x, + t x cos x t x+t y t x x, y, x + y D tx + y t x t y x, x D tx t x 3 t 0 0, t π 6 3 3, t π 4, t π tx+π six+π cosx+π si x si x cos x t x 4 t x cos x si x cos x t x cos x + si x cos x 0, cos x + t x cos x 4 3 six+y si x cos y+cos x si y cosx+y cos x cos y si x si y, cos x cos y x D t x cos x t π, π, lim t x, lim t x x π x π t π, π 3 t : D R π, π t : R π, π t x +x 43

47 4 t x si x cos x si x cos x si xcos x cos x cos x+si x cos x cos x x π, π t x > 0 t π, π 4 x π, π cos x > 0, lim x π cos x lim cos x 0, x π lim x π lim t x x π 3 45 t t x si x, lim si x lim t x, x π x π t x cos x +t x t x +x 47 x, t x x+ + 0 t <,, t, +t t, x <, 0 x t x x lim x t x t π 4 0 π π α t 5, t α 5 0 9, t 4α π t 4α t 4 π 4 +t 4α t π 4 6 t 5 4 t lim x t x x+ + t 0, t α t α t α 5 t α, t 4α 39 4α π 4 t 39 π 6α 4 t t α , x > 0 e x > x! e x k0 5 s, x k k! + eθx +! x+ 0 < θ <, x > 0 e x > x! 0 x s e x dx γ : 0, R, γ :, R γ t t xs e x dx, γ t t xs e x dx γ t t s e t < 0, γ t t s e t > 0 γ, γ 0 < x, e x < γ t t xs dx s ts < s, γ, lim γ t, 0 < s < t 0 0 xs e x dx > s, 5, x > 0 x s e x <!x s γ t t!xs dx! s t! s s γ, lim γ t t x s e x dx 44

48 53 p, q, 0 x p x q dx β : 0, R, β :, R β t t x p x q dx, β t x p x q dx β t t p t q < 0, β t t p t q > 0 β q 0 < q <, β m 0 < x <, xq < m q β t t m x p dx m p t p < m p p, β p, lim β t t 0, 0 < p < 0 x p x q dx m p 0 < p < p < x <, xp < m β t t m x q dx m q t q < m q q, β q, lim β t, 0 < q < x p x q dx t R I, J, I J {x, y x I, y J} xy- I J 54 Γ : 0, R, B : 0, 0, R Γs 0 x s e x dx, Bp, q Γ, B 0 x p x q dx 55 Γ, s > 0 Γs + sγs Γ!, Γ e x dx [ e x ] 0 0 m > s m, 5 x > 0 0 < x s e x < m! x lim m s x xs e x 0 Γs + x s e x dx [ x s e x ] 0 0 sx s e x dx sγs 0 56 p, q Bp, q ΓpΓq Γp + q 0 < s < < t, xy- E s,t E s,t { u, v s u v t u, t u v } s u φ : E s,t [s, t] [s, t] φu, v uv, u uv, φ, φ φ x, y x + y, [ E s,t [s, t] t s s s+t, x x+y φ u, v v v u u, φ t x p e x dx y q e y dy s t s t s [s,t] [s,t] x p y q e x y dx dy x p y q e x y dxdy uv p u uv q e u ududv E s,t v p v q u p+q e u dudv E s,t ] t s+t, 0 < v <, u > 0 v p v q u p+q e u, 45

49 t s t x p e x dx y q e y dy s s < r < s + t E s,t [ E s,t ] [ s t s, s, ] s t t x p e x dx y q e y dy s 0 < s < < t t s s s u p+q e u du s s [ r, rt r s [s,t] [ s s+t, t t s t s t s+t s s+t s+t] vp v q u p+q e u dudv v p v q u p+q e u dv u p+q e u du t s+t s s+t du v p v q dv Γp + qbp, q ] [ s r, ] s r r s [ ] [ s t s, s, ] v p v q u p+q e u dudv s t s s t s s s s t v p v q dv u p+q e u du s v p v q u p+q e u dv s s du v p v q dv t x p e x dx y q e y dy Γp + qbp, q s s 0, t, Γp + qbp, q, ΓpΓq, Γp + qbp, q ΓpΓq 57 α, β > π 0 si α x cos β xdx α + B, β + t si x si α x t α, cos β x t β, dt dx si x cos x t t π 0 si α x cos β xdx 0 t α t β t t dt 0 t α+ t β+ dt α + B, β +,!! 4 4!, +!! Γ π, Γ +!! π +!!! 56, 55, 57 Γ B, π Γ 0 dx π Γ > 0 Γ π 55 Γ 3 Γ π Γ +!! π Γ Γ 3!! π Γ + 3!! π!! π 46

50 6 6 p 0, p,, p, q 0, q,, q, p 0, p,, p, P x c 0 + c x + + c x i 0,,, P p i q i c 0, c,, c p j i i, j + A V der Mode A p j p i, p 0, p,, p A 0 0 i<j A, c 0, c,, c f : [, b] R p < q b, r p+q, ρ q p, P f : R R i i P f r + ρi f r + ρi 6, 6 f, g : [, b] R α, β R P αf+βg αp f + βp g, f, i i P f r + ρi f r + ρi P f i i αp f +βp g r + ρi αp f r + ρi + βpg r + ρi αf r + ρi + βg r + ρi 63 f + 6, fx x r k k 0,,, + αf + βg r + ρi, Pαf+βg, q p fxdx q p q p fxdx P f x c j x r j + fr i,,, P f xdx q p P f xdx j ρi c j k ρi, j k ρi ρi j c j k j k k c j c, c,, c, f P f, 0 j k q p q p fxdx P f xdx k + i,,, j ρi c j 0, ρi j i, j V der Mode, j,,, c j 0 P f x c j x r j q p P f xdx 0 q p x r + dx P f x c j x r j + fr i,,, j ρi c j f r + ρi fr, j ρi j c j f r ρi fr 47

51 j ρi c j f r + ρi + f r ρi fr, x j ρ j c j, i,,, j i x j f ip + + iq + f + ip + iq f p + q 6 64 i j i, j A, A A A 4, V der Mode i<j j i i<j j ij + i + i0 i! + i! i! A! + k k i i<j ki + k j i ++ + i i k ki + k i i! + i! i!, j,,,, A i j A i, j, 6 Crmer v i x j A f i+j A i, j f i ip++iq q p q p + f P f xdx P f xdx q p A ip + + iq + f +ip+ iq, c j ρ j+ j + i + ρfr q p i+j A i, j j + v i f + ip + iq x j j + + f p + q f p + q + A f p + q p + q 48

52 δ i i+j A i, j j + 65 q p A q p i P f xdx δ i f ip + + iq + f 4 i i 4 3 i+ i+ 4 j 4 j i j 4 j i 5 j+ 4 i+ j j + i+ 4 j 4 j + ip + iq x, x,, x D,j x, x,, x x k x j x k x j D,j x, x,, x x k i x j x k x j x j+ x j+ i x j+ x j+ + A p + q δ i f i x l x x l x i x l i x i x l x σ k x, x,, x x, x,, x k, σ k x, x,, x k 0,,,, 66 X x X x X x k σ k x, x,, x X k k0 D,j x, x,, x σ j x, x,, x D,j x, x,, x x x j x x i x i x j i i x x j, x j p<q x q x p x + x x j+ x x j i x i + x x j+ i x i x j x + x x j+ x x x i D,j x, x,, x + x D,j x, x,, x i D,j x, x,, x x x i D,j x, x,, x + x D,j x, x,, x i 49

53 , p<q G,j x, x,, x D,jx, x,, x x q x p x q x p p<q G,j x, x,, x G,j x, x,, x + x G,j x, x,, x V der Mode D,0 x, x,, x x x x p<q x q x p, D,j x, x,, x p<q x q x p, G,0 x, x,, x x x x, G, x, x,, x, j 0,,, G,j x, x,, x σ j x, x,, x X x X x X x k G, k x, x,, x X k X x k0 X x X x X x k G, k x, x,, x X k X x k0 k G, k x, x,, x X k + k0 k x G, k x, x,, x X k X + k G, k x, x,, x + x G, k x, x,, x X k k + G,0 x, x,, x G, x, x,, x X + k G, k x, x,, x X k + G,0 x, x,, x k k G, k x, x,, x X k k0, k σ k x, x,, x X k k0 k k G, k x, x,, x X k k0 X j G,j x, x,, x σ j x, x,, x j 0,,,, G,j x, x,, x σ j x, x,, x, 67 δ i k! + k! + k! k0 i+j j σ j,, i, i +,, j + i! + i! 50

54 A i, j j j+ j j+ i j i j+ i j j+ i+ j i+ j+ i+ j j+ j j+ j j+ j 4 j i j 4 i j i i + j 4 i + j i + i i+! i + j j 4 j A i, j! i + j D,j,, i, i +,, D,j,, i, i +,, σ j,, i, i +,, p<q p,q i A i, j q p i k p<q i k ki+ + j i! + i! k0 p<q p,q i q p i k! + k! i! + i! k! k i k q p, k! + k! σ j,, i, i +,, k! δ i i+j A i, j j + 68 K, j σ j,, j + j j + 67, + δ A +! k0 k! + k! K k! A, j δ + j! k0 k0 k! + k! k! k! + k! σ j,,, k! +j j + + j! σ j,, 5

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p 2012 IA 8 I 1 10 10 29 1. [0, 1] n x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 2. 1 x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 1 0 f(x)dx 3. < b < c [, c] b [, c] 4. [, b] f(x) 1 f(x) 1 f(x) [, b] 5.

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED)

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) rational number p, p, (q ) q ratio 3.14 = 3 + 1 10 + 4 100 ( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) ( a) ( b) a > b > 0 a < nb n A A B B A A, B B A =

More information

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h 009 IA I, 3, 4, 5, 6, 7 7 7 4 5 h fx) x x h 4 5 4 5 1 3 1.1........................... 3 1........................... 4 1.3..................................... 6 1.4.............................. 8 1.4.1..............................

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0. () 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t) =(x(t),y(t),z(t)) ( dp dx dt = dt, dy dt, dz ) dt f () > f x

y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t) =(x(t),y(t),z(t)) ( dp dx dt = dt, dy dt, dz ) dt f () > f x I 5 2 6 3 8 4 Riemnn 9 5 Tylor 8 6 26 7 3 8 34 f(x) x = A = h f( + h) f() h A (differentil coefficient) f f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t)

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46..

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46.. Cotets 6 6 : 6 6 6 6 6 6 7 7 7 Part. 8. 8.. 8.. 9..... 3. 3 3.. 3 3.. 7 3.3. 8 Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3.

More information

- II

- II - II- - -.................................................................................................... 3.3.............................................. 4 6...........................................

More information

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a 3 3.1 3.1.1 A f(a + h) f(a) f(x) lim f(x) x = a h 0 h f(x) x = a f 0 (a) f 0 (a) = lim h!0 f(a + h) f(a) h = lim x!a f(x) f(a) x a a + h = x h = x a h 0 x a 3.1 f(x) = x x = 3 f 0 (3) f (3) = lim h 0 (

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................ 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)

More information

.1 1,... ( )

.1 1,... ( ) 1 δ( ε )δ 2 f(b) f(a) slope f (c) = f(b) f(a) b a a c b 1 213 3 21. 2 [e-mail] nobuo@math.kyoto-u.ac.jp, [URL] http://www.math.kyoto-u.ac.jp/ nobuo 1 .1 1,... ( ) 2.1....................................

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

1 1 1 1 1 1 2 f z 2 C 1, C 2 f 2 C 1, C 2 f(c 2 ) C 2 f(c 1 ) z C 1 f f(z) xy uv ( u v ) = ( a b c d ) ( x y ) + ( p q ) (p + b, q + d) 1 (p + a, q + c) 1 (p, q) 1 1 (b, d) (a, c) 2 3 2 3 a = d, c = b

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980 % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2006.11.20 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n 1, R f : R R,.,, b R < b, f(x) [, b] f(x)dx,, [, b] f(x) x ( ) ( 1 ). y y f(x) f(x)dx b x 1: f(x)dx, [, b] f(x) x ( ).,,,,,., f(x)dx,,,, f(x)dx. 1.1 Riemnn,, [, b] f(x) x., x 0 < x 1 < x 2 < < x n 1

More information

i 6 3 ii 3 7 8 9 3 6 iii 5 8 5 3 7 8 v...................................................... 5.3....................... 7 3........................ 3.................3.......................... 8 3 35

More information

[ ] x f(x) F = f(x) F(x) f(x) f(x) f(x)dx A p.2/29

[ ] x f(x) F = f(x) F(x) f(x) f(x) f(x)dx A p.2/29 A p./29 [ ] x f(x) F = f(x) F(x) f(x) f(x) f(x)dx A p.2/29 [ ] x f(x) F = f(x) F(x) f(x) f(x) f(x)dx [ ] F(x) f(x) C F(x) + C f(x) A p.2/29 [ ] x f(x) F = f(x) F(x) f(x) f(x) f(x)dx [ ] F(x) f(x) C F(x)

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

IV.dvi

IV.dvi IV 1 IV ] shib@mth.hiroshim-u.c.jp [] 1. z 0 ε δ := ε z 0 z

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

I II

I II I II I I 8 I I 5 I 5 9 I 6 6 I 7 7 I 8 87 I 9 96 I 7 I 8 I 9 I 7 I 95 I 5 I 6 II 7 6 II 8 II 9 59 II 67 II 76 II II 9 II 8 II 5 8 II 6 58 II 7 6 II 8 8 I.., < b, b, c, k, m. k + m + c + c b + k + m log

More information

行列代数2010A

行列代数2010A a ij i j 1) i +j i, j) ij ij 1 j a i1 a ij a i a 1 a j a ij 1) i +j 1,j 1,j +1 a i1,1 a i1,j 1 a i1,j +1 a i1, a i +1,1 a i +1.j 1 a i +1,j +1 a i +1, a 1 a,j 1 a,j +1 a, ij i j 1,j 1,j +1 ij 1) i +j a

More information

A 2008 10 (2010 4 ) 1 1 1.1................................. 1 1.2..................................... 1 1.3............................ 3 1.3.1............................. 3 1.3.2..................................

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

Ver.2.2 20.07.2 3 200 6 2 4 ) 2) 3) 4) 5) (S45 9 ) ( 4) III 6) 7) 8) 9) ) 2) 3) 4) BASIC 5) 6) 7) 8) 9) ..2 3.2. 3.2.2 4.2.3 5.2.4 6.3 8.3. 8.3.2 8.3.3 9.4 2.5 3.6 5 2.6. 5.6.2 6.6.3 9.6.4 20.6.5 2.6.6

More information

2 p T, Q

2 p T, Q 270 C, 6000 C, 2 p T, Q p: : p = N/ m 2 N/ m 2 Pa : pdv p S F Q 1 g 1 1 g 1 14.5 C 15.5 1 1 cal = 4.1855 J du = Q pdv U ( ) Q pdv 2 : z = f(x, y). z = f(x, y) (x 0, y 0 ) y y = y 0 z = f(x, y 0 ) x x =

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ A S1-20 http://www2.mth.kyushu-u.c.jp/ hr/lectures/lectures-j.html 1 1 1.1 ϵ-n 1 ϵ-n lim n n = α n n α 2 lim n = 0 1 n k n n k=1 0 1.1.7 ϵ-n 1.1.1 n α n n α lim n n = α ϵ N(ϵ) n > N(ϵ) n α < ϵ (1.1.1)

More information

12 2 E ds = 1 ρdv ε 1 µ D D S S D B d S = 36 E d B l = S d S B d l = S ε E + J d S 4 4 div E = 1 ε ρ div B = rot E = B 1 rot µ E B = ε + J 37 3.2 3.2.

12 2 E ds = 1 ρdv ε 1 µ D D S S D B d S = 36 E d B l = S d S B d l = S ε E + J d S 4 4 div E = 1 ε ρ div B = rot E = B 1 rot µ E B = ε + J 37 3.2 3.2. 213 12 1 21 5 524 3-5465-74 nkiyono@mail.ecc.u-tokyo.ac.jp http://lecture.ecc.u-tokyo.ac.jp/~nkiyono/index.html 3 2 1 3.1 ρp, t EP, t BP, t JP, t 35 P t xyz xyz t 4 ε µ D D S S 35 D H D = ε E B = µ H E

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

2014 S hara/lectures/lectures-j.html r 1 S phone: , 14 S1-1+13 http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r 1 S1-1+13 14.4.11. 19 phone: 9-8-4441, e-mail: hara@math.kyushu-u.ac.jp Office hours: 1 4/11 web download. I. 1. ϵ-δ 1. 3.1, 3..

More information

II Time-stamp: <05/09/30 17:14:06 waki> ii

II Time-stamp: <05/09/30 17:14:06 waki> ii II waki@cc.hirosaki-u.ac.jp 18 1 30 II Time-stamp: ii 1 1 1.1.................................................. 1 1.2................................................... 3 1.3..................................................

More information

Chap11.dvi

Chap11.dvi . () x 3 + dx () (x )(x ) dx + sin x sin x( + cos x) dx () x 3 3 x + + 3 x + 3 x x + x 3 + dx 3 x + dx 6 x x x + dx + 3 log x + 6 log x x + + 3 rctn ( ) dx x + 3 4 ( x 3 ) + C x () t x t tn x dx x. t x

More information

04.dvi

04.dvi 22 I 4-4 ( ) 4, [,b] 4 [,b] R, x =, x n = b, x i < x i+ n + = {x,,x n } [,b], = mx{ x i+ x i } 2 [,b] = {x,,x n }, ξ = {ξ,,ξ n }, x i ξ i x i, [,b] f: S,ξ (f) S,ξ (f) = n i= f(ξ i )(x i x i ) 3 [,b] f:,

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E B 8.9.4, : : MIT I,II A.P. E.F.,, 993 I,,, 999, 7 I,II, 95 A A........................... A........................... 3.3 A.............................. 4.4....................................... 5 6..............................

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

6.1 (P (P (P (P (P (P (, P (, P.101

6.1 (P (P (P (P (P (P (, P (, P.101 (008 0 3 7 ( ( ( 00 1 (P.3 1 1.1 (P.3.................. 1 1. (P.4............... 1 (P.15.1 (P.15................. (P.18............3 (P.17......... 3.4 (P................ 4 3 (P.7 4 3.1 ( P.7...........

More information

1

1 1 1 7 1.1.................................. 11 2 13 2.1............................ 13 2.2............................ 17 2.3.................................. 19 3 21 3.1.............................

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

(, ) (, ) S = 2 = [, ] ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) ( ) (

(, ) (, ) S = 2 = [, ] ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) ( ) ( B 4 4 4 52 4/ 9/ 3/3 6 9.. y = x 2 x x = (, ) (, ) S = 2 = 2 4 4 [, ] 4 4 4 ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, 4 4 4 4 4 k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) 2 2 + ( ) 3 2 + ( 4 4 4 4 4 4 4 4 4 ( (

More information

untitled

untitled B2 3 2005 (10:30 12:00) 201 2005/10/04 10/04 10/11 9, 15 10/18 10/25 11/01 17 20 11/08 11/15 22 11/22 11/29 ( ) 12/06 12/13 L p L p Hölder 12/20 1/10 1/17 ( ) URL: http://www.math.tohoku.ac.jp/ hattori/hattori.htm

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1 1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +

More information

5 36 5................................................... 36 5................................................... 36 5.3..............................

5 36 5................................................... 36 5................................................... 36 5.3.............................. 9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

1. x { e 1,..., e n } x = x1 e1 + + x n en = (x 1,..., x n ) X, Y [X, Y ] Intrinsic ( ) Intrinsic M m P M C P P M P M v 3 v : C P R 1

1. x { e 1,..., e n } x = x1 e1 + + x n en = (x 1,..., x n ) X, Y [X, Y ] Intrinsic ( ) Intrinsic M m P M C P P M P M v 3 v : C P R 1 1. x { e 1,..., e n } x = x1 e1 + + x n en = (x 1,..., x n ) X, Y [X, Y ] Intrinsic ( ) Intrinsic M m P M C P P M P M v 3 v : C P R 1 f, g C P, λ R (1) v(f + g) = v(f) + v(g) (2) v(λf) = λv(f) (3) v(fg)

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

x (0, 6, N x 2 (4 + 2(4 + 3 < 6 2 3, a 2 + a 2+ > 0. x (0, 6 si x > 0. (2 cos [0, 6] (0, 6 (cos si < 0. ( 5.4.6 (2 (3 cos 0, cos 3 < 0. cos 0 cos cos

x (0, 6, N x 2 (4 + 2(4 + 3 < 6 2 3, a 2 + a 2+ > 0. x (0, 6 si x > 0. (2 cos [0, 6] (0, 6 (cos si < 0. ( 5.4.6 (2 (3 cos 0, cos 3 < 0. cos 0 cos cos 6 II 3 6. π 3.459... ( /( π 33 π 00 π 34 6.. ( (a cos π 2 0 π (0, 2 3 π (b z C, m, Z ( ( cos z + π 2 (, si z + π 2 (cos z, si z, 4m, ( si z, cos z, 4m +, (cos z, si z, 4m + 2, (si z, cos z, 4m + 3. (6.

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

2. 2 I,II,III) 2 x expx) = lim + x 3) ) expx) e x 3) x. ) {a } a a 2 a 3...) a b b {a } α : lim a = α b) ) [] 2 ) f x) = + x ) 4) x > 0 {f x)} x > 0,

2. 2 I,II,III) 2 x expx) = lim + x 3) ) expx) e x 3) x. ) {a } a a 2 a 3...) a b b {a } α : lim a = α b) ) [] 2 ) f x) = + x ) 4) x > 0 {f x)} x > 0, . 207 02 02 a x x ) a x x a x x a x x ) a x x [] 3 3 sup) if) [3] 3 [4] 5.4 ) e x e x = lim + x ) ) e x e x log x = log e x) a > 0) x a x = e x log a 2) 2. 2 I,II,III) 2 x expx) = lim + x 3) ) expx) e

More information

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) (

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) ( + + 3 + 4 +... π 6, ( ) 3 + 5 7 +... π 4, ( ). ( 3 + ( 5) + 7 + ) ( 9 ( ( + 3) 5 + ) ( 7 + 9 + + 3 ) +... log( + ), ) +... π. ) ( 3 + 5 e x dx π.......................................................................

More information

main.dvi

main.dvi 9 5.4.3 9 49 5 9 9. 9.. z (z) = e t t z dt (9.) z z = x> (x +)= e t t x dt = e t t x e t t x dt = x(x) (9.) t= +x x n () = (n +) =!= e t dt = (9.3) z

More information

body.dvi

body.dvi ..1 f(x) n = 1 b n = 1 f f(x) cos nx dx, n =, 1,,... f(x) sin nx dx, n =1,, 3,... f(x) = + ( n cos nx + b n sin nx) n=1 1 1 5 1.1........................... 5 1.......................... 14 1.3...........................

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

http://know-star.com/ 3 1 7 1.1................................. 7 1.2................................ 8 1.3 x n.................................. 8 1.4 e x.................................. 10 1.5 sin

More information

b3e2003.dvi

b3e2003.dvi 15 II 5 5.1 (1) p, q p = (x + 2y, xy, 1), q = (x 2 + 3y 2, xyz, ) (i) p rotq (ii) p gradq D (2) a, b rot(a b) div [11, p.75] (3) (i) f f grad f = 1 2 grad( f 2) (ii) f f gradf 1 2 grad ( f 2) rotf 5.2

More information

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x 1 1.1 4n 2 x, x 1 2n f n (x) = 4n 2 ( 1 x), 1 x 1 n 2n n, 1 x n n 1 1 f n (x)dx = 1, n = 1, 2,.. 1 lim 1 lim 1 f n (x)dx = 1 lim f n(x) = ( lim f n (x))dx = f n (x)dx 1 ( lim f n (x))dx d dx ( lim f d

More information

(u(x)v(x)) = u (x)v(x) + u(x)v (x) ( ) u(x) = u (x)v(x) u(x)v (x) v(x) v(x) 2 y = g(t), t = f(x) y = g(f(x)) dy dx dy dx = dy dt dt dx., y, f, g y = f (g(x))g (x). ( (f(g(x)). ). [ ] y = e ax+b (a, b )

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

O f(x) x = A = lim h f( + h) f() h A (differentil coefficient) f f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) * t (v

O f(x) x = A = lim h f( + h) f() h A (differentil coefficient) f f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) * t (v I 2 7 4 2 2 6 3 8 4 5 26 6 32 7 47 8 52 A 62 B 66 big O f(x) x = A = lim h f( + h) f() h A (differentil coefficient) f f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) * t

More information

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト 名古屋工業大の数学 年 ~5 年 大学入試数学動画解説サイト http://mathroom.jugem.jp/ 68 i 4 3 III III 3 5 3 ii 5 6 45 99 5 4 3. () r \= S n = r + r + 3r 3 + + nr n () x > f n (x) = e x + e x + 3e 3x + + ne nx f(x) = lim f n(x) lim

More information

C:/KENAR/0p1.dvi

C:/KENAR/0p1.dvi 2{3. 53 2{3 [ ] 4 2 1 2 10,15 m 10,10 m 2 2 54 2 III 1{I U 2.4 U r (2.16 F U F =, du dt du dr > 0 du dr < 0 O r 0 r 2.4: 1 m =1:00 10 kg 1:20 10 kgf 8:0 kgf g =9:8 m=s 2 (a) x N mg 2.5: N 2{3. 55 (b) x

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 電気電子数学入門 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/073471 このサンプルページの内容は, 初版 1 刷発行当時のものです. i 14 (tool) [ ] IT ( ) PC (EXCEL) HP() 1 1 4 15 3 010 9 ii 1... 1 1.1 1 1.

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b) 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h 0 f(a + h, b) f(a, b) h............................................................... ( ) f(x, y) (a, b) x A (a, b) x

More information

III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1

III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1 III http://www2.mth.kyushu-u.c.jp/~hr/lectures/lectures-j.html 1 1 1.1 ϵ-n ϵ-n lim n = α n n α 1 lim n = 0 1 n k n k=1 0 1.1.7 ϵ-n 1.1.1 n α n n α lim n = α ϵ Nϵ n > Nϵ n α < ϵ 1.1.1 ϵ n > Nϵ n α < ϵ 1.1.2

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

(1) (2) (3) (4) 1

(1) (2) (3) (4) 1 8 3 4 3.................................... 3........................ 6.3 B [, ].......................... 8.4........................... 9........................................... 9.................................

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i [ ] (2016 3Q N) a 11 a 1n m n A A = a m1 a mn A a 1 A A = a n (1) A (a i a j, i j ) (2) A (a i ca i, c 0, i ) (3) A (a i a i + ca j, j i, i ) A 1 A 11 0 A 12 0 0 A 1k 0 1 A 22 0 0 A 2k 0 1 0 A 3k 1 A rk

More information

3 3 i

3 3 i 00D8102021I 2004 3 3 3 i 1 ------------------------------------------------------------------------------------------------1 2 ---------------------------------------------------------------------------------------2

More information

untitled

untitled 3,,, 2 3.1 3.1.1,, A4 1mm 10 1, 21.06cm, 21.06cm?, 10 1,,,, i),, ),, ),, x best ± δx 1) ii), x best ), δx, e,, e =1.602176462 ± 0.000000063) 10 19 [C] 2) i) ii), 1) x best δx

More information

2 2 L 5 2. L L L L k.....

2 2 L 5 2. L L L L k..... L 528 206 2 9 2 2 L 5 2. L........................... 5 2.2 L................................... 7 2............................... 9. L..................2 L k........................ 2 4 I 5 4. I...................................

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information