,+2,+w3/~+ w +( wwwww,( wwwwwww,+2,++w+./~+/ w +(,( wwww

Size: px
Start display at page:

Download ",+2,+w3/~+ w +( wwwww,( wwwwwww,+2,++w+./~+/ w +(,( wwww"

Transcription

1 ISSN

2 ,+2,+w3/~+ w +( wwwww,( wwwwwww,+2,++w+./~+/ w +(,( wwww

3 ± wkék,/ww w w w éy yx xyé xxé x y x xx xx ±~é~y wx,/y x y w zxzzz y w y yx- y w y x y xz ±y wx±yx xx± yx y wx., y y± ± y± y wxxz x xx x x zx x ± y

4 ww xé x z yx -0/± z±y x y ± yx± ± y xx x± y xz ±,/ y x±w ~ é~yx x x±xzz y y

5 2/.2,w +,+,+

6 w wc-101 w w +( y±y ±y z y,( +y y±y -( y,v-v. y.xxy ±y ±y

7

8 LI A5-21 : A5 4I8D5 AC 2 2 4I8D5, , , +14,

9 ,++!! I ! 29A !!!! :C3 +, D L!!! C3!

10 ww~ w w wwwwwww ww/&z w y wwwwwww wwwwwww±y w823 wwwwwwwwx wwwwwwwww ±y wwwwwwwwww3/1,,++3 wwwwwwwy wwwwwww x wwwwwwww±yw wwwwwwww wwwwwww wwwwwww wwwwwww wwwwwww wwwwwww w w w w w w

11 w+&wwwwwwwww w+& wwwwwwwwwwwww w+& wwx w±y ±y y x y ± x,&x 1&x+&±y x y xy,+1+,+/~,+2,,y x éx ± y x x y

12 xz+ y +,+2./x,,++2-y,+1x x ±y y x x. y xy ±y x±y x x y x±y xz y x éx± z y xy ww ±y

13 5 x ±y xy x ±y x±y F9 xf9y MN7+-00r102x.4- y +03 x± ±y F9xEIM[VgcxM[VgcC[UbcXdFgWbF[d,1z,+y x±y xx xf9yx y M[VgcCIzCIFutCIzCIFu tj[wcdwghsut9wdebi y x z xx y xki8y9:h y KI8xxF9 x y

14 FgWbF[d y++ KI8y xf9 y xf9xy x+±y 1x-y+y y xy F9x y y x±y x±y éyy y ±y y - x+y xy 1x-y x±y

15 w,+www+.4.~+04+ ~ é~ ww w ww w

16 0 ~ é~ ww wwz w w w w,w,w +-wz,+w,.www,1ww z x yx yxzx xxxx xy z x EJ.22.3x /+ EJxEJ w x,.x xx± xéyx x x y w x EJx xx xx±y w x x y

17 w,++www+-4+~+.4. ± ww w ww z

18 0 ± ww w xx z x x z yzx y x y x x éx yx +/y r ±xyda yz y ~ ±y± yz ±yz yx x±z y xx xyx±y

19 ,++ww+.~+,4+ www / ww DFEw wx y x x y ±x x x zy éx y w ww DFEw

20 ,+ +4.~+,4+ +-4~+-4- x ~~ wwwww ww wwwwwwww ww wwwww www,++ wwwww 34~+4- wwww

21 0 x ~~ 1 1 ww w +3xxy xx y,3xy,+/x ±é ±x x yxxzz x y xx x z éyx zy +, +2,1 ~ 1 1 w w z w EJ ± y 7:Bzy x y éx x9efcx xgeb x y y

22 0 1 1 w w w 2-xx.x y +,- xy,2.x x,3. y x- x y,2..y x ±yxx x x yx y C;CE

23 w~7?79j79j ~ w ww w~~ w w~ ~ ww ww w ww w

24 ,+w+,4,~+,4/ w,++w+,4-~+-4 w w z

25 ,+w+~+0,++w+~+-- z zz,+w+~+--,++w+~+-- 9SXsUaS[ +--+,+z++ z /.0,+ z z -+,3,+z++ z

26 , A C : D LI C I , IL A AD9: C

27 23 w z ++ w w~~ ww 34-~+4- www +, +- www www +. w~~ www,w ww 34-~+4-,+ www,, CJ:BF w~~ www,- z www,. w~ ~ www,/ 7:E9 www,0 w~ ~ www

28 7:Bz?7:Bw ww +4.~ & www -, ~~ www -- w~é~ www -. v www -/ 7:B www -0 www 23 ww +4.~ x w~ ~ w~~ & w~ ~ www,w -w9++

29 23,w ww +-4+~+.4+ /+ www /, /- /. // w www w~m?i9zm7?ix87:i x~ www xf;f www www -w9++ ww +-4+~ , w~ ~ w~,+ ~ www www 0- LVJC97EJ www

30 23 7:Bz?7:Bw ww 34~+4 1+ x www 1,?7:B www 1- www 1. www 1/ w~~ www 10 www ww 34~+4 2+ w~ ~ ww 2, w~~ www 2- ~ ~ www 2. ~±é~ www 2/ ~ ~ www 20 ww,w -w9++

31 23 zw+ 34-~+4- ~~ + + é w I(I x zx y w,20~+, x, /yx z y xcci; y w CCI; ± x y,,(01 x,/(+1 x CCI; y y w I(I x CCI; éy x z y xx y x z x x y xi(i y AWigbVcI(Iww

32 23 zw+, 34-~+4- w, ww + w, é w z zz ±é xy w x ±x ±x xzzz éx ±,+0+,y w FJzEJzIJzCIMzzz zzz x+ yx ± yé± x x y x x x x y w éxzzz zz x x ± yx x x ±x y AWigbVcwwww

33 23 zw+- 34-~+4- + w + w + w + w + w é x x QRy,+ y yx xej y w xxx xxxx xfjxejxij y w ++3x EJ +2 y.1x.x 02y w x xx x EJ y xxxxx x x x xyx y w x xgeb y x xgeb z y x yxfj xx EJ7:B x y AWigbVcwwww

34 23 zw+. 34-~+4- ~~ + + é w x,+0- x x x y x y x w, /, é:ih,/ x-,?c x y x?c y x w x yx x x y x x± x x y xé w x x x ± y x y AWigbVcwwww

35 23 w,+ 34-~ é w xx x y w 2y, 7:B y x y y w?c22xcci;,+x;g/:(.-. x y xceeij ±H x y w y éy y EJ y x x y w,?c+,.xcci;,0x ;G/:(1027:BxGEB yceeij 7 x y w x é y y AWigbVcwwww

36 23 w,, 34-~+4- CJ:BF ~~ + + é w x ±7x w CJ:BF yx éy x xz y w 70x y ynox y x ±y?7:b y xy +x7+x y xx w x yx y CCJw -~. 7?w +2?I?w +-x y x+y x+y EJ y -y w x CCJw.~/x7?w - x?i?w -x xy1x +y0 xy +x y w 7 CJ:BF xz y AWigbVcwwww

37 23 w,- 34-~+4- z + w + w + ww + é w yx x y x x9efc éx y w +2 yx y, y w x7:b?c++0y DHI + ~,)+ DHI/)+ y9efc /z+z+ y z w z éx9efcy x z± xz y w?c++3ydhi+ ~,)+y y x9efc /z-z-y zé w 9EFC x x y GEBéé x y x9efcx zx GEB y AWigbVcww9EFCww

38 w,. 34-~+4- ~ ~ + + AWigbVcwwww 23 é w9xx, JZ+,vB,y ±( x x é ( w0x,( y x (?C43-x8?4./x7C:42y wx x x± x x ( x ( x x ( yx ± x ( ( w?c4++2w8?42w7c:4-w x x y wx éx7:b± ( 8?7:Iz ( x (

39 23 w,/ 34-~+4-7:E9 + + é &C79 &±( ±&1( & 7:E9 & (,(7:B( 4(4(?C)2)-/&CCI;,0& +-&7:E9// && z& ( & && ( & &é ( ( 7:E9t (u ( & &(& & ( &7:E9. (& ( & & (& & ( AWigbVc7:E9wwww

40 23 w,0 34-~+4- ~ ~ + w + w + é w xx x xy x é yxy w 7x2x/y yxx x yx± x y zz w l m x yzx yx x y w x ± yx ± yx x y w x éxl mx yx y x x y x yx y AWigbVcwwww

41 23 7:Bz?7:Bww-+ +4.~++4. & + + é wb/& z (& & ( & ( & ( w 2(.( ( (9Jé ( w CCJ-F&.&-( & (DHIz1)+( /)+(CCI;,+&?C1/( z w &&(- ( Wh&Wh(& & (.&&& ( w CCJ.()+(z,)+(?C21( &( w & & ((& ( &± ±& (& & & & ( AWigbVcwwww

42 23 7:Bz?7:Bww-, +4.~++4. w w~~ + + é w&f: &7:B ( & ( && é( w0 w4f:oszb& zw 47:B( &(4&w 4 1~+0 IJ;43, 88I4/+ w KF:HI421 z±&z (C7Izz,.?C.1,1,& CCI;4,+ :I+/4+)+/ 4+0)., z & (7:B & (& é( é & (& é& Dc( & & ( w & é& ( & 7:B ( AWigbVcwwww

43 23 7:Bz?7:Bww-- +4.~++4. ~é~ + + é w xx zy x ééy w 0yy y 44 4± )+~+-,1~,3 w 8b(cdSYWw HEC w IJ;.+)1101)22w C74 /+0-CCI;+2,2w JCJ7-21,,3 8//,w xx x y x xy x éy xz ± x yx ± y z w xzz x x y x y x éx yx éy w x x xx y AWigbVcwwww

44 23 7:Bz?7:Bww-. +4.~++4. v + + é w & FDI4aWb[aZWbS] WbfW cd[e]sd[ (& FDI JEJ4dScb[WdWVdbS[[Y &v é &(& & ( w 1&(CH? é&,2 ( tu& (+/0 ( w,.& &7:Bz?7:B&- ~.&,( FDI ( 9C FSU[X[U Ieaa]i ( ;IFKH;( & +&+cwu& & z&( w (bsvw2+&12&ij;0-+ &C7B47EK(13+(1&GEC(0. +(1&I?7I++&+,& 9C ( & ( w FDIJEJ &,+& bsvw&ij;& é(& v v & & ( AWigbVcwwww

45 23 7:Bz?7:Bww-/ +4.~++4. 7:B + w + w + w + w + é x xh: é±7:b éy 3-x é9k y +.2Ux -2Yx8C? +1(-/y x y,ejx 7:By 7]T(,(1y -x -.Yx8C?+/(/,y /(2Yx,/(U x éé y:ih,-yej + +,US] x0us] xh:x Dc x yh: EJ +/US] y x y, x,us]x7:b x y. x-2x8c? +1(-/x0(3Yx,.(U y7:bxx x y & xh: x x yx x 7:B y y AWigbVcwwww7:Bww

46 23 7:Bz?7:Bww-0 +4.~ é w & & (7:B± é& &EJ (& ( w 1(&& éy8hi4 &IFJ74v( ±v (& & (IBJ74 +)+( 4 ( xej w & && (HdZ[ & y& & v( ( ( & w y (/ & ( w & ( AWigbVcww7:Bww

47 23 w.+ +4.~ w + w + w + w + w + + w x x é yx é yxy w 1y yy yy yy+ y-y w :IH-y CCJ-~.y-,y.,y.y y BB8EJ yjk-0y88i-.y?c2yy w x y zx x.y w y y yy JK-y88I.y7:Bx x y w x x x éyx x yx x zéy AWigbVcwwww

48 w., +4.~ AWigbVcwwww 23 é wxx 0x y éxyx x y w0 yop xyysbvw xp%1 y +,p0py yp%+2 x yy xy x y z wx éx y, xx éy xx y y x x y wx ±x x y x7:bz?7:b x ± y

49 23 w.- +4.~ é w & (± &7:B(?7:B & &( w 2(( (& (( w v& & ( & & (:IH4,-(IJ;42+2+(?C43 ( w w && & & ( v w v &v( v& vv & &7:B ( & & (& & ( w & ( & & (& & ( AWigbVcwwww

50 23 w.. +4.~++4. x ~ ~ + + é w x y x z x y w 7x2x 48eb?VWh,3(+w,3(+w w7:b47,:wsv4 w8suybev4z zxx,4+)+, x zy +)+2y+)-+z,),+ y-),+ é w CJ w w 0(/ w +(,w w :I H4,,w8?/ww ~w w x y x y x x 1Ux yx x y x8?2/y y xy.u y x y w7x y x x y7 x y AWigbVcwwww

51 23 w./ +4.~++4. ~~ + w + ww + é w x y x IDI x ±y y w y-0y PSU]][4908,x928y7I?748y x 7:Bxy x x éyx x xy w x yx x x y w xé x y éx x± yx x é ±y w xx y x IDIx x yy IDI x xx y AWigbVcwwww

52 23 w.0 +4.~++4. & ~ ~ + ww + é w x x é ±éy ca][dx xé yx y /xx( yx 1U yzx -z.z/ xx yx- y w - é xy- HECy. HECx ViS[U ca][dx ca][dy+ x yxj7cz 0.(.w 0w L7I,w w,(,ywsv,1+ wge[u:scz),(./w +yw w - y x+,~- x x ca][dx ca][dx y ca][dx yx:?f éxca][d yx y y AWigbVcwwca][dww

53 23 w/+ +-4+~ w + w + w + + é w x y xx éyx ± xy w0y7i:y x 7::y xa?:i 0+x x?g.3y xx w xy x x EJ x y yejx x y w y EJ yx x EJy xx xej yxx y w EJx x yx éx y AWigbVcwwww

54 23 w/, +-4+~+.4+ +, w + w + w, + w, é w x bsyw X d[5 HEC yx x é x ±xy xx y w x/x xxc9ibwfw]lx +yx x/ / x+ ± +y/1cx x xxxx HECyx++x+ -xé y w x x HEC éyx xx HEC éy w x yx x y xx y AWigbVcwwww

55 23 w/- +-4+~+.4+ w~m?i9zm7?ix87:i x~ + w, w - + w,w - w y ±x y w ~ M?I9zM7?Ix 87:Iy zzx 87:I M?I9zM7?I y w 87:I M?I9zM7?I?G&?Gx?Gxxx y± w 87:I xm?i9z M7?Ilmy w 87:IM?I9z M7?Iz x y xy z éxm?i9zm7?i x x y87:i M?I9 zm7?i lm ylm x ylm yx x ±x y AWigbVcwwww

56 23 w/. +-4+~+.4+ xf;f + w + w + w + w +w + + w xx x x yx x y w ~x x xx x x y ( (x ((x ((y xy w xx xy ybww IJ7JfWbc[+-(y w y x y w x y x x x y ±x ± x y yxx x±y AWigbVcwwww

57 23 w// +-4+~ w, w w - + wdfe, w - é w & ( w &.~0 / w ( FSbWd[Y IdbWcc?VWh IZbd bfi?)i& IdbWYdZ :[XX[Ue]d[Wc GeWcd[S[bWI:G & I9? & I:G IaWSbS (& I:G +0& CSMZ[dWi ( I:G& & ( w++2( I:GFI?)I& & I9? x y& & FI?)I&I9? & (& & I:G FI?)I I9? ± ( w & & & & ( & 7877aa][WV 8WZSf[b 7S]ic[c & ( AWigbVcwwww

58 23 w ~+.4+ ~ ~ + w, w - w. w / w 0 w + w, w - w. w / 0 é w ±x 000y x,yx y w y x yx,+yx y w,/1x++3 y ±x y /x, y x x y x y é é y,. x+3 x3 x y é y AWigbVcwwww

59 23 w0, +-4+~+.4+ ~,+ ~ + w, w - w. w / w 0 + w, w - w. w / 0 w -~1 ( ±(x,+,+0 ( w,+0+ x,/1 ( w,+ x /2(2/(,x /3(,20(x /0(+3.(3 (.+(0./(+ (,+,+0 x ±.-(,xx..(1( w,+ ±x ( x (,+ (,+/ ± ±( ± ( AWigbVcwwww

60 23 w ~+.4+ LVJC97EJ + + é w &LS VeJ[dCVW]X9bWSd[fW 7T[][diLVJC97& y& y w 4w 4& w 4,w 4w 4 +0Uw4/Yw 4&y y wlvjc97.y & & é&& &LVJ C97 EJ,-y & & &+& &&& y & ±& y&&&&y w & & &EJH±& &LVJ C97 y& ±& &6 & y w LVJ C97 && & é& & y AWigbVcwwww

61 23 7:Bz?7:Bww1+ 34~+4 x + + é wtbsuzsdzwbsdecv[cwscw 87:y xx x ±x x yx x éx x y w 1xyN87:y +2y+3 y8becdbcdsyww xxy?c1-yz yzy y xx w +2 x ±x x yx x x x x y w x x y w x x yx yx x é+ y ± é y AWigbVcwwww

62 23 7:Bz?7:Bww1, 34~+4?7:B + + é w y 7:B x?7:b éy x y w/y y, y x y y y± yy w.y~ y?c+1 xy7?0y w 7:B y y é é y7:b éxx yx +y y éx y éx + y x x x éy x x + y w x y x+?7:b y AWigbVcwwww?7:B

63 23 7:Bz?7:Bww1-34~ é w x y x y x y w 2y yx± yhec) /p),/pxcjx y?c 1/x /x/y xx w y x y x x 7:Bxy +HEC y, x x yhec+/px y w x y xxx ± y x y y ± x x y AWigbVcwwww

64 23 7:Bz?7:Bww1. 34~+4 + w + w + w + + é w xj;7 x x é yx éx y w 2yJ;7x y,x7:b y x y w+7:b é y x é x y+x x y xéx yx x éx zx y x x yx y-x - y w x x x y AWigbVcwwwwww

65 23 7:Bz?7:Bww1/ 34~+4 ~~ + + é w y x y w 2w xw 4x w +x w w4v-)/wcci;4++w4 y y y y xx w z yx yx x y x y w4.)/cci;4+1w4 /3 yy x y w x y z yx y AWigbVcwwww

66 23 7:Bz?7:Bww10 34~+4 + w + w + w + w + + é wf:,- x y éx y w1xf:wzoszby y,y y wcci;,0wxxwb,wij; /3x/2w yx./y y yy./y EJ wéx x y y wx y éx yx x é y CCI;,3wXXWb+wIJ;1+ x00w -0y ±x y-y yy wx x éx y F: ±x y AWigbVcwwww

67 23 w2+ 34~+4 ~ ~ + + é w x y x yx y w 2x+yNO xy y ±x7:bx?7:b y é x y x yx?c3 x:ih,.x.x 8y y w FJxEJx x7:by x y+ x y é x x y w 7:Bx?7:Bx y éx y w x y x x y AWigbVcwwww

68 23 w2, 34~+4 ~~ + + é w x±z xy x éy / w 4w 4xF9 x4 x 97Jx y MCIHx yif7 yww é w y w z x y éx y w x y x y/m+ x x y x,, y w 97JzMCIH yif7yw w x yx z x y x y AWigbVcwwww

69 23 w2-34~+4 ~ ~ + + AWigbVcwwww é w y 7:B?7:B x x?7:b y& y w2y yyyy y w8b(cy yz yyyy /3 w&y y y && & y & yx y x x x y w x xx yx y xx?7:b x y

70 23 w2. 34~+4 ~±é~ + w + w + é w x x éyx y w 7xx2x,( x x x:i H+0)-y & x y7 x y w x y x é±y y 9C é& yx 7 y w é± x y& y& ±y& 7x y w 7 & y& x y & 7é & 7 y AWigbVcwwww

71 23 w2/ 34~+4 ~ ~ + + é wxv x7:b yx x7:bé yx y w 7x2y yx vy xvy yx y w 8HI4xCCI;4 +-x784xjcj7v84y x8(?4-/x?c4/+y,x y w x x y yx x éyxv yx x yx y w CCI;4+/x7841x8(?4/x?C4 0.y y +yx y wxv x yx éx y x y AWigbVcwwww

72 23 w20 34~+4 + w + w, + w, é w y& y w 0y- y&± & y 8HI&& &7BByJCJ7,.0 &JCJ82+,y z w y & & ± y z w & z & y& & & y z w 10& &y &2. y3+& y -y y JCJ7+.2&JCJ81+1y w y& yy & y & & & y & y AWigbVcwwww

73 w w w w w w w w w

74 w yy +0x éx x± y lcz[[mx éxy,+1+,,,/ww ww 2/.0-w-+/ J;Bw3/1,/++/ 7Nw3/1,/+//+

75

40 6 y mx x, y 0, 0 x 0. x,y 0,0 y x + y x 0 mx x + mx m + m m 7 sin y x, x x sin y x x. x sin y x,y 0,0 x 0. 8 x r cos θ y r sin θ x, y 0, 0, r 0. x,

40 6 y mx x, y 0, 0 x 0. x,y 0,0 y x + y x 0 mx x + mx m + m m 7 sin y x, x x sin y x x. x sin y x,y 0,0 x 0. 8 x r cos θ y r sin θ x, y 0, 0, r 0. x, 9.. x + y + 0. x,y, x,y, x r cos θ y r sin θ xy x y x,y 0,0 4. x, y 0, 0, r 0. xy x + y r 0 r cos θ sin θ r cos θ sin θ θ 4 y mx x, y 0, 0 x 0. x,y 0,0 x x + y x 0 x x + mx + m m x r cos θ 5 x, y 0, 0,

More information

A_chapter3.dvi

A_chapter3.dvi : a b c d 2: x x y y 3: x y w 3.. 3.2 2. 3.3 3. 3.4 (x, y,, w) = (,,, )xy w (,,, )xȳ w (,,, ) xy w (,,, )xy w (,,, )xȳ w (,,, ) xy w (,,, )xy w (,,, ) xȳw (,,, )xȳw (,,, ) xyw, F F = xy w x w xy w xy w

More information

1

1 1 - 2 - ... - 4 -... - 4 -... - 4 -... - 4 -... - 5 -... - 5 -... - 8 -... - 9 -... - 9 -... - 9 -... - 9 -... - 9 -... - 9 -... - 10 -... - 10 -... - 10 -... - 10 -... - 10 -... - 11 -... - 11 -... -

More information

add1 2 β β - conversion (λx.x + 1(2 β x + 1 x λ f(x, y = 2 x + y 2 λ(x, y.2 x + y 1 λy.2 x + y λx.(λy.2 x + y x λy.2 x + y EXAMPLE (λ(x, y.2

add1 2 β β - conversion (λx.x + 1(2 β x + 1 x λ f(x, y = 2 x + y 2 λ(x, y.2 x + y 1 λy.2 x + y λx.(λy.2 x + y x λy.2 x + y EXAMPLE (λ(x, y.2 output: 2011,11,10 2.1 λ λ β λ λ - abstraction λ λ - binding 1 add1 + add1(x = x + 1 add1 λx.x + 1 x + 1 add1 function application 2 add1 add1(2 g.yamadatakahiro@gmail.com 1 add1 2 β β - conversion (λx.x

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

II 1 3 2 5 3 7 4 8 5 11 6 13 7 16 8 18 2 1 1. x 2 + xy x y (1 lim (x,y (1,1 x 1 x 3 + y 3 (2 lim (x,y (, x 2 + y 2 x 2 (3 lim (x,y (, x 2 + y 2 xy (4 lim (x,y (, x 2 + y 2 x y (5 lim (x,y (, x + y x 3y

More information

73

73 73 74 ( u w + bw) d = Ɣ t tw dɣ u = N u + N u + N 3 u 3 + N 4 u 4 + [K ] {u = {F 75 u δu L σ (L) σ dx σ + dσ x δu b δu + d(δu) ALW W = L b δu dv + Aσ (L)δu(L) δu = (= ) W = A L b δu dx + Aσ (L)δu(L) Aσ

More information

III No (i) (ii) (iii) (iv) (v) (vi) x 2 3xy + 2 lim. (x,y) (1,0) x 2 + y 2 lim (x,y) (0,0) lim (x,y) (0,0) lim (x,y) (0,0) 5x 2 y x 2 + y 2. xy x2 + y

III No (i) (ii) (iii) (iv) (v) (vi) x 2 3xy + 2 lim. (x,y) (1,0) x 2 + y 2 lim (x,y) (0,0) lim (x,y) (0,0) lim (x,y) (0,0) 5x 2 y x 2 + y 2. xy x2 + y III No (i) (ii) (iii) (iv) (v) (vi) x 2 3xy + 2. (x,y) (1,0) x 2 + y 2 5x 2 y x 2 + y 2. xy x2 + y 2. 2x + y 3 x 2 + y 2 + 5. sin(x 2 + y 2 ). x 2 + y 2 sin(x 2 y + xy 2 ). xy (i) (ii) (iii) 2xy x 2 +

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

1.1 1 A

1.1 1 A . A..2 2 2. () (xyz) ( xyz) ( xy z) = (x x)yz ( xy z) = yz ( xy z) = y(z ( x z)) = y((z x)(z z)) = y( x z) (2) (3) M aj (x, y, M aj ( x, ȳ, z)) = xy ȳm aj ( x, ȳ, z) M aj ( x, ȳ, z)x M aj (x, y, z) x =

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

lecture

lecture 149 6 6.1 y(x) x = x =1 1+y (x) 2 dx. y(x) 6.1 ( ). xy y (, ) (b, B) y (b, B) y(x) O B y mg (x, y(x)) y(x) 6.1: g m y(x) v =mv 2 /2 mgy(x) v = 2gy(x) 1+y (x) 2 dx 2gy(x) y() =, y(b) =B b x 15 y 6 6.2 (

More information

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m A f i x i B e e e e 0 e* e e (2.1) e (b) A e = 0 B = 0 (c) (2.1) (d) e

More information

ユニセフ表紙_CS6_三.indd

ユニセフ表紙_CS6_三.indd 16 179 97 101 94 121 70 36 30,552 1,042 100 700 61 32 110 41 15 16 13 35 13 7 3,173 41 1 4,700 77 97 81 47 25 26 24 40 22 14 39,208 952 25 5,290 71 73 x 99 185 9 3 3 3 8 2 1 79 0 d 1 226 167 175 159 133

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

応力とひずみ.ppt

応力とひずみ.ppt in yukawa@numse.nagoya-u.ac.jp 2 3 4 5 x 2 6 Continuum) 7 8 9 F F 10 F L L F L 1 L F L F L F 11 F L F F L F L L L 1 L 2 12 F L F! A A! S! = F S 13 F L L F F n = F " cos# F t = F " sin# S $ = S cos# S S

More information

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0, .1.1 Y K L Y = K 1 3 L 3 L K K (K + ) 1 1 3 L 3 K 3 L 3 K 0 (K + K) 1 3 L 3 K 1 3 L 3 lim K 0 K = L (K + K) 1 3 K 1 3 3 lim K 0 K = 1 3 K 3 L 3 z = f(x, y) x y z x-y-z.1 z = e x +xy y 3 x-y ( ) z 0 f(x,

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b) 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h 0 f(a + h, b) f(a, b) h............................................................... ( ) f(x, y) (a, b) x A (a, b) x

More information

d dt P = d ( ) dv G M vg = F M = F (4.1) dt dt M v G P = M v G F (4.1) d dt H G = M G (4.2) H G M G Z K O I z R R O J x k i O P r! j Y y O -

d dt P = d ( ) dv G M vg = F M = F (4.1) dt dt M v G P = M v G F (4.1) d dt H G = M G (4.2) H G M G Z K O I z R R O J x k i O P r! j Y y O - 44 4 4.1 d P = d dv M v = F M = F 4.1 M v P = M v F 4.1 d H = M 4.2 H M Z K I z R R J x k i P r! j Y y - XY Z I, J, K -xyz i, j, k P R = R + r 4.3 X Fig. 4.1 Fig. 4.1 ω P [ ] d d = + ω 4.4 [ ] 4 45 4.3

More information

Microsoft Word - 99

Microsoft Word - 99 ÿj~ ui ~ 伊万里道路 ~{Êu ÊËu ÎÍÊ Êy y Ê~ Ê~Êu}Ì ÐÑÒdÌÊh ÿj~ ui ~ ~{Êu ÿj~ 497 ui ~ Êu ui ~Êud~{ÊÿÉÉvÍÉ~{ÉÆÍÂu ÊÆÇÍÊÂ~ÊÊÇÇÍÌÊÉÆÍÂ {dêîzééââââîé ÊiÍ MO Êÿj~i ~{ÉÆÍÂ Ë ÊÇÍÎ~ÌÉÇÉÆÍÂÌÉÊ,%6 +% ~{Êÿ Â,%6 ÌÊÉ +% ~{É~{Ê

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

.....Z...^.[.......\..

.....Z...^.[.......\.. 15 10 16 42 55 55 56 60 62 199310 1995 134 10 8 15 1 13 1311 a s d f 141412 2 g h j 376104 3 104102 232 4 5 51 30 53 27 36 6 Y 7 8 9 10 8686 86 11 1310 15 12 Z 13 14 15 16 102193 23 1712 60 27 17 18 Z

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................ 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)

More information

I: 2 : 3 +

I: 2 : 3 + I: 1 I: 2008 I: 2 : 3 + I: 3, 3700. (ISBN4-00-010352-0) H.P.Barendregt, The lambda calculus: its syntax and semantics, Studies in logic and the foundations of mathematics, v.103, North-Holland, 1984. (ISBN

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y 5 5. 2 D xy D (x, y z = f(x, y f D (2 (x, y, z f R 2 5.. z = x 2 y 2 {(x, y; x 2 +y 2 } x 2 +y 2 +z 2 = z 5.2. (x, y R 2 z = x 2 y + 3 (2,,, (, 3,, 3 (,, 5.3 (. (3 ( (a, b, c A : (x, y, z P : (x, y, x

More information

座標変換におけるテンソル成分の変換行列

座標変換におけるテンソル成分の変換行列 座標変換におけるテンソル成分の変換行列 座標変換におけるテンソル成分の変換関係は 次元数によらず階数によって定義される変換行列で整理することができる 位置ベクトルの変換行列を D としてそれを示そう D の行列式を ( = D ) とするとき 鏡映や回映といった pseudo rotation に対しては = -1 である が問題になる基底は 対称操作に含まれる pseudo rotation に依存する

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

êUìÆã§ñ¬ÅEÉtÉFÉãÉ~ã§ñ¬.pdf

êUìÆã§ñ¬ÅEÉtÉFÉãÉ~ã§ñ¬.pdf SFG SFG SFG Y. R. Shen.17 (p. 17) SFG g ω β αβγ = ( e3 h ) (r γ ) ng n ω ω ng + iγ (r α ) gn ' (r β ) n 'n (r ) (r ) α n 'n β gn ' ng n ' ω ω n 'g iγ n'g ω + ω n 'n iγ nn ' (1-1) Harris (Chem. Phys. Lett.,

More information

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( ( (. x y y x f y = f(x y x y = y(x y x y dx = d dx y(x = y (x = f (x y = y(x x ( (differential equation ( + y 2 dx + xy = 0 dx = xy + y 2 2 2 x y 2 F (x, y = xy + y 2 y = y(x x x xy(x = F (x, y(x + y(x 2

More information

ユニセフ表紙_CS6_三.indd

ユニセフ表紙_CS6_三.indd 16 179 97 101 94 121 70 36 30,552 1,042 100 700 61 32 110 41 15 16 13 35 13 7 3,173 41 1 4,700 77 97 81 47 25 26 24 40 22 14 39,208 952 25 5,290 71 73 x 99 185 9 3 3 3 8 2 1 79 0 d 1 226 167 175 159 133

More information

II Time-stamp: <05/09/30 17:14:06 waki> ii

II Time-stamp: <05/09/30 17:14:06 waki> ii II waki@cc.hirosaki-u.ac.jp 18 1 30 II Time-stamp: ii 1 1 1.1.................................................. 1 1.2................................................... 3 1.3..................................................

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

a,, f. a e c a M V N W W c V R MN W e sin V e cos f a b a ba e b W c V e c e F af af F a a c a e be a f a F a b e f F f a b e F e ff a e F a b e e f b e f F F a R b e c e f F M N DD s n s n D s s nd s

More information

II 2006

II 2006 II 006 II Introuction of Geometry II i.............................................................3............................ 5................................................................ 6.3.................................

More information

untitled

untitled 9 9. 9. 9. (FEM, nite element method) 4 9.. (element) (mesh discretization) DT LOK DT M([ ],[ ] )=[ ] DIMENSION M(,NF) DT M/,4,5,,5,,,5,6,,6,,,6,7, 4,8,9, 4,9,5,.../ DIMENSION M(4,NF) DO I=,IF- DO J=,JF

More information

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1 1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +

More information

96 7 1m =2 10 7 N 1A 7.1 7.2 a C (1) I (2) A C I A A a A a A A a C C C 7.2: C A C A = = µ 0 2π (1) A C 7.2 AC C A 3 3 µ0 I 2 = 2πa. (2) A C C 7.2 A A

96 7 1m =2 10 7 N 1A 7.1 7.2 a C (1) I (2) A C I A A a A a A A a C C C 7.2: C A C A = = µ 0 2π (1) A C 7.2 AC C A 3 3 µ0 I 2 = 2πa. (2) A C C 7.2 A A 7 Lorentz 7.1 Ampère I 1 I 2 I 2 I 1 L I 1 I 2 21 12 L r 21 = 12 = µ 0 2π I 1 I 2 r L. (7.1) 7.1 µ 0 =4π 10 7 N A 2 (7.2) magnetic permiability I 1 I 2 I 1 I 2 12 21 12 21 7.1: 1m 95 96 7 1m =2 10 7 N

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

EOS Kiss X8i (W) 使用説明書

EOS Kiss X8i (W) 使用説明書 EOS Kiss X8i (W) J 2 3 1 B B B 2 4 5 1 2 3 4 f 5 1 A 6 6 7 8 9 x 7 6 W X Y ZS 0 0 9 7 8 3 M M M 1 8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 9 i j s C f D 7 b A k 73 83 1 10 7a 8a b c S x H I K L 11 12 13 1

More information

st.dvi

st.dvi 9 3 5................................... 5............................. 5....................................... 5.................................. 7.........................................................................

More information

ÍÂ~ÊÂ ÊÊ ÇÍ ÌÉÊÊÌÊÇÍÂÈÍ Ê ÊÌÊÊÍÉÉÉÆÉÉÍÆÂsÊÂ ÌÉÊ~ÊsÊÆÇ ÉÉÊsÆÍÆÊÉ~ÇÈÉÇÉÉÊsÉÆÆjÇÆÇÉÉÉÆÉÉÍ ÆÂ ÊÊÍÉÂÇÍÌÉÊsÊÊÇÉÂÊÍÍÉwÊÊÂÌÉ t ÊwÎÔ ÑÊÔÖÏÑ Ö Ñ ÑÒÔÇ ÈÍÍÇÉÊÊÍÂÇ

ÍÂ~Ê ÊÊ ÇÍ ÌÉÊÊÌÊÇÍÂÈÍ Ê ÊÌÊÊÍÉÉÉÆÉÉÍÆÂsÊ ÌÉÊ~ÊsÊÆÇ ÉÉÊsÆÍÆÊÉ~ÇÈÉÇÉÉÊsÉÆÆjÇÆÇÉÉÉÆÉÉÍ Æ ÊÊÍÉÂÇÍÌÉÊsÊÊÇÉÂÊÍÍÉwÊÊÂÌÉ t ÊwÎÔ ÑÊÔÖÏÑ Ö Ñ ÑÒÔÇ ÈÍÍÇÉÊÊÍÂÇ ƒêæçídéd ƒêd ÇÇÉÊÂÉv~ÈÍà ƒêdãîâêíéìãdwæíæê uãé ~ÉÇÍÉÌÊ ÊyÎÆÉ ƒêuâ~îwèéæ ƒêd xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ƒêu xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ƒêë

More information

憲法h1out

憲法h1out m n mnm mnn m m m m m m. x x x ax bxc a x x bb ac a fxax bxc fxx x ax bxca b ac x x ax bxca x x x.x x x x x x xxx x x xxx x x xxx x x xx x x x axbcxdacx adbcxbd x xxx m n mnm mnn m m m m m m m m

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

, 1. x 2 1 = (x 1)(x + 1) x 3 1 = (x 1)(x 2 + x + 1). a 2 b 2 = (a b)(a + b) a 3 b 3 = (a b)(a 2 + ab + b 2 ) 2 2, 2.. x a b b 2. b {( 2 a } b )2 1 =

, 1. x 2 1 = (x 1)(x + 1) x 3 1 = (x 1)(x 2 + x + 1). a 2 b 2 = (a b)(a + b) a 3 b 3 = (a b)(a 2 + ab + b 2 ) 2 2, 2.. x a b b 2. b {( 2 a } b )2 1 = x n 1 1.,,.,. 2..... 4 = 2 2 12 = 2 2 3 6 = 2 3 14 = 2 7 8 = 2 2 2 15 = 3 5 9 = 3 3 16 = 2 2 2 2 10 = 2 5 18 = 2 3 3 2, 3, 5, 7, 11, 13, 17, 19.,, 2,.,.,.,?.,,. 1 , 1. x 2 1 = (x 1)(x + 1) x 3 1 = (x 1)(x

More information

one way two way (talk back) (... ) C.E.Shannon 1948 A Mathematical theory of communication. 1 ( ) 0 ( ) 1

one way two way (talk back) (... ) C.E.Shannon 1948 A Mathematical theory of communication. 1 ( ) 0 ( ) 1 1 1.1 1.2 one way two way (talk back) (... ) 1.3 0 C.E.Shannon 1948 A Mathematical theory of communication. 1 ( ) 0 ( ) 1 ( (coding theory)) 2 2.1 (convolution code) (block code), 3 3.1 Q q Q n Q n 1 Q

More information

P MY1B.indd

P MY1B.indd Series High M Series C Series Series T Series M C W C H/ MY3 MY3 Series Large M C T 10 16 20 25 32 40 50 63 80 100 øø øøø 1225 D- -X Series M Series øø C Series ø ø Series T Series 1226 10 10 T5063 ø 40

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

Fermat s Last Theorem Hajime Mashima November 19, 2018 Abstract About 380 years ago, Pierre de Fermat wrote the following idea to Diophantus s Arithme

Fermat s Last Theorem Hajime Mashima November 19, 2018 Abstract About 380 years ago, Pierre de Fermat wrote the following idea to Diophantus s Arithme Fermat s Last Theorem Hajime Mashima November 19, 2018 Abstract About 380 years ago, Pierre de Fermat wrote the following idea to Diophantus s Arithmetica. Cubum autem in duos cubos, aut quadratoquadratum

More information

II I Riemann 2003

II I Riemann 2003 II I Remann 2003 Dfferental Geometry II Dfferental Geometry II I Dfferental Geometry I 1 1 1.1.............................. 1 1.2................................. 10 1.3.......................... 16 1.4.........................

More information

ii-03.dvi

ii-03.dvi 2005 II 3 I 18, 19 1. A, B AB BA 0 1 0 0 0 0 (1) A = 0 0 1,B= 1 0 0 0 0 0 0 1 0 (2) A = 3 1 1 2 6 4 1 2 5,B= 12 11 12 22 46 46 12 23 34 5 25 2. 3 A AB = BA 3 B 2 0 1 A = 0 3 0 1 0 2 3. 2 A (1) A 2 = O,

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

P MY1B.indd

P MY1B.indd Series High M Series C Series Series T Series M C W C H MY3 MY3 Series arge M C T 10 16 20 25 32 40 50 63 80 100 øø 1211 D- -X Series M Series øø C Series ø ø Series T Series 1212 10 10 T5063 ø 40 30 20

More information

) Binary Cubic Forms / 25

) Binary Cubic Forms / 25 2016 5 2 ) Binary Cubic Forms 2016 5 2 1 / 25 1 2 2 2 3 2 3 ) Binary Cubic Forms 2016 5 2 2 / 25 1.1 ( ) 4 2 12 = 5+7, 16 = 5+11, 36 = 7+29, 1.2 ( ) p p+2 3 5 5 7 11 13 17 19, 29 31 41 43 ) Binary Cubic

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

05松山巌様.indd

05松山巌様.indd 2011 pp. 65 96 2002 2 2012 1 18 65 2011 1 5 1 2 3 4 5 2002 9 1 2 3 4 5 1 2 66 3 4 5 5 1 4 1 4 1 2 3 4 5 6 5 1 8 7 5 1 4 67 2011 21 4 3 1 7 1 1 1 1 2 2 3 3 4 2 2 / 3 68 1 1 1 2 2 2 32 3 3 4 4 2 /fa/ 2/f/

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

P.6 P.8 P.9

P.6 P.8 P.9 U 2016.11 P.6 P.8 P.9 U CONTENTS P.44 P.58 P.72 P.80 P.88 P.90 P.91 P.93 P.4 P.17 P.18 P.24 P.28 P.30 P.32 P.34 P.36 P.11 P.10 P.12 START 1 2 U 3 4 U 5 P.30 6 U 7 8 P.30 P.35 P.30 U 9 P.30 P.34 10 U 11

More information

x ( ) x dx = ax

x ( ) x dx = ax x ( ) x dx = ax 1 dx = a x log x = at + c x(t) = e at C (C = e c ) a > 0 t a < 0 t 0 (at + b ) h dx = lim x(t + h) x(t) h 0 h x(t + h) x(t) h x(t) t x(t + h) x(t) ax(t) h x(t + h) x(t) + ahx(t) 0, h, 2h,

More information

ORIGINAL TEXT I II A B 1 4 13 21 27 44 54 64 84 98 113 126 138 146 165 175 181 188 198 213 225 234 244 261 268 273 2 281 I II A B 292 3 I II A B c 1 1 (1) x 2 + 4xy + 4y 2 x 2y 2 (2) 8x 2 + 16xy + 6y 2

More information

行列代数2010A

行列代数2010A a ij i j 1) i +j i, j) ij ij 1 j a i1 a ij a i a 1 a j a ij 1) i +j 1,j 1,j +1 a i1,1 a i1,j 1 a i1,j +1 a i1, a i +1,1 a i +1.j 1 a i +1,j +1 a i +1, a 1 a,j 1 a,j +1 a, ij i j 1,j 1,j +1 ij 1) i +j a

More information

A_chapter5.dvi

A_chapter5.dvi 5. f,g,h f d,g d,h d. f f = y f d = f(, ȳ) = ȳ = y f f d, f. g g = g d = = g = g d, g. h h = yz y ȳz h d =( y z)( y)( ȳ z) h = h d, h. 5.2 f d ((f d ) d =(f(, 2,..., n )) d = f(, 2,..., n )=f. 5.3 f f

More information

31 33

31 33 17 3 31 33 36 38 42 45 47 50 52 54 57 60 74 80 82 88 89 92 98 101 104 106 94 1 252 37 1 2 2 1 252 38 1 15 3 16 6 24 17 2 10 252 29 15 21 20 15 4 15 467,555 14 11 25 15 1 6 15 5 ( ) 41 2 634 640 1 5 252

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

by SANYO W63SA W63SA

by SANYO W63SA W63SA W63SA by SANYO W63SA W63SA 1 XWZc c c55c c 39 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 a b a c b 17 18 19 a b c d e r s t u v w x e y f g h i l m n o p z G J j k q A B C D H E F I 20 a b c d e f a j l r u

More information

P MY1W.indd

P MY1W.indd W Series ø, ø, ø, ø, ø, ø, ø H M C H W C MY3 MY3 MW MWK CW CWK 1339 D- -X W Series 1 2 3 4 5 M/C 6 13 MW CW Σα NG NG NG NG NG OK OK OK OK OK MW CW W Series q 1341 M H C H W C MY3 MY3 D- -X W υ z y x x

More information

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6 26 11 5 1 ( 2 2 2 3 5 3.1...................................... 5 3.2....................................... 5 3.3....................................... 6 3.4....................................... 7

More information

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x >

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x > 5.1 1. x = a f (x) a x h f (a + h) f (a) h (5.1) h 0 f (x) x = a f +(a) f (a + h) f (a) = lim h +0 h (5.2) x h h 0 f (a) f (a + h) f (a) f (a h) f (a) = lim = lim h 0 h h 0 h (5.3) f (x) x = a f (a) =

More information

10 10 10 1 2 3 4 2 2 4 5 6 7 8 1 9 1011 S 10 1 2 3 4 5 10 10 10 1 2 3 4 5 6 2 7 8 9 10 10 2 14 3 2 4 10 11 12 13 14 1521 15 16 15 16 ( ) 17 18 19 20 21 1 10 4 1 2 5 3 2 II 2 3 ( ) 5 21 5 22 2 3 23

More information

agora04.dvi

agora04.dvi Workbook E-mail: kawahira@math.nagoya-u.ac.jp 2004 8 9, 10, 11 1 2 1 2 a n+1 = pa n + q x = px + q a n better 2 a n+1 = aan+b ca n+d 1 (a, b, c, d) =(p, q, 0, 1) 1 = 0 3 2 2 2 f(z) =z 2 + c a n+1 = a 2

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

6

6 000 (N =000) 50 ( N(N ) / = 499500) μm.5 g cm -3.5g cm 3 ( 0 6 µm) 3 / ( g mo ) ( 6.0 0 3 mo ) =.3 0 0 0 5 (0 6 ) 0 6 0 6 ~ 0 000 000 ( 0 6 ) ~ 0 9 q R q, R q q E = 4πε 0 R R (6.) -6 (a) (b) (c) (a) (b)

More information

6.1 (P (P (P (P (P (P (, P (, P.101

6.1 (P (P (P (P (P (P (, P (, P.101 (008 0 3 7 ( ( ( 00 1 (P.3 1 1.1 (P.3.................. 1 1. (P.4............... 1 (P.15.1 (P.15................. (P.18............3 (P.17......... 3.4 (P................ 4 3 (P.7 4 3.1 ( P.7...........

More information

îîîî þ úú Ÿøú úy {} y} PV PV PV PV チャネル数 $, y y} x z}û 点 差動 時 ', 信号仕様 $, 9 +9ï9 + 9ï 9 +9ï 電流 P$ P$ x{}yx 変換速度 VHFFK 0D[ 変換精度 ž/6% ù ELW ELWúíx{

îîîî þ úú Ÿøú úy {} y} PV PV PV PV チャネル数 $, y y} x z}û 点 差動 時 ', 信号仕様 $, 9 +9ï9 + 9ï 9 +9ï 電流 P$ P$ x{}yx 変換速度 VHFFK 0D[ 変換精度 ž/6% ù ELW ELWúíx{ ÿ 操業の状態信号を記録計に出 してるものをそのまま取り込み 保存し表 します 従来記録紙 ( チャート ) で保管されていた品質管理 設備診断などにかかわる重要なデータをパソコン上で管理するため 省資源 省 化が íííí また スタンドアロンの簡易システムから 規模な操業解析 援システムまで 途に応じたシステムをご提供可能となっております þîîîî îîîîîîîîîî þ 検索を1 台のシステムで構成

More information

取扱説明書[L704i]

取扱説明書[L704i] 231 N b N b A N b A N N P 232 N N b b K Q P M I b C c C 233 DC I d I M M M C I I C C I C C 234 M I C M J C J C D J C C H D C DC I b I 235 M b 1 3 7 9 F E 5 b J b c b c d e c b d e M H M I 236 J M J M I

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1.

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1. Section Title Pages Id 1 3 7239 2 4 7239 3 10 7239 4 8 7244 5 13 7276 6 14 7338 7 8 7338 8 7 7445 9 11 7580 10 10 7590 11 8 7580 12 6 7395 13 z 11 7746 14 13 7753 15 7 7859 16 8 7942 17 8 Id URL http://km.int.oyo.co.jp/showdocumentdetailspage.jsp?documentid=

More information

by SANYO W54SA W54SA

by SANYO W54SA W54SA W54SA by SANYO W54SA W54SA 1 XWZc c c55c c 37 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 a b a c b 19 20 21 a b c l m r y z A B C F d e f g h i n o p q s t u v w x D E z G H x j k I J a b c d c e a j l

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2 1 1.1 R(x) = 0 y + P (x)y + Q(x)y = R(x)...(1) y + P (x)y + Q(x)y = 0...(2) 1 2 u(x) v(x) c 1 u(x)+ c 2 v(x) = 0 c 1 = c 2 = 0 c 1 = c 2 = 0 2 0 2 u(x) v(x) u(x) u (x) W (u, v)(x) = v(x) v (x) 0 1 1.2

More information

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1,

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, B 2, B 3 A i 1 B i+1 A i+1 B i 1 P i i = 1, 2, 3 3 3 P 1, P 2, P 3 1 *1 19 3 27 B 2 P m l (*) l P P l m m 1 P l m + m *1 A N

More information

30 I .............................................2........................................3................................................4.......................................... 2.5..........................................

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

?

? 240-8501 79-2 Email: nakamoto@ynu.ac.jp 1 3 1.1...................................... 3 1.2?................................. 6 1.3..................................... 8 1.4.......................................

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

2011 8 26 3 I 5 1 7 1.1 Markov................................ 7 2 Gau 13 2.1.................................. 13 2.2............................... 18 2.3............................ 23 3 Gau (Le vy

More information

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S Riemnn-Stieltjes Polnd S. Lojsiewicz [1] An introduction to the theory of rel functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,, Riemnn-Stieltjes 1 2 2 5 3 6 4 Jordn 13 5 Riemnn-Stieltjes 15 6 Riemnn-Stieltjes

More information

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V I (..2) (0 < d < + r < u) X 0, X X = 0 S + ( + r)(x 0 0 S 0 ) () X 0 = 0, P (X 0) =, P (X > 0) > 0 0 H, T () X 0 = 0, X (H) = 0 us 0 ( + r) 0 S 0 = 0 S 0 (u r) X (T ) = 0 ds 0 ( + r) 0 S 0 = 0 S 0 (d r)

More information

U( xq(x)) Q(a) 1 P ( 1 ) R( 1 ) 1 Q( 1, 2 ) 2 1 ( x(p (x) ( y(q(x, y) ( z( R(z))))))) 2 ( z(( y( xq(x, y))) R(z))) 3 ( x(p (x) ( ( yq(a, y) ( zr(z))))

U( xq(x)) Q(a) 1 P ( 1 ) R( 1 ) 1 Q( 1, 2 ) 2 1 ( x(p (x) ( y(q(x, y) ( z( R(z))))))) 2 ( z(( y( xq(x, y))) R(z))) 3 ( x(p (x) ( ( yq(a, y) ( zr(z)))) 4 15 00 ; 321 5 16 45 321 http://abelardfletkeioacjp/person/takemura/class2html 1 1 11 1 1 1 vocabulary (propositional connectives):,,, (quantifires): (individual variables): x, y, z, (individual constatns):

More information