スポット価格予測に基づくJEPX先渡価格付けモデルの構築

Size: px
Start display at page:

Download "スポット価格予測に基づくJEPX先渡価格付けモデルの構築"

Transcription

1 RIETI Discussion Paper Series 17-J-072

2 RIETI Discussion Paper Series 17-J 年 12 月 スポット価格予測に基づく JEPX 先渡価格付けモデルの構築 * 山田雄二 ( 筑波大学ビジネスサイエンス系 ) 要 旨 電力システム改革に基づく小売電力完全自由化を背景に, 日本卸電力取引所 (JEPX) における卸電力の取引所取引が, 現在, 注目を浴びている. 特にスポット電力市場は,2016 年度実績で約定量が総需要の 3% 程度に達し,2005 年の開設以来, 継続的な取引が行われている. 一方, 先渡市場については, 開設から 10 年以上が経過した現在においても, 取引は年に十数件程度とデータがまばらにしか観測されず, 実績先渡価格のみから先渡価格のモデルを構築することは困難である. そこで本研究では, 現時点で連続的なデータが観測される JEPX スポット価格をベースに, 価格予測の考え方を用いて先渡価格モデルを構築することを考える. 本論文では,JEPX スポット価格の対数系列をトレンドと残差に分解し, 金融工学分野におけるデリバティブ価格付け手法の一つである測度変換を適用することで先渡価格を導出する. 具体的な手順は以下の通りである. まず,JEPX スポット価格系列を確定的なカレンダーパラメータのトレンド関数とそれ以外の残差項を用いて表現し, 残差項を状態空間モデルとして記述する. つぎに, 残差に対して時系列モデルを当てはめ, 残差の条件付期待値から将来価格を予測するスポット価格予測モデルを構築する. さらに, スポット価格予測モデルに対して, 測度変換手法の一つであるエッシャー変換を適用し, 先渡価格を定式化する. 最後に実証分析を実施し, スポット価格の実績データに対して提案手法を適用した際の先渡受け渡し期間におけるスポット価格の予測精度, および実績先渡ペイオフから推定されるリスク回避度について考察する. キーワード : 日本卸電力取引所 (JEPX), 先渡取引, 価格予測モデル, エッシャー変換, リスクプレミアム JEL classification: C14, C15, C22, C32, C44, C53, G17, L94 RIETI ディスカッション ペーパーは 専門論文の形式でまとめられた研究成果を公開し 活発な議論を喚起することを目的としています 論文に述べられている見解は執筆者個人の責任で発表するものであり 所属する組織及び ( 独 ) 経済産業研究所としての見解を示すものではありません * 本稿は ( 独 ) 経済産業研究所におけるプロジェクト 商品市場の経済 ファイナンス分析 の成果の一部である 1

3 1 (Japan Electric Power Exchange; JEPX) [11] JEPX [8, 10, 12, 13, 18] (TOCOM) JEPX JEPX 1 30 (0.5 ) 48 JEPX % JEPX Black-Scholes [1] JEPX JEPX JEPX,,, 2

4 JEPX ( ) 2 JEPX 2.1 JEPX JEPX [11].. ( ) JEPX ( ) (JEPX ). 2.2 (CF) 24 t (t = 0, 1, 2,...) (24 1kWh ) S t T 0 m ( ) F (m) t,t 0 CF [11] T 0 +m 1 T =T 0 [ ] T 0 +m 1 S T F (m) t,t 0 = T =T 0 S t S T m F (m) t,t 0 (2.1) JEPX 1 ( )

5 ( ) ( ), JEPX JEPX ( ) ( ) JEPX 2.3 F (m) t,t 0 m 1 (7 ) 1 1 m m = 1 m F (m) t,t 0 S t m = 1 F t,t := F (1) t,t (2.2) F t,t m F (m) t,t 0 T 0 m t m m T 0 +m 1 T =T 0 [S T F t,t ] = T 0 +m 1 T =T 0 T 0 +m 1 S T F t,t (2.3) T =T 0 F (m) t,t 0 (2.1) (2.1) (2.3) T 0 +m 1 m F (m) t,t 0 = F t,t F (m) t,t 0 = 1 T 0 +m 1 F t,t (2.4) m T =T 0 T =T 0 m m (2.3) S T F t,t, T = T 0,..., T 0 + m 1 4

6 S T S t ( ) Black-Scholes [1] 2 Step 1: S t, Step 2: ( ) ( ) Black-Scholes ( ) Esscher JEPX f(t) η t ln S t = f(t) + η t S t = exp [f(t) + η t ] (3.1) (3.1) f t f(t) (Ω, F, P) {η t } {F t } t F t - P S T ( ) ( ) 1. 5

7 P P [5] Esscher JEPX Esscher Esscher 2. [5] Esscher Z t [ e λη T ] Z t := E E [e λη T ] F t, 0 t T (3.2) Esscher F t,t, F t,t = Ẽ [S T F t ] = 1 Z t E [S T Z T F t ], 0 t T (3.3) T λ Esscher Ẽ P 3 P (A) := E [I A Z T ], A F T (3.4) {η t } 4 P η T ψ ηt (u) = E [exp (uη T )] = exp ( u 2 σ 2 η T /2 ) ( σ ηt η T ) P η T ψ ηt (u) = Ẽ [exp (uη T )] = E [exp (uη T ) Z T ] = E [exp ((u + λ) η T )] /E [exp (λη T )] = ψ ηt (u + λ) /ψ ηt (λ) = exp ( uλσ 2 η T + u 2 σ 2 η T /2 ) (3.5) η T P λσ 2 η T S T = e f(t )+η T η T 0 ( F 0,T ) λ = 0 F 0,T λ=0 = E [S T ] λ > 0 F 0,T > E [S T ], λ < 0 F 0,T < E [S T ] Esscher λ > 0 λ < 0 ( ) 2 [5] Esscher. 3 ( [5, 16] ) (3.6) {η t }. 6

8 3.2 {η t } x t+1 = Ax t + Bw t (3.6) η t = C x t A R n n, B R n l, C R n ( ) x t R n w t N (0, Σ) l (Σ R l l ) (3.1), (3.6) A 5 AR (p) : η t = a 1 η t a p η t p + c + ε t (3.7) ARMA(p, q) : η t = a 1 η t a p η t p + b 1 ε t b q ε t q + c + ε t (3.8) {η t } AR (3.7), ARMA (3.8) (3.6) [4] (3.1) {η t } 6 AR (p) {η t }. {η t } (3.6) T η T, S T (3.6) η T T t η T = C A T t s Bw t+s + C A T t x t (3.9) s=1 t [0, T ] η T g t,t g t,t := E [η T F t ] = C A T t x t (3.10) η T g t,t η T T t η T g t,t = C A T t s Bw t+s (3.11) s=1 t + 1 F t S T E [S T F t ] [ ] E [S T F t ] = E e f(t )+η T F t ] = e f(t ) E [e (η T g t,t )+g t,t Ft = e f(t )+g t,t E [ e η T g t,t ] (3.12) (3.12) S T E [S T F t ] η T g t,t 5 a i, b j, c {ε t }. 6 {η t }. 7

9 3.3 (3.3) Esscher g t,t F t - η T g t,t F t (3.2) Z t Z t = [ e λη Ẽ T ] E [e λη T ] F t Ẽ [ e ] λ{(η T g t,t )+g t,t } F t = E [ e λ{(η T g t,t )+g t,t } ] = eλg t,t Ẽ [ e λ(η T g t,t ) F t ] E [ e λ(η T g t,t ) ] E [e λg t,t ] = e λg t,t E [e λg t,t ] (3.13) F t,t ] F t,t = Ẽ [S T F t = 1 E [S T Z T F t ] Z t = E [ ] e λg [ t,t e λg E e f(t )+η e λη ] T T t,t E [e λη T ] F t = e f(t ) E [ ] [ ] e λg t,t e (λ+1){(η T g t,t )+g t,t } e λg E t,t E [ e ] λ{(η T g t,t )+g t,t } F t = e f(t )+g E [ e ] (λ+1)(η T g t,t ) t,t E [ e ] (3.14) λ(η T g t,t ) (3.14) η T g t,t σ ηt g t,t ( B.1 ) 5 η T g t,t 4 (3.1) f(t) 4.1 GAM. [19] 8

10 . S t ln S t, t = 1,..., N (Generalized Additive Model; GAM [7]) 7. ln S t = f(t) + η t h (Seasonal t ) + β 1 Mon t + β 2 T ue t + + β 6 Sat t + β 7 Hoilday t + β 8 P eriod t + η t (4.1) h GAM β i, i = 1,..., 8 η t E [η t ] = 0 Seasonal t : (= 1,..., 365 (or 366)). Mon t, T ue t,..., Sat t :. Mon t =1 ( ) or 0 ( ) Holiday t : ( 1 0) P eriod t : (= 1,..., N). GAM (4.1) f(t) ln S t GAM (4.1) f(t) η t 1 h ( ) ( ). h GAM (4.1) Y = X b + e ( Y X, e ) Y X Y = X Y X (ˆb = e b + e e (4.2) ( X X ) 1 X Y ) h GAM (4.1) 1. Y ( ) X S (i) 1 (a), (b), (c) Seasonal (i) t (a) 2 29 : (i = 1, 2, 3) Seasonal (1) t = 365,..., 0, Seasonal (2) t = 1,..., 366, Seasonal (3) t = 366,..., R3.0.2 ( mgcv gam() GAM gam() [17]. 9

11 (b) (a) : (c) : Seasonal (1) t = 364,..., 0, Seasonal (2) t = 1,..., 365, Seasonal (3) t = 367,..., 731 Seasonal (1) t = 364,..., 0, Seasonal (2) t = 1,..., 365, Seasonal (3) t = 366,..., GAM (4.1) Y S (1) X Y, S (2) X (4.3) Y S (3) X 3. Seasonal (2) t = 1,..., 365 (366) GAM 8. (2 29 ) 1. (4.1) f GAM (4.1) h β i, i = 1,..., 8 t = 1,..., N f 4.2 GAM (4.1) {η t } 3.2 {η t } AR (p) t = 1,..., N {η t } k L AR a i, i = 1,..., q τ η k+τ {η t } AR (p) η k+τ B.2 (B.4) 1. (t = 1,..., N) JEPX GAM (4.1) h, β i, i = 1,..., 8 S t η t 2. k L k τ k = L,..., N τ 8 t t 10

12 (a) AR (3.7) 9 (B.4) ĝ k,k+τ := E [η k+τ F k ] (b) ĝ k,k+τ k τ ( k + τ) η k+τ ĝ k,k+τ 3. λ, t, T = t + τ (3.14) F t,t+τ ˆF t,t+τ (t = L,..., N τ) ˆF t,t+τ = e f(t+τ)+ˆη t,τ N τ e (λ+1)(η k+τ ĝ k,k+τ ) k=l N τ e λ(η k+τ ĝ k,k+τ ) k=l, t = L,..., N τ (4.4) ( ) k η k η k+τ (Random walk; RW) AR RW ĝ k,k+τ η k (4.4) λ = 0 ˆF t,t+τ λ=0 t + τ S t+τ ( ) JEPX JEPX Fig. 5.1 Mon t,..., Sat t β 1,..., β 6 β 7 β 8 c β 8 : , c: % 9 MATLAB ARfit [9] ( AR ARfit q Schwarz s Bayesian Criterion. 10 JEPX JEPX ( N = 1, 698 (t = 1,... N). 11

13 º h(seasonal period) Seasonal period Fig. 5.1: β i (, ) Fig. 5.2: GAM Fig. 5.2 (4.1) h ( ) 95% h 1,..., 365 (366) 1 GAM R % 5.2 η t (3.7) τ η t+τ ĝ t,t+τ 4.2 η k+τ ĝ k,k+τ τ k = L, L+1,..., N τ ( L ) (Mean absolute error; MAE) (Standard deviation; SD) N τ 1 N τ MAE = η k+τ ĝ k,k+τ, SD = 1 { } 2 (ηk+τ ĝ k,k+τ ) η k+τ ĝ k,k+τ (5.1) N τ L + 1 N τ L k=l η k+τ ĝ k,k+τ η k+τ ĝ k,k+τ AR L = 90 ( ) RW (5.1) ĝ k,k+τ η k MAE, SD Fig. 5.3 AR RW ( 0 ) MAE SD MAE SD τ RW AR MAE, SD k=l 12

14 0.18 MAE of residuals for AR and RW predictions 0.2 SD of residuals for AR and RW predictions Mean absolute error (MAE) Standard deviation (SD) AR RW Prediction horizon 0.06 AR RW Prediction horizon Fig. 5.3: MAE ( ) ( ) 90 RW MAE SD AR AR RW MAE, SD 2.2 MAEs of AR and RW predictions 2 Mean absolute error (MAE) AR RW Prediction horizon Fig. 5.4: MAE MAE, SD η k+τ ĝ k,k+τ, k = L, L + 1,..., N τ (4.4) ˆF t,t+τ t + τ E [S t+τ F t ] ( ˆF t,t+τ λ=0 ) S t+τ 13

15 MAE SD Fig. 5.4 MAE τ MAE 11 MAE = 1 N τ L + 1 N τ k=l S k+τ ˆF λ=0 k,τ (5.2) AR RW MAE MAE MAE AR MAE JEPX t 0 t 1 t 0 + τ ( ) 1 t 1 m 1 1 ˆF t,τ+t0 +i t 1 t m t=t 0 τ t 0 24 m = 7 ( ) (5.3) λ = 0 Fig. 5.5 ((5.3) λ = 0 ) ( ) 13. AR RW 14 3 (AR RW ), i= , , (5.3) 11 MAE SD HP JEPX

16 3 Prediction errors of AR and RW predictions with forwad payoff 10 Risk aversion coefficients implied by AR and RW predictions Prediction error (Real-Pred) or Forward payoff : 01-Feb : 08-Feb : 15-Mar : 05-Apr : 12-Apr : 10-May : 24-May : 05-Jul : 18-Jul : 25-Jul : 24-Dec-2016 AR pred. RW pred. Forward payoff Forward contract number Risk aversion coefficient () : 01-Feb : 08-Feb : 15-Mar : 05-Apr : 12-Apr-2014 AR pred. RW pred. 6: 10-May : 24-May : 05-Jul : 18-Jul : 25-Jul : 24-Dec Forward contract number Fig. 5.5: AR RW ( ) ( ) 5% AR RW 5% t , , AR Fig. 5.5 λ AR RW AR 8 10 Fig. 5.6 Fig. 5.7 Fig , 2,..., AR ( ) RW ( ) λ = 0 ( ) x 2 2 Fig. 5.5 λ AR RW AR RW RW ( ) AR 15

17 Forward price of 7 days delivery from 05-Jul-2014 (AR, lambda = ) Predicted Esscher Daily spot Foward Realized Forward price of 7 days delivery from 05-Jul-2014 (RW, lambda = ) Predicted Esscher Daily spot Foward Realized Price 17 Price Time in days before start of delivery Time in days before start of delivery Fig. 5.6: AR ( ) RW ( ) Forward price of 7 days delivery from 24-Dec-2016 (AR, lambda = ) Predicted Esscher Daily spot Foward Realized Forward price of 7 days delivery from 24-Dec-2016 (RW, lambda = ) Predicted Esscher Daily spot Foward Realized Price Price Time in days before start of delivery Time in days before start of delivery Fig. 5.7: AR ( ) RW ( ) 16

18 ( ) RW AR 6 JEPX JEPX Esscher JEPX (AR ) ( ) ( ) [1] F. Black and M. Scholes, The Pricing of Options and Corporate Liabilities, Journal of Political Economy, 81, pp ,

19 [2] M.J. Brennan and E.S. Schwartz, Evaluating Natural Resource investements, The Journal of Business, 58(2), pp , [3] R. Carmona and M. Ludkovski, Spot convenience yield models for the energy markets, Contemporary Mathematics, vol. 351, pp , [4] J. Durbin and S.J. Koopman, Time Series Analysis by State Space Methods: Second Edition, Oxford Statistical Science Series (Vol. 24), Oxford University Press, [5],, ( ),, [6] R. Gibson and E. Schwartz, Stochastic Convenience Yield and the Pricing of Oil Contigent Claims, The Journal of Finance, 45(3), pp , [7] T. Hastie and R. Tibshirani, Generalized Additive Models, Chapman & Hall, [8] H. Miyauchi and T. Misawa, Regression Analysis of Electric Power Market Price of JEPX, Journal of Power and Energy Engineering, 2, , [9] A. Neumaier and T. Schneider, Algorithm 808: ARfit. A Matlab package for the estimation of parameters and eigenmodes of multivariate autoregressive models, ACM Trans. on Mathematical Software, 27(4), 58 65, [10],, JAFEE, , [11] Ver. 2.00, ( [12],, JEPX, (B)128 1, 57 66, [13],, JEPX, (B)133 8, , [14] E.S. Schwartz, The stohastic Behavior of Commodity Prices: Implications of Valuation and Hedging, The Journal of Finance, 52(3), pp , [15] E.S. Schwartz and J.E. Smith, Short-Term Variations and Long-Term Dynamics in Commodity Prices, Management Science, 46(7), pp , [16] S.E. Shreve, Stochastic Calculus for Finance II: Continuous-Time Models, Springer, [17],, R GAM, 34(1), , [18], JEPX,, Y06006, [19],,, JEPX -, JAFEE 14, pp. 8-39,

20 A Girsanov t W t = [W 1,t,..., W n,t ] R n P n Brown {F t } {W t } A.1 ( ) Brennan and Schwartz [2] Brown Ornstein-Uhlenbeck ( [14]) 1 Gison and Schwartz [6] 1, 2 Schwartz and Smith [15] 2 Gison and Schwartz [6] 3 ( [3] ) (3.6) 2 Schwartz and Smith [6] ( SS ) (3.6) SS 2 dχ t = κχ t dt + σ χ dw 1,t dξ t = µ ξ dt + σ ξ dw 2,t (A.1) dt t (A.1) χ (t+1) t = (1 κ t ) χ t t + σ χ t w 1,t ξ (t+1) t = ξ t t + µ ξ t + σ ξ t w 2,t (A.2) t t = 0, 1, 2,..., x t+1 χ (t+1) t, x t χ t t, w t w 1,t, A = 1 κ t 0 ξ (t+1) t ξ t t w 2,t 0 1, B = σ χ t 0 0 σ ξ t (A.3) (A.2) (3.6) (A.2) 2 (3.1) f(t) 19

21 A.2 Girsanov Girsanov 15 ( Girsanov ) Esscher Girsanov Z t P 16 Z t := E E e T 0 θ tdw t ] 0 θ tdw t [ e T F t, 0 t T (A.4) P (A) = E [I A Z T ], A F T Girsanov W t P Brown d W t = dw t θ t dt (A.5) P n Brown W t R n η t dx t = (Ax t + D) dt + BdW t (A.6) η t = C x t A R n n, B R n n, C R n, D R n, (A.6) ( ) x t R n, η t, W t R n, (A.1) (A.2) (A.6) (3.6). 1 x T η T = C x T T T η T = C x T = C e AT x 0 + C e AT e At Ddt + C e AT e At BdW t T = C e AT x 0 + C e A(T t) Ddt T 0 0 C e A(T t) BdW t (A.7) (A.7) Esscher Z t, (3.2) T Z t := E eλ 0 C e A(T t) BdW t [ E e λ ] T 0 C e A(T t) BdW t F t, 0 t T (A.8) (A.8) Girsanov (A.4) Z t θ t λc e A(T t) B (A.9) (A.4) θ t (A.9) Girsanov Esscher 15 [5]. 16 θ t R n F t- n θ t R t. 20

22 B AR B.1 (3.14) η T g t,t ϕ ηt g t,t η T g t,t σ ηt g t,t ϕ ηt g t,t ϕ ηt g t,t (x) = σ2 η T g t,t 2 x 2 (3.14) F t,t = e f(t )+g t,t exp { ϕ ηt g t,t (λ + 1) } exp { ϕ ηt g t,t (λ) } = exp { f(t ) + g t,t + ϕ ηt g t,t (λ + 1) ϕ ηt g t,t (λ) } { ( = exp f(t ) + g t,t + ση 2 T g t,t λ + 1 )} 2 (B.1) B.2 AR (3.7) AR (p) p = 1 (3.7) η t+τ η t+τ = a τ 1η t + ( a τ a 1 + I ) c + ( a τ 1 1 ϵ t a 1 ϵ t+τ 1 + ϵ t+τ ) E [η t+k F t ] = 0, k = 1,..., τ E [η t+τ F t ] E [η t+τ F t ] = a τ 1η t + ( a τ a ) c (B.2) p 2 p = 1 η t η t 1. η t p+1 }{{} e t a 1 a 2 a p = } {{ 0 } A 1 η t 1 η t 2. η t p }{{} e t 1 c c + +. c }{{} c ϵ t 0. 0 }{{} ε t e t = A 1 e t 1 + c + ε t (B.3) (B.2) a 1 A 1, η t e t, c c E [e t+τ F t ] [ E [η t+τ F t ] = ] E [e t+τ F t ] (B.4) E [η t+τ F t ] (3.6) 21

03.Œk’ì

03.Œk’ì HRS KG NG-HRS NG-KG AIC Fama 1965 Mandelbrot Blattberg Gonedes t t Kariya, et. al. Nagahara ARCH EngleGARCH Bollerslev EGARCH Nelson GARCH Heynen, et. al. r n r n =σ n w n logσ n =α +βlogσ n 1 + v n w

More information

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W 003 7 14 Black-Scholes [1] Nelson [] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-Wu Nelson e-mail: takatoshi-tasaki@nifty.com kabutaro@mocha.freemail.ne.jp

More information

fiúŁÄ”s‘ê‡ÌŁª”U…−…X…N…v…„…~…A…•‡Ì ”s‘ê™´›ß…−…^†[…fiŠ‚ª›Âfl’«

fiúŁÄ”s‘ê‡ÌŁª”U…−…X…N…v…„…~…A…•‡Ì ”s‘ê™´›ß…−…^†[…fiŠ‚ª›Âfl’« 2016/3/11 Realized Volatility RV 1 RV 1 Implied Volatility IV Volatility Risk Premium VRP 1 (Fama and French(1988) Campbell and Shiller(1988)) (Hodrick(1992)) (Lettau and Ludvigson (2001)) VRP (Bollerslev

More information

カルマンフィルターによるベータ推定( )

カルマンフィルターによるベータ推定( ) β TOPIX 1 22 β β smoothness priors (the Capital Asset Pricing Model, CAPM) CAPM 1 β β β β smoothness priors :,,. E-mail: koiti@ism.ac.jp., 104 1 TOPIX β Z i = β i Z m + α i (1) Z i Z m α i α i β i (the

More information

スプレッド・オプション評価公式を用いた裁定取引の可能性―電力市場のケース― 藤原 浩一,新関 三希代

スプレッド・オプション評価公式を用いた裁定取引の可能性―電力市場のケース― 藤原 浩一,新関 三希代 403 81 1 Black and Scholes 1973 Email:kfujiwar@mail.doshisha.ac.jp 82 404 58 3 1 2 Deng, Johnson and Sogomonian 1999 Margrabe 1978 2 Deng, Johnson and Sogomonian 1999 Margrabe 1978 Black and Scholes 1973

More information

2 Recovery Theorem Spears [2013]Audrino et al. [2015]Backwell [2015] Spears [2013] Ross [2015] Audrino et al. [2015] Recovery Theorem Tikhonov (Tikhon

2 Recovery Theorem Spears [2013]Audrino et al. [2015]Backwell [2015] Spears [2013] Ross [2015] Audrino et al. [2015] Recovery Theorem Tikhonov (Tikhon Recovery Theorem Forward Looking Recovery Theorem Ross [2015] forward looking Audrino et al. [2015] Tikhonov Tikhonov 1. Tikhonov 2. Tikhonov 3. 3 1 forward looking *1 Recovery Theorem Ross [2015] forward

More information

1 Jensen et al.[6] GRT S&P500 GRT RT GRT Kiriu and Hibiki[8] Jensen et al.[6] GRT 3 GRT Generalized Recovery Theorem (Jensen et al.[6])

1 Jensen et al.[6] GRT S&P500 GRT RT GRT Kiriu and Hibiki[8] Jensen et al.[6] GRT 3 GRT Generalized Recovery Theorem (Jensen et al.[6]) Generalized Recovery Theorem Ross[11] Recovery Theorem(RT) RT forward looking Kiriu and Hibiki[8] Generalized Recovery Theorem(GRT) Jensen et al.[6] GRT RT Kiriu and Hibiki[8] 1 backward looking forward

More information

ohpmain.dvi

ohpmain.dvi fujisawa@ism.ac.jp 1 Contents 1. 2. 3. 4. γ- 2 1. 3 10 5.6, 5.7, 5.4, 5.5, 5.8, 5.5, 5.3, 5.6, 5.4, 5.2. 5.5 5.6 +5.7 +5.4 +5.5 +5.8 +5.5 +5.3 +5.6 +5.4 +5.2 =5.5. 10 outlier 5 5.6, 5.7, 5.4, 5.5, 5.8,

More information

I- Fama-French 3, Idiosyncratic (I- ) I- ( ) 1 I- I- I- 1 I- I- Jensen Fama-French 3 SMB-FL, HML-FL I- Fama-French 3 I- Fama-MacBeth Fama-MacBeth I- S

I- Fama-French 3, Idiosyncratic (I- ) I- ( ) 1 I- I- I- 1 I- I- Jensen Fama-French 3 SMB-FL, HML-FL I- Fama-French 3 I- Fama-MacBeth Fama-MacBeth I- S I- Fama-French 3, Idiosyncratic (I- ) I- ( ) 1 I- I- I- 1 I- I- Jensen Fama-French 3 SMB-FL, HML-FL I- Fama-French 3 I- Fama-MacBeth Fama-MacBeth I- SMB-FL, HML-FL Fama-MacBeth 2, 3, 5 I- HML-FL 1 Fama-French

More information

Vol. 3 No (Mar. 2010) An Option Valuation Model Based on an Asset Pricing Model Incorporating Investors Beliefs Kentaro Tanaka, 1 Koich

Vol. 3 No (Mar. 2010) An Option Valuation Model Based on an Asset Pricing Model Incorporating Investors Beliefs Kentaro Tanaka, 1 Koich Vol. 3 No. 2 51 64 (Mar. 2010 1 1 1 An Option Valuation Model Based on an Asset Pricing Model Incorporating Investors Beliefs Kentaro Tanaka, 1 Koichi Miyazaki 1 and Koji Nishiki 1 Preceding researches

More information

1 CAPM: I-,,, I- ( ) 1 I- I- I- ( CAPM) I- CAPM I- 1 I- Jensen Fama-French 3 I- Fama-French 3 I- Fama-MacBeth I- SMB-FL, HML-FL Fama-MacBeth 1 Fama-Fr

1 CAPM: I-,,, I- ( ) 1 I- I- I- ( CAPM) I- CAPM I- 1 I- Jensen Fama-French 3 I- Fama-French 3 I- Fama-MacBeth I- SMB-FL, HML-FL Fama-MacBeth 1 Fama-Fr 1 CAPM: I-,,, I- ( ) 1 I- I- I- ( CAPM) I- CAPM I- 1 I- Jensen Fama-French 3 I- Fama-French 3 I- Fama-MacBeth I- SMB-FL, HML-FL Fama-MacBeth 1 Fama-French (FF) 3 [5] (Capital Asset Pricing Model; CAPM

More information

2 A A 3 A 2. A [2] A A A A 4 [3]

2 A A 3 A 2. A [2] A A A A 4 [3] 1 2 A A 1. ([1]3 3[ ]) 2 A A 3 A 2. A [2] A A A A 4 [3] Xi 1 1 2 1 () () 1 n () 1 n 0 i i = 1 1 S = S +! X S ( ) 02 n 1 2 Xi 1 0 2 ( ) ( 2) n ( 2) n 0 i i = 1 2 S = S +! X 0 k Xip 1 (1-p) 1 ( ) n n k Pr

More information

seminar0220a.dvi

seminar0220a.dvi 1 Hi-Stat 2 16 2 20 16:30-18:00 2 2 217 1 COE 4 COE RA E-MAIL: ged0104@srv.cc.hit-u.ac.jp 2004 2 25 S-PLUS S-PLUS S-PLUS S-code 2 [8] [8] [8] 1 2 ARFIMA(p, d, q) FI(d) φ(l)(1 L) d x t = θ(l)ε t ({ε t }

More information

01.Œk’ì/“²fi¡*

01.Œk’ì/“²fi¡* AIC AIC y n r n = logy n = logy n logy n ARCHEngle r n = σ n w n logσ n 2 = α + β w n 2 () r n = σ n w n logσ n 2 = α + β logσ n 2 + v n (2) w n r n logr n 2 = logσ n 2 + logw n 2 logσ n 2 = α +β logσ

More information

1 Nelson-Siegel Nelson and Siegel(1987) 3 Nelson-Siegel 3 Nelson-Siegel 2 3 Nelson-Siegel 2 Nelson-Siegel Litterman and Scheinkman(199

1 Nelson-Siegel Nelson and Siegel(1987) 3 Nelson-Siegel 3 Nelson-Siegel 2 3 Nelson-Siegel 2 Nelson-Siegel Litterman and Scheinkman(199 Nelson-Siegel Nelson-Siegel 1992 2007 15 1 Nelson and Siegel(1987) 2 FF VAR 1996 FF B) 1 Nelson-Siegel 15 90 1 Nelson and Siegel(1987) 3 Nelson-Siegel 3 Nelson-Siegel 2 3 Nelson-Siegel 2 Nelson-Siegel

More information

COE-RES Discussion Paper Series Center of Excellence Project The Normative Evaluation and Social Choice of Contemporary Economic Systems Graduate Scho

COE-RES Discussion Paper Series Center of Excellence Project The Normative Evaluation and Social Choice of Contemporary Economic Systems Graduate Scho COE-RES Discussion Paper Series Center of Excellence Project The Normative Evaluation and Social Choice of Contemporary Economic Systems Graduate School of Economics and Institute of Economic Research

More information

1 Tokyo Daily Rainfall (mm) Days (mm)

1 Tokyo Daily Rainfall (mm) Days (mm) ( ) r-taka@maritime.kobe-u.ac.jp 1 Tokyo Daily Rainfall (mm) 0 100 200 300 0 10000 20000 30000 40000 50000 Days (mm) 1876 1 1 2013 12 31 Tokyo, 1876 Daily Rainfall (mm) 0 50 100 150 0 100 200 300 Tokyo,

More information

BIS CDO CDO CDO CDO Cifuentes and O Connor[1] Finger[6] Li[8] Duffie and Garleânu[4] CDO Merton[9] CDO 1 CDO CDO CDS CDO three jump model Longstaff an

BIS CDO CDO CDO CDO Cifuentes and O Connor[1] Finger[6] Li[8] Duffie and Garleânu[4] CDO Merton[9] CDO 1 CDO CDO CDS CDO three jump model Longstaff an CDO 2010 5 18 CDO(Collateralized Debt Obligation) Duffie and Garleânu[4] CDO CDS(Credit Default Swap) Duffie and Garleânu[4] 4 CDO CDS CDO CDS CDO 2007 CDO CDO CDS 1 1.1 2007 2008 9 15 ( ) CDO CDO 80 E-mail:taiji.ohka@gmail.com

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

Autumn II III Zon and Muysken 2005 Zon and Muysken 2005 IV II 障害者への所得移転の経済効果 分析に用いるデータ

Autumn II III Zon and Muysken 2005 Zon and Muysken 2005 IV II 障害者への所得移転の経済効果 分析に用いるデータ 212 Vol. 44 No. 2 I はじめに 2008 1 2 Autumn 08 213 II III Zon and Muysken 2005 Zon and Muysken 2005 IV II 障害者への所得移転の経済効果 17 18 1 分析に用いるデータ 1 2005 10 12 200 2 2006 9 12 1 1 2 129 35 113 3 1 2 6 1 2 3 4 4 1

More information

43433 8 3 . Stochastic exponentials...................................... 3. Girsanov s theorem......................................... 4 On the martingale property of stochastic exponentials 5. Gronwall

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

x T = (x 1,, x M ) x T x M K C 1,, C K 22 x w y 1: 2 2

x T = (x 1,, x M ) x T x M K C 1,, C K 22 x w y 1: 2 2 Takio Kurita Neurosceince Research Institute, National Institute of Advanced Indastrial Science and Technology takio-kurita@aistgojp (Support Vector Machine, SVM) 1 (Support Vector Machine, SVM) ( ) 2

More information

Auerbach and Kotlikoff(1987) (1987) (1988) 4 (2004) 5 Diamond(1965) Auerbach and Kotlikoff(1987) 1 ( ) ,

Auerbach and Kotlikoff(1987) (1987) (1988) 4 (2004) 5 Diamond(1965) Auerbach and Kotlikoff(1987) 1 ( ) , ,, 2010 8 24 2010 9 14 A B C A (B Negishi(1960) (C) ( 22 3 27 ) E-mail:fujii@econ.kobe-u.ac.jp E-mail:082e527e@stu.kobe-u.ac.jp E-mail:iritani@econ.kobe-u.ac.jp 1 1 1 2 3 Auerbach and Kotlikoff(1987) (1987)

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

mf.dvi

mf.dvi 21 9 29 1 2 3....................................... 3 :......................... 3....................................... 4................................ 4..................................... 5................................

More information

3B11.dvi

3B11.dvi Siripatanakulkhajorn Sakchai Study on Stochastic Optimal Electric Power Procurement Strategies with Uncertain Market Prices Sakchai Siripatanakulkhajorn,StudentMember,YuichiSaisho, Student Member, Yasumasa

More information

dvi

dvi 2017 65 2 185 200 2017 1 2 2016 12 28 2017 5 17 5 24 PITCHf/x PITCHf/x PITCHf/x MLB 2014 PITCHf/x 1. 1 223 8522 3 14 1 2 223 8522 3 14 1 186 65 2 2017 PITCHf/x 1.1 PITCHf/x PITCHf/x SPORTVISION MLB 30

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

130 Oct Radial Basis Function RBF Efficient Market Hypothesis Fama ) 4) 1 Fig. 1 Utility function. 2 Fig. 2 Value function. (1) (2)

130 Oct Radial Basis Function RBF Efficient Market Hypothesis Fama ) 4) 1 Fig. 1 Utility function. 2 Fig. 2 Value function. (1) (2) Vol. 47 No. SIG 14(TOM 15) Oct. 2006 RBF 2 Effect of Stock Investor Agent According to Framing Effect to Stock Exchange in Artificial Stock Market Zhai Fei, Shen Kan, Yusuke Namikawa and Eisuke Kita Several

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008)

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008) ,, 23 4 30 (i) (ii) (i) (ii) Negishi (1960) 2010 (2010) ( ) ( ) (2010) E-mail:fujii@econ.kobe-u.ac.jp E-mail:082e527e@stu.kobe-u.ac.jp E-mail:iritani@econ.kobe-u.ac.jp 1 1 16 (2004 ) 2 (A) (B) (C) 3 (1987)

More information

untitled

untitled II(c) 1 October. 21, 2009 1 CS53 yamamoto@cs.kobe-u.ac.jp 3 1 7 1.1 : : : : : : : : : : : : : : : : : : : : : : 7 1.2 : : : : : : : : : : : : : : : : 8 1.2.1 : : : : : : : : : : : : : : : : : : : 8 1.2.2

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

最適電源構成モデルを用いた卸電力取引市場の経済厚生の評価分析

最適電源構成モデルを用いた卸電力取引市場の経済厚生の評価分析 RIETI Discussion Paper Series 07-J-044 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

相互取引に伴う債権債務の依存構造を考慮した金融機関の与信評価について

相互取引に伴う債権債務の依存構造を考慮した金融機関の与信評価について IMES DISCUSSION PAPER SERIES 相互取引に伴う債権債務の依存構造を考慮した金融 機関の与信評価について にしでかつまさ 西出勝正 Discussion Paper No. 2015-J-6 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN 日本銀行金融研究所 103-8660 東京都中央区日本橋本石町 2-1-1

More information

Multivariate Realized Stochastic Volatility Models with Dynamic Correlation and Skew Distribution: Bayesian Analysis and Application to Risk Managemen

Multivariate Realized Stochastic Volatility Models with Dynamic Correlation and Skew Distribution: Bayesian Analysis and Application to Risk Managemen Multivariate Realized Stochastic Volatility Models with Dynamic Correlation and Skew Distribution: Bayesian Analysis and Application to Risk Management 2019 3 15 Dai Yamashita (Hitotsubashi ICS) MSV Models

More information

JMP V4 による生存時間分析

JMP V4 による生存時間分析 V4 1 SAS 2000.11.18 4 ( ) (Survival Time) 1 (Event) Start of Study Start of Observation Died Died Died Lost End Time Censor Died Died Censor Died Time Start of Study End Start of Observation Censor

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

日本の世帯属性別貯蓄率の動向について:アップデートと考察

日本の世帯属性別貯蓄率の動向について:アップデートと考察 RIETI Discussion Paper Series 18-J-024 RIETI Discussion Paper Series 18-J-024 2018 年 8 日本の世帯属性別貯蓄率の動向について : アップデートと考察 1 宇南 卓 ( 経済産業研究所 ) 野太郎 ( 信州 学 ) 要 旨 全国消費実態調査 家計調査 家計消費状況調査を補完的に利用することでマクロ統計と整合的な貯蓄率のデータを構築した宇南山

More information

23_02.dvi

23_02.dvi Vol. 2 No. 2 10 21 (Mar. 2009) 1 1 1 Effect of Overconfidencial Investor to Stock Market Behaviour Ryota Inaishi, 1 Fei Zhai 1 and Eisuke Kita 1 Recently, the behavioral finance theory has been interested

More information

Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue Date Type Technical Report Text Version publisher URL

Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue Date Type Technical Report Text Version publisher URL Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue 2012-06 Date Type Technical Report Text Version publisher URL http://hdl.handle.net/10086/23085 Right Hitotsubashi University Repository

More information

山形大学紀要

山形大学紀要 x t IID t = b b x t t x t t = b t- AR ARMA IID AR ARMAMA TAR ARCHGARCH TARThreshold Auto Regressive Model TARTongTongLim y y X t y Self Exciting Threshold Auto Regressive, SETAR SETARTAR TsayGewekeTerui

More information

Microsoft Word doc

Microsoft Word doc . 正規線形モデルのベイズ推定翠川 大竹距離減衰式 (PGA(Midorikawa, S., and Ohtake, Y. (, Attenuation relationships of peak ground acceleration and velocity considering attenuation characteristics for shallow and deeper earthquakes,

More information

L. S. Abstract. Date: last revised on 9 Feb translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, L. Onsager and S.

L. S. Abstract. Date: last revised on 9 Feb translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, L. Onsager and S. L. S. Abstract. Date: last revised on 9 Feb 01. translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, 1953. L. Onsager and S. Machlup, Fluctuations and Irreversibel Processes, Physical

More information

untitled

untitled 3 3. (stochastic differential equations) { dx(t) =f(t, X)dt + G(t, X)dW (t), t [,T], (3.) X( )=X X(t) : [,T] R d (d ) f(t, X) : [,T] R d R d (drift term) G(t, X) : [,T] R d R d m (diffusion term) W (t)

More information

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003) 3 1 1 1 2 1 2 1,2,3 1 0 50 3000, 2 ( ) 1 3 1 0 4 3 (1) (2) (3) (4) 1 1 1 2 3 Cameron and Trivedi(1998) 4 1974, (1987) (1982) Agresti(2003) 3 (1)-(4) AAA, AA+,A (1) (2) (3) (4) (5) (1)-(5) 1 2 5 3 5 (DI)

More information

橡表紙参照.PDF

橡表紙参照.PDF CIRJE-J-58 X-12-ARIMA 2000 : 2001 6 How to use X-12-ARIMA2000 when you must: A Case Study of Hojinkigyo-Tokei Naoto Kunitomo Faculty of Economics, The University of Tokyo Abstract: We illustrate how to

More information

untitled

untitled 18 1 2,000,000 2,000,000 2007 2 2 2008 3 31 (1) 6 JCOSSAR 2007pp.57-642007.6. LCC (1) (2) 2 10mm 1020 14 12 10 8 6 4 40,50,60 2 0 1998 27.5 1995 1960 40 1) 2) 3) LCC LCC LCC 1 1) Vol.42No.5pp.29-322004.5.

More information

ばらつき抑制のための確率最適制御

ばらつき抑制のための確率最適制御 ( ) http://wwwhayanuemnagoya-uacjp/ fujimoto/ 2011 3 9 11 ( ) 2011/03/09-11 1 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 2 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 3 / 46 (1/2) r + Controller - u Plant y

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

研究シリーズ第40号

研究シリーズ第40号 165 PEN WPI CPI WAGE IIP Feige and Pearce 166 167 168 169 Vector Autoregression n (z) z z p p p zt = φ1zt 1 + φ2zt 2 + + φ pzt p + t Cov( 0 ε t, ε t j )= Σ for for j 0 j = 0 Cov( ε t, zt j ) = 0 j = >

More information

16 7 5

16 7 5 16 7 5 1 2 1.1.......................................... 2 1.2....................................... 5 1.2.1.................................... 5 1.2.2............................... 6 1.2.3...............................

More information

x 3 a (mod p) ( ). a, b, m Z a b m a b (mod m) a b m 2.2 (Z/mZ). a = {x x a (mod m)} a Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} a + b = a +

x 3 a (mod p) ( ). a, b, m Z a b m a b (mod m) a b m 2.2 (Z/mZ). a = {x x a (mod m)} a Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} a + b = a + 1 1 22 1 x 3 (mod ) 2 2.1 ( )., b, m Z b m b (mod m) b m 2.2 (Z/mZ). = {x x (mod m)} Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} + b = + b, b = b Z/mZ 1 1 Z Q R Z/Z 2.3 ( ). m {x 0, x 1,..., x m 1 } modm 2.4

More information

読めば必ずわかる 分散分析の基礎 第2版

読めば必ずわかる 分散分析の基礎 第2版 2 2003 12 5 ( ) ( ) 2 I 3 1 3 2 2? 6 3 11 4? 12 II 14 5 15 6 16 7 17 8 19 9 21 10 22 11 F 25 12 : 1 26 3 I 1 17 11 x 1, x 2,, x n x( ) x = 1 n n i=1 x i 12 (SD ) x 1, x 2,, x n s 2 s 2 = 1 n n (x i x)

More information

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................

More information

1 (1997) (1997) 1974:Q3 1994:Q3 (i) (ii) ( ) ( ) 1 (iii) ( ( 1999 ) ( ) ( ) 1 ( ) ( 1995,pp ) 1

1 (1997) (1997) 1974:Q3 1994:Q3 (i) (ii) ( ) ( ) 1 (iii) ( ( 1999 ) ( ) ( ) 1 ( ) ( 1995,pp ) 1 1 (1997) (1997) 1974:Q3 1994:Q3 (i) (ii) ( ) ( ) 1 (iii) ( ( 1999 ) ( ) ( ) 1 ( ) ( 1995,pp.218 223 ) 1 2 ) (i) (ii) / (iii) ( ) (i ii) 1 2 1 ( ) 3 ( ) 2, 3 Dunning(1979) ( ) 1 2 ( ) ( ) ( ) (,p.218) (

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

ohpr.dvi

ohpr.dvi 2003/12/04 TASK PAF A. Fukuyama et al., Comp. Phys. Rep. 4(1986) 137 A. Fukuyama et al., Nucl. Fusion 26(1986) 151 TASK/WM MHD ψ θ ϕ ψ θ e 1 = ψ, e 2 = θ, e 3 = ϕ ϕ E = E 1 e 1 + E 2 e 2 + E 3 e 3 J :

More information

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1) φ 4 Minimal subtraction scheme 2-loop ε 28 University of Tokyo Atsuo Kuniba version 2/Apr/28 Formulas Γ n + ɛ = n n! ɛ + ψn + + Oɛ n =,, 2, ψn + = + 2 + + γ, 2 n ψ = γ =.5772... Euler const, log + ax x

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

chap10.dvi

chap10.dvi . q {y j } I( ( L y j =Δy j = u j = C l ε j l = C(L ε j, {ε j } i.i.d.(,i q ( l= y O p ( {u j } q {C l } A l C l

More information

Powered by TCPDF ( Title 第 11 講 : フィッシャー統計学 II Sub Title Author 石川, 史郎 (Ishikawa, Shiro) Publisher Publication year 2018 Jtitle コペンハーゲン解

Powered by TCPDF (  Title 第 11 講 : フィッシャー統計学 II Sub Title Author 石川, 史郎 (Ishikawa, Shiro) Publisher Publication year 2018 Jtitle コペンハーゲン解 Powered by TCPDF (www.tcpdf.org) Title 第 11 講 : フィッシャー統計学 II Sub Title Author 石川, 史郎 (Ishikawa, Shiro) Publisher Publication year 018 Jtitle コペンハーゲン解釈 ; 量子哲学 (018. 3),p.381-390 Abstract Notes 慶應義塾大学理工学部大学院講義ノート

More information

10

10 z c j = N 1 N t= j1 [ ( z t z ) ( )] z t j z q 2 1 2 r j /N j=1 1/ N J Q = N(N 2) 1 N j j=1 r j 2 2 χ J B d z t = z t d (1 B) 2 z t = (z t z t 1 ) (z t 1 z t 2 ) (1 B s )z t = z t z t s _ARIMA CONSUME

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

II III II 1 III ( ) [2] [3] [1] 1 1:

II III II 1 III ( ) [2] [3] [1] 1 1: 2015 4 16 1. II III II 1 III () [2] [3] 2013 11 18 [1] 1 1: [5] [6] () [7] [1] [1] 1998 4 2008 8 2014 8 6 [1] [1] 2 3 4 5 2. 2.1. t Dt L DF t A t (2.1) A t = Dt L + Dt F (2.1) 3 2 1 2008 9 2008 8 2008

More information

y i OLS [0, 1] OLS x i = (1, x 1,i,, x k,i ) β = (β 0, β 1,, β k ) G ( x i β) 1 G i 1 π i π i P {y i = 1 x i } = G (

y i OLS [0, 1] OLS x i = (1, x 1,i,, x k,i ) β = (β 0, β 1,, β k ) G ( x i β) 1 G i 1 π i π i P {y i = 1 x i } = G ( 7 2 2008 7 10 1 2 2 1.1 2............................................. 2 1.2 2.......................................... 2 1.3 2........................................ 3 1.4................................................

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

Vol.8 No (July 2015) 2/ [3] stratification / *1 2 J-REIT *2 *1 *2 J-REIT % J-REIT J-REIT 6 J-REIT J-REIT 10 J-REIT *3 J-

Vol.8 No (July 2015) 2/ [3] stratification / *1 2 J-REIT *2 *1 *2 J-REIT % J-REIT J-REIT 6 J-REIT J-REIT 10 J-REIT *3 J- Vol.8 No.2 1 9 (July 2015) 1,a) 2 3 2012 1 5 2012 3 24, 2013 12 12 2 1 2 A Factor Model for Measuring Market Risk in Real Estate Investment Hiroshi Ishijima 1,a) Akira Maeda 2 Tomohiko Taniyama 3 Received:

More information

() ( ) ( ) (1996) (1997) (1997) EaR (Earning at Risk) VaR ( ) ( ) Memmel (214) () 2 (214) 2

() ( ) ( ) (1996) (1997) (1997) EaR (Earning at Risk) VaR ( ) ( ) Memmel (214) () 2 (214) 2 1 (Basel Committee on Banking Supervision, BCBS) (BCBS(24), BCBS(215) ) *1 ( ) ( (1997) (213a,b) ) 2 *1 (214) 1 () ( ) ( ) (1996) (1997) (1997) EaR (Earning at Risk) VaR 2 1 1 ( ) ( ) Memmel (214) () 2

More information

tokei01.dvi

tokei01.dvi 2. :,,,. :.... Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 3. (probability),, 1. : : n, α A, A a/n. :, p, p Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN

More information

4. C i k = 2 k-means C 1 i, C 2 i 5. C i x i p [ f(θ i ; x) = (2π) p 2 Vi 1 2 exp (x µ ] i) t V 1 i (x µ i ) 2 BIC BIC = 2 log L( ˆθ i ; x i C i ) + q

4. C i k = 2 k-means C 1 i, C 2 i 5. C i x i p [ f(θ i ; x) = (2π) p 2 Vi 1 2 exp (x µ ] i) t V 1 i (x µ i ) 2 BIC BIC = 2 log L( ˆθ i ; x i C i ) + q x-means 1 2 2 x-means, x-means k-means Bayesian Information Criterion BIC Watershed x-means Moving Object Extraction Using the Number of Clusters Determined by X-means Clustering Naoki Kubo, 1 Kousuke

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α,

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α, [II] Optimization Computation for 3-D Understanding of Images [II]: Ellipse Fitting 1. (1) 2. (2) (edge detection) (edge) (zero-crossing) Canny (Canny operator) (3) 1(a) [I] [II] [III] [IV ] E-mail sugaya@iim.ics.tut.ac.jp

More information

MFIV となる Volatility Index Japan(VXJ) を日次で算出 公表している VIX 等と同様にTは約 1 ヶ月に設定 近似ターゲットは V t である 現行バージョンの計算方法は CBOE 方式に準じているが CSFI ではより高い精度で V t を近似する方法を研究開発中

MFIV となる Volatility Index Japan(VXJ) を日次で算出 公表している VIX 等と同様にTは約 1 ヶ月に設定 近似ターゲットは V t である 現行バージョンの計算方法は CBOE 方式に準じているが CSFI ではより高い精度で V t を近似する方法を研究開発中 日本版ボラティリティ インデックス VXJ の時系列特性 大阪大学金融 保険教育研究センター石田功 1 ボラティリティ インデックス 資産価格のボラティリティが デリバティイブの価格付けやヘッジ アセット アロケーション等 投資意思決定のあらゆる分野においてキーとなる重要な要素であることはいうまでもない しかしながら ボラティリティは直接観測できないため 資産価格の過去の時系列データから統計的に推定したものや

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x University of Hyogo 8 8 1 d x(t) =f(t, x(t)), dt (1) x(t 0 ) =x 0 () t n = t 0 + n t x x n n x n x 0 x i i = 0,..., n 1 x n x(t) 1 1.1 1 1 1 0 θ 1 θ x n x n 1 t = θf(t n 1, x n 1 ) + (1 θ)f(t n, x n )

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

PFI

PFI PFI 23 3 3 PFI PFI 1 1 2 3 2.1................................. 3 2.2..................... 4 2.3.......................... 5 3 7 3.1................................ 7 3.2.................................

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

L Y L( ) Y0.15Y 0.03L 0.01L 6% L=(10.15)Y 108.5Y 6%1 Y y p L ( 19 ) [1990] [1988] 1

L Y L( ) Y0.15Y 0.03L 0.01L 6% L=(10.15)Y 108.5Y 6%1 Y y p L ( 19 ) [1990] [1988] 1 1. 1-1 00 001 9 J-REIT 1- MM CAPM 1-3 [001] [1997] [003] [001] [1999] [003] 1-4 0 . -1 18 1-1873 6 1896 L Y L( ) Y0.15Y 0.03L 0.01L 6% L=(10.15)Y 108.5Y 6%1 Y y p L 6 1986 ( 19 ) -3 17 3 18 44 1 [1990]

More information

28

28 y i = Z i δ i +ε i ε i δ X y i = X Z i δ i + X ε i [ ] 1 δ ˆ i = Z i X( X X) 1 X Z i [ ] 1 σ ˆ 2 Z i X( X X) 1 X Z i Z i X( X X) 1 X y i σ ˆ 2 ˆ σ 2 = [ ] y i Z ˆ [ i δ i ] 1 y N p i Z i δ ˆ i i RSTAT

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

IMES DISCUSSION PAPER SERIES Discussion Paper No J INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN

IMES DISCUSSION PAPER SERIES Discussion Paper No J INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN IMES DISCUSSION PAPER SERIES Dscusso Paper No. 00-J-0 0 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN 0-8660 0 IMES Dscusso Paper Seres 00-J- -J-0 00 GMM O/N LIBOR HJM LIBOR GMMHJM JEL classfcato:

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

Part 1 GARCH () ( ) /24, p.2/93

Part 1 GARCH () ( ) /24, p.2/93 基盤研究 A 統計科学における数理的手法の理論と応用 ( 研究代表者 : 谷口正信 ) によるシンポジウム 計量ファイナンスと時系列解析法の新たな展開 平成 20 年 1 月 24 日 ~26 日香川大学 Realized Volatility の長期記憶性について 1 研究代表者 : 前川功一 ( 広島経済大学 ) 共同研究者 : 得津康義 ( 広島経済大学 ) 河合研一 ( 統計数理研究所リスク解析戦略研究センター

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information