21世紀の統計科学 <Vol. III>

Size: px
Start display at page:

Download "21世紀の統計科学 <Vol. III>"

Transcription

1 21 III HP, ( ), 1 tatsuya@e.u-tokyo.ac.jp 63

2 1 (Linear Mixed Model, LMM) (Best Linear Unbiased Predictor, BLUP) C.R. Henderson 50 LMM (Generalized Linear Mixed Model, GLMM) LMM LMM (Empirical Best Linear Unbiased Predictor, EBLUP) LMM LMM LMM 64

3 EBLUP EBLUP LMM 2 LMM BLUP 3 EBLUP 4 LMM LMM GLMM LMM GLMM (1992), McCulloch and Searle (2001), McCulloch (2003), (2007), Searle, Casella and McCulloch (1992), Demidenko (2004), Rao (2003) [1]. Battese, Harter and Fuller (1988) k ( ) k 250h (segment) n i i j y ij, LANDSAT, 0.45h 65

4 (picture element, ), k i j, x 1ij, x 2ij y i (x 1ij, x 2ij ) y ij = x ijβ + u ij, i = 1,..., k, j = 1,..., n i x ij = (1, x 1ij, x 2ij ), β = (β 0, β 1, β 2 ) x ijβ = β 0 + x 1ij β 1 + x 2ij β 2 u ij y ij x ij v i e ij u ij = v i + e ij (2.1) v i v i v i v i v i, e ij v i N (0, σ 2 v), e ij N (0, σ 2 e) y ij = x ijβ + v i + e ij, i = 1,..., k, j = 1,..., n i (2.2) σv, 2 σe 2 σv 2 σ2 e β (2.2) (LMM) y ij (Variance Component Model) (2.2) (Nested Error Regression Model) [2]. x ij, β 3 1 p 1 66

5 y i = y i1., y = y 1., x i = x i1. y ini, X = x 1. y k, β = β 0. x in i x k β p 1, e y e i = (e i1,..., e ini ), e = (e 1,..., e k ), 1 n i 1 j ni block diag( ) Z = block diag(j n1,..., j nk ) v = (v 1,..., v k ) (2.2) N = k i=1 n i y =Xβ + Zv + e, (2.3) v N (0, σ 2 vi k ), e N (0, σ 2 ei N ) y i Cov (y i ) = Σ i (σ 2 e, σ 2 v) = σ 2 ei ni + σ 2 vj ni I ni n i n i, J ni = j ni j n i 1 n i n i y Cov (y) = Σ(σ 2 e, σ 2 v) = block diag(σ 1 (σ 2 e, σ 2 v),..., Σ k (σ 2 e, σ 2 v)) v i Cov (y i ) = σei 2 ni y i σei 2 ni + σvj 2 ni (MCMC) 67

6 [3]. (2.3) y =Xβ + Zv + e, (2.4) v N q (0, G), e N N (0, R) y N 1 X N p Z N q y Cov (y) = Σ = R + ZGZ (2.5) G, R α = (α 1,..., α m ) Σ = Σ(α) 2.2 (BLUP) [1] BLUP. (2.4) β v v G, R v y (BLUP) v β β Henderson (1950) ( ) ( ) X R 1 X Z R 1 X X R 1 Z Z R 1 Z + G 1 ) ( β v = X R 1 y Z R 1 y (2.6) β = (X Σ 1 X) X Σ 1 y, v = GZ Σ 1 (y X β) (2.7) (X Σ 1 X) X X Σ 1 X β β 2 (GLS) a R p, b R q µ = a β + b v BLUP µ = a β + b GZ Σ 1 (y X β) (2.8) 68

7 (2.6) (2.7) (2.6) 2 Z R 1 X β + (Z R 1 Z + G 1 ) v = Z R 1 y v = (Z R 1 Z + G 1 ) 1 Z R 1 (y Xβ) (2.9) (Z R 1 Z + G 1 ) 1 Z R 1 (Z R 1 Z + G 1 ) 1 Z R 1 =GZ R 1 G { (Z R 1 Z + G 1 ) G 1} (Z R 1 Z + G 1 ) 1 Z R 1 =GZ R 1 GZ R 1 Z(Z R 1 Z + G 1 ) 1 Z R 1 =GZ { R 1 R 1 Z(G 1 + Z R 1 Z) 1 Z R 1} =GZ Σ 1 Σ 1 = (ZGZ + R) 1 = R 1 R 1 Z(G 1 + Z R 1 Z) 1 Z R 1 (2.10) (2.9) (2.7) v v (2.6) 1 X R 1 X β + X R 1 Z v = X R 1 y X R 1 X β + X R 1 ZGZ Σ 1 (y X β) = X R 1 y X R 1 (Σ ZGZ )Σ 1 X β = X R 1 (Σ ZGZ )Σ 1 y Σ = ZGZ + R R 1 (Σ ZGZ ) = I, X Σ 1 X β = X Σ 1 y (2.7) β [2]. (2.6) y v G 1/2 R 1/2 { ( exp 1 2 v y Xβ Zv ) ( G R 1 ) ( v y Xβ Zv )} 69

8 exp{ } ( 2) h(β, v) = v G 1 v + (y Xβ Zv) R 1 (y Xβ Zv) β v β, v h(β, v) β h(β, v) v = 2X R 1 (y Xβ Zv), =2G 1 v 2Z R 1 (y Xβ Zv), h(β, v)/ β = 0, h(β, v)/ v = 0 (2.6) 1 y v (y, v) ( ) Σ ZG Cov (y, v) = GZ (2.11) G y v E[v y] = GZ Σ 1 (y Xβ),, y v ( v y N q GZ Σ 1 (y Xβ), G GZ Σ 1 ZG ) (2.10) y y N N (Xβ, Σ) { Σ 1/2 exp 1 } 2 (y Xβ) Σ 1 (y Xβ) (2.12) β 2 β v GZ Σ 1 (y Xβ) β GZ Σ 1 (y X β) v 70

9 2 (2.11) EM [3] BLUP. 2.1 (2.2), µ i = x iβ + v i BLUP x i = n i j=1 x ij/n i G(σ 2 v) = σ 2 vi k, Σ i (σ 2 e, σ 2 v) = σ 2 ei ni + σ 2 vj ni, Σ(σ 2 e, σ 2 v) = block diag(σ 1 (σ 2 e, σ 2 v),..., Σ k (σ 2 e, σ 2 v)) Σ 1 i = 1 σ 2 e ( I ni ) σv 2 J σe 2 + n i σv 2 ni θ = σ 2 v/σ 2 e µ i BLUP µ i (θ) (2.8) µ i (θ) = x i β(θ) + θn { } i y 1 + θn i x i β(θ) i (2.13) y i = n i j=1 y ij β GLS { k ( β(θ) = xi x i n2 i θ 1 + n i θ x ) } ix 1 i i=1 k i=1 ( xi y i n iθ 1 + n i θ x iy i ) 2.3 (2.4) 71

10 (2.2) µ i = x iβ + v i y i n i 1 5 (2.13) BLUP µ i (θ) y i x i β(θ) y i n i y i x i β(θ) y i BLUP n i θ y i x i β(θ) n i BLUP BLUP [1]. v i β = 0 µ i y i v i (y i, v i ) ( ) σv 2 + σ 2 Cov (y i, v i ) = e/n i σv 2 y i v i E[v i y i ] = θn i (1 + θn i ) 1 (y i x iβ) y i x iβ y i [2]. (2.2) y i E[y i ] = x iβ i β β y 1,..., y k β(θ) y i σ 2 v σ 2 v 72

11 Efron and Morris (1975) 2.4 (EBLUP) [1] (ML) (REML) (2.4) G, R α = (α 1,..., α m ) Σ(α) = R(α) + ZG(α)Z BLUP (2.8) µ(α) = a β(α)+b G(α)Z {Σ(α)} 1 {y X β(α)} α α µ( α) (EBLUP) α (Maximum Likelihood, ML) (Restricted Maximum Likelihood, REML) y (2.12) y N N (Xβ, Σ(α)) ML β GLS β(α) α ML log Σ(α) + (y X β(α)) Σ(α) 1 (y X β(α)) X r K K X = 0 N (N r) K y N N r (0, K Σ(α)K) REML log K Σ(α)K + y K(K Σ(α)K) 1 K y REML P (α) = Σ(α) 1 Σ(α) 1 X { X Σ(α) 1 X } X Σ(α) 1 y P (α)y =(y X β(α)) Σ(α) 1 (y X β(α)), P (α) =K(K Σ(α)K) 1 K ( / α i ) log Σ =tr (Σ 1 Σ/ α i ), P / α i = P ( Σ/ α i )P, ( / α i ) log K ΣK =tr (P Σ/ α i ) 73

12 ML REML ( ) 1 Σ(α) [ML] tr Σ(α) = y P (α) Σ(α) P (α)y (2.14) α i α ( i [REML] tr P (α) Σ(α) ) = y P (α) Σ(α) P (α)y (2.15) α i α i y P (α){ Σ(α)/ α i }P (α)y =(y X β(α)) Σ(α) 1 { Σ(α)/ α i }Σ(α) 1 (y X β(α)) = (y X β(α)) { Σ(α) 1 / α i }(y X β(α)) ML REML McCulloch and Searle (2001) 6.10 REML ML REML 3.1 [2]. ML, REML (2.14), (2.15) (2.2) n 1,..., n k σ 2 e ˆσ 2UB e = S 1 N k p + λ, S 1 = k n i } 2 {(y ij y i ) (x ij x i ) β1 i=1 (2.16) p λ k ni i=1 j=1 (x ij x i )(x ij x i ) (2.2) λ = 1, λ = 0 β 1 k ni i=1 j=1 {(y ij y i ) (x ij x i ) β} 2 β y 1,..., y k ˆσ e 2UB y i N (x iβ, σe/n 2 i + σv), 2 i = 1,..., k, σv 2 III β 0 = (X X) 1 X y S = (y X β 0 ) (y X β 0 ) N = k i=1 n i, N = N tr (X X) 1 k i=1 n2 i x i x i S E[S] = (N p)σ2 e + N σv 2 σv 2 j=1 ˆσ 2UB v = N 1 {S (N p)ˆσ e 2UB } 74

13 σv 2 ˆσ2UB v Kubokawa (2000) σe, 2 σv 2 θ = σv/σ 2 e 2 { 1 { S ˆθ = max N ˆσ e 2UB (N p) }, 1 } k 2/3 (2.17) ˆθ (2.13) EBLUP µ i (ˆθ) EBLUP EBLUP EBLUP EBLUP 3.1 Fay and Herriot (1979) y i = x iβ + v i + e i, i = 1,..., k, (3.1) e i e i N (0, σe/n 2 i ) (2.2) Fay-Herriot σe 2 σe 2 (2.2) y i = n i j=1 y ij/n i, x i = n i j=1 x ij/n i y i, x i 75

14 y = (y 1,..., y k ), X = (x 1,..., x k ), e = (e 1,..., e k ) y =Xβ + v + e, (3.2) v N (0, σ 2 vi k ), e N (0, D) D D = diag (σ 2 e/n 1,..., σ 2 e/n k ) (3.1) σ 2 v θ = σ2 v/σ 2 e (y 1,..., y k ) θ ˆθ = ˆθ(y 1,..., y k ) µ i = x iβ + v i EBLUP (2.13) ˆθ µ i (ˆθ) = y i ˆγ i (ȳ i x i β(ˆθ)), ˆγ i = γ i (ˆθ) = (1 + n iˆθ) 1 (3.3) β GLS ( k β(θ) = i=1 n i x i x ) 1 k i 1 + n i θ i=1 n i x i y i 1 + n i θ (3.4) θ ML, REML (2.14), (2.15) [ML] [REML] σ 2 e σ 2 e k i=1 k i=1 n i k 1 + n i θ = i=1 n i 1 + n i θ σ2 etr = n 2 i {y i x i β(θ)} 2 ( k i=1 (1 + n i θ) 2 n i x i x ) 1 k i n 2 i x i x i 1 + n i θ i=1 (1 + n i θ) 2 k n 2 i {y i x i β(θ)} 2 i=1 (1 + n i θ) 2 0 ˆθ ML, ˆθ REML Fay and Herriot (1979) [FH] σ 2 e(k p) = k n i {y i x i β(θ)} 2 i=1 1 + n i θ 76

15 ˆθ F H β 2 = ( k j=1 n jx j x j) 1 k j=1 n jx j y j S 2 = k i=1 n i(y i x i β 2 ) 2 (2.16) [TR] { 1 {S ˆθT R 2 = max (k p) } 1 }, n σe 2 k 2/3 n = N tr ( k n i x i x i) 1 i=1 k n 2 i x i x i n 1 = = n k = n θ ML n 1 max{n k i=1 {y i x i β(θ)} 2 /(kσe) 2 1, 0}, REML n 1 max{n k i=1 {y i x i β(θ)} 2 /((k p)σe) 2 1, 0} REML FH REML ˆθ T R i=1 3.2 EBLUP EBLUP EBLUP µ i = x iβ + v i M i (θ, µ i (ˆθ)) = E [{ µ i (ˆθ) µ i } 2 ] /σ 2 e (3.5) (Mean Squared Error, MSE) MSE EBLUP y i N (x iβ, σ 2 e/n i + σ 2 v) Stein EBLUP MSE (2007) Datta, Kubokawa, Rao and Molina (2011) MSE MSE n i k k ˆθ 77

16 Bias θ (ˆθ) = E[ˆθ θ], V ar θ (ˆθ) = E[(ˆθ E[ˆθ]) 2 ] Bias θ (ˆθ) = O p (k 1 ) ˆθ ML, REML, FH, TR g 1i (θ) =n 1 i n 1 i γ i (θ), { k g 2i (θ) = {γ i (θ)} 2 x i j=1 g 3i (θ) =n i {γ i (θ)} 3 V ar θ (ˆθ), γ j n j x j x j} 1xi, EBLUP MSE k M i (θ, µ i (ˆθ)) = g 1i (θ) + g 2i (θ) + g 3i (θ) + O(k 3/2 ) MSE MSE { 2 M i U (ˆθ) = g 1i (ˆθ) + g 2i (ˆθ) + 2g 3i (ˆθ) Biasˆθ(ˆθ) γ i (ˆθ)} (3.6) E[ M U i (ˆθ)] = M i (θ, µ i (ˆθ)) + O(k 3/2 ) θ ˆθ ML, ˆθREML, ˆθF H, ˆθT R V ar θ (ˆθ ML ) = V ar θ (ˆθ REML ) = 2/ k i=1 (n iγ i ) 2 + O(k 3/2 ), V ar θ (ˆθ F H ) = 2k/( k i=1 n iγ i ) 2 + O(k 3/2 ), V ar θ (ˆθ T R ) = 2 k i=1 γ 2 i /N 2 + O(k 3/2 ) Bias θ (ˆθ REML ) = Bias θ (ˆθ T R ) = O(k 3/2 ), Bias θ (ˆθ ML ) = tr ( i n iγ i x i x i) 1 i (n iγ i ) 2 x i x i i (n iγ i ) 2 + O(k 3/2 ), Bias θ (ˆθ F H ) =2 k i (n iγ i ) 2 ( i n iγ i ) 2 ( i n iγ i ) 3 + O(k 3/2 ) MSE EBLUP MSE M i (θ, µ i (ˆθ)) ˆθ g 3i (θ) V ar θ (ˆθ) ˆθ MSE V ar θ (ˆθ ML ) = V ar θ (ˆθ REML ) V ar θ (ˆθ F H ) FH ML, REML MSE (3.6) M U i (ˆθ) Bias(ˆθ) = 0 θ REML 78

17 Datta et al. (2011), Rao (2003), Datta, Rao and Smith (2005), Kubokawa (2011b) Butar and Lahiri (2003), Hall and Maiti (2006a,b), Kubokawa and Nagashima (2011) 3.3 EBLUP EBLUP i µ i = x β +v i σ 2 e µ i µ i y i y i µ i N (µ i, σ 2 e/n i ) I i : y i ± z α/2 σ 2 e /n i (3.7) z α/2 α/2 1 α n i y i (3.1) µ i µ i N (0, σ 2 vi k ) µ i γ i = (1 + n i θ) 1 µ B i (β, θ) = x iβ + (1 γ i )(y i x iβ) y i µ i µ i y i N ( µ B i (β, θ), (σ 2 e/n i )(1 γ i ) ) µ i 1 α I B i (β, θ) : µ B i (β, θ) ± z α/2 (σ 2 e /n i )(1 γ i ) β, θ ˆθ y 1,..., y k θ β (3.4) 2 β(ˆθ) µ i µ EB i (ˆθ) = x i β(ˆθ) + (1 ˆγ i ) ( ) y i x 1 i β(ˆθ), ˆγ i = (1 + n iˆθ) 79

18 I B i (β, θ) Ii EB (ˆθ) : µ EB i (ˆθ) ± z α/2 (σ 2 e /n i )(1 ˆγ i ) µ EB i (ˆθ) y i 1 α k = 50, p = 3, 1 α = 0.95 β, n i, x i θ 1 Ii EB (ˆθ) 95% 0.99 I i * I i EB I i AEB 0.98 I i AEB I i * I i EB θ 1: I i, IEB i, Ii AEB 3.2 k 1 α, n 1 = = n k σe 2 Basu, Ghosh and Mukerjee (2003) n 1,..., n k σe 2 - (2005), Kubokawa (2010) Basu et al. (2003), z α/2 z α/2 {1 + (2k) 1 h(ˆθ)} I AEB i : µ EB i (ˆθ) ± z α/2 [1 + (2k) 1 h(ˆθ) ] (σ 2 e/n i )(1 ˆγ i ) (3.8) 80

19 h(ˆθ) h(ˆθ) = kn iˆγ i 2 Biasˆθ(ˆθ) + (1 + z 2 kn 2 i ˆγ i 4 1 ˆγ α/2) i 4(1 ˆγ i ) V arˆθ(ˆθ) 2 + kn iˆγ i 2 { x i 1 ˆγ i ( k j=1 n j x j x ) (ˆθ)} 1xi j + 2n iˆγ i V arˆθ 1 + n j ˆθ (3.9) Bias θ (ˆθ) = O p (k 1 ), ˆθ/ y i = O p (k 1 ) P [µ i I AEB i ] = 1 α + o(k 1 ), (k ) (3.1) ˆθ T R Bias θ (ˆθ T R ) = o(k 1 ), V ar θ (ˆθ T R ) = 2 k i=1 (1 + n iθ) 2 /N 2 + o(k 1 ) (3.9) n 1 = = n k = n h(ˆθ) = 1 + z2 α/2 2n 2ˆθ nˆθ { kx i ( k j=1 1xi } x j x j) Ii AEB 95%, θ > % 2 Ii AEB Ii Ii AEB LMM Kubokawa (2011b) Chatterjee, Lahiri and Li (2008), Hall and Maiti (2006b), Kubokawa and Nagashima (2011) 3.4 EBLUP EBLUP m 2 81

20 I i * I i * I i EB I i AEB I i AEB I i EB θ 2: I i, IEB i, Ii AEB i n i k = 48 n i y ij (2.2) y ij = β 0 + x 1i β 1 + x 2ij β 2 + x 3ij β 3 + v i + e ij x 1i i x 2ij (i, j) (i), x 3ij (i, j) x ij = (1, x 1i, x 2ij, x 3ij ), x i = (1, x 1i, x 2i, x 3i ), k ni i=1 j=1 (x ij x i )(x ij x i ) 2 (2.16) ˆσ e 2 λ λ = 2 ( ) µ i = β 0 + x 1i β 1 + x 2i β 2 + x 3i β 3 + v i ˆθ 3.1 ˆθ T R ˆθ T R, β(ˆθ T R ), ˆσ 2 e ˆθ T R = , β(ˆθ T R ) = (12.927, , , ), ˆσ 2 e = β 1 82

21 1: 1m 2 (EBLUP i (4.6) ) No. n i ˆv i y i EBLUP i β(ˆθt R ) 1/n i M U i EBLUP i

22 MSE Sample Mean EBLUP n i : y i MSE EBLUP i MSE M U i (No.1 No.48 ) 1 1m 2 No.1 No n i y i EBLUP i (3.3) β(ˆθ T R ) 1 EBLUP i y i β(ˆθ T R ) n i n i 1 (3.5) (MSE) 1/n i v i y i MSE M i U EBLUP i MSE (3.6) 3 y i MSE M i U n i No.1 No.48 EBLUP i y i n i n i 1 MSE MSE 0 84

23 1 ˆv i 1.42, 2.31, , ˆv i 4 Ii AEB y i Ii No.1 No.48 I AEB i (3.8) Ii n i I AEB i I AEB i 5 n i Ii n i Ii AEB, n i Ii AEB I i * (upper) I i AEB (upper) I i * (lower) I i AEB (lower) : I AEB i I i (No.1 No.48 ) 85

24 I i * I i AEB n i : I AEB i I i n i (n i No.1 No.48 ) 4 (LMM) 2.3 LMM, (2007) 4.1 Laird and Ware (1982), Tsimikas and Ledolter (1997), Das, Jiang and Rao (2004) Diggle, Liang and Zeger 86

25 (1994), Verbeke and Molenberghs (2000), McCullock and Searle (2001), Demidenko (2004), Fitzmaurice, Laird and Ware (2004), Molenberghs and Verbeke (2006) Hsiao (2003) (3.1) T (repeated measures data, longitudinal data) t = 1,..., T y i1,..., y it x i1,..., x it y i = (y i1,..., y it ), X i = (x i1,..., x it ) y i y i = X iβ + j T v i + e i (4.1) e i v i e i N T (0, (σ 2 e/n i )Q), v i N (0, σ 2 v) e i = (e i1,..., e it ) y it = x itβ + v i + e it, i = 1,..., k, t = 1,..., T, e is e it, s t, Q AR(1) T = 4 ρ < 1 Q 1 = Q 2 = 1 1 ρ 2 1 ρ ρ ρ ρ 1 ρ ρ ρ ρ 1 ρ ρ ρ ρ 1 = (1 ρ)i 4 + ρj 4, 1 ρ ρ 2 ρ 3 ρ 1 ρ ρ 2 ρ 2 ρ 1 ρ ρ 3 ρ 2 ρ 1 = (1 ρ2 ) ( 1 ρ i j ) 87

26 k y = y 1., X = X 1., v = v 1., e = e 1., y k X k v k e k Z = block diag(j T,..., j T ) y = Xβ + Zv + e (4.2) p q A = (a ij ), r s B A B = (a ij B) Z Z = I k j T v Cov (v) = G D = diag (σ 2 e/n 1,..., σ 2 e/n k ) y Σ = ZGZ + D Q ZGZ = (I k j T )(G 1)(I k j T ) = G J T Σ = G J T + D Q G = Cov (v) G = σ 2 v {(1 ρ v )I k + ρ v J k } 2 G (2.2), (3.1) Cov (v) = σ 2 vi k β v Σ = Cov (y) Σ =σ 2 vi k J T + D Q = diag (Σ 1,..., Σ k ), Σ i =σ 2 vj T + (σ 2 e/n i )Q, i = 1,..., k Σ 1 = diag ( ) Σ 1 1,..., Σ 1 k θ = σ 2 v /σe 2 Σ 1 i = n i {Q 1 n iθq 1 j T j T Q 1 } σe n i θj T Q 1 j T 88

27 v = (ˆv 1,..., ˆv k ) = GZ Σ 1 (y X β) ( ) ˆv i =σvj 2 T Σ 1 i y i X i β n i θ ( ) = 1 + n i θj T Q 1 j T Q 1 y i X j i β T β GLS ( k β = X i Σ 1 i X i i=1 ) 1 k i=1 X i Σ 1 i y i T µ i = j T X iβ/t + v i µ i = j T X i β/t + ˆv i Q Q 1 = (1 ρ)i T + ρj T Q 1 1 = 1 { ρ } I T 1 ρ 1 + (T 1)ρ J T j T Q 1 1 = {1 + (T 1)ρ} 1 j T ˆv i = n i θ 1 + (T 1)ρ + n i θt T t=1 ( ) y it x it β Q Q 2 = (1 ρ 2 ) 1 (ρ i j ) T = 4 1 ρ 0 0 Q 1 ρ 1 + ρ 2 ρ 0 2 = 0 ρ 1 + ρ 2 ρ 0 0 ρ 1 j T Q 1 2 = (1 ρ)(1, 1 ρ,..., 1 ρ, 1) = (1 ρ) 2{ j T + ρ(1 ρ) 1 (1, 0,..., 0, 1) }, j T Q 1 2 j T = (1 ρ) 2{ T + 2ρ/(1 ρ) } n i θ ˆv i = (1 ρ) 2 + n i θ{t + 2ρ/(1 ρ)} { T ( ) y it x it β + ρ ( y 1 ρ i1 x i1 β + y it x β )} it t=1 n i ρ 0 T t=1( yit x it β ) /T 89

28 4.2 v i t = 1,..., T v i T T t=1 (y it x itβ) T (4.1) j T v i y i = X iβ + v i + e i (4.3) v i = (v i1,..., v it ) N T (0, σ 2 vi T ) y i Σ i = σ 2 vi T + (σ 2 e/n i )Q, i = 1,..., k T µ it = x it β + v it E[v it y i ] = σv(0, 2..., 0, 1)Σ 1 i (y i x iβ) µ it = x β it + σv(0, 2..., 0, 1)Σ 1 i (y i X i β) Σ i = (σe/n 2 i )(n i θi T + Q) ( ) ( A 11 a 12 n i θi T + Q = A =, A 1 A 11 a 12 = a 21 a 22 a 21 a 22 a 22 a 22.1 = a 22 a 21 A 1 11 a 12 a 21 = a 21 A 1 11 /a 22.1, a 22 = 1/a 22.1 µ it µ it = x β it + n { iθ (y a it x β) } it (a 21 A 1 11, 0)(y i X i β) (4.4) 22.1 y it x it β T 1 Q Q 1 = (1 ρ)i T + ρj T a 22.1 = (n i θ + 1 ρ)(n i θ (T 1)ρ)/(n i θ (T 2)ρ), a 21 A 1 11 = {ρ/(n i θ ) 90

29 (T 2)ρ)}j T 1, µ it =x β n i θ(n i θ (T 2)ρ) { it + (y (n i θ + 1 ρ)(n i θ (T 1)ρ) it x β) it ρ T 1 } (y n i θ (T 2)ρ it x it β) t=1 (4.5) n i µ it y it, ρ 0 µ it x it β + {n i θ/(1 + n i θ)}(y it x it β) Q Q 2 = (1 ρ 2 ) 1 (ρ i j ) (4.4) T = 3 µ it =x β it + n iθ (n i θ + 1) 2 ρ 2 (n i θ) 2 n i θ + 1 (n i θ + 1) 2 ρ 2 n i θ(n i θ 1) { (y it x it β) ρ (n i θ + 1) 2 ρ 2 (n i θ) 2 [ ni θρ(y i,t 2 x i,t 2 β) + (n i θ + 1)(y i,t 1 x i,t 1 β) ]} (4.6) (4.5) n i θρ < n i θ + 1 (4.6) n i µ it y it, ρ 0 µ it x it β + {n i θ/(1 + n i θ)}(y it x it β) θ, ρ ML REML t β β t = ( k j=1 n jx jt x jt) 1 k j=1 n jx jt y jt ê it = y it x it β t θ (2.16), S 2 = T k t=1 i=1 n iê 2 it, n = T k k k { n i tr ( n 2 i x it x it)( n i x it x it) 1 } t=1 i=1 i=1 i=1 ˆθ T R = max{ 1 n (S 2 σ 2 e T (k p) ), 1 } k 2/3 91

30 ρ, ˆρ = k i=1 n i ˆρ i /N ˆρ i Q 1, e i = T t=1 êit/t, T 1 ˆρ i = 2 t=1 s=t+1 T (ê is e i )(ê it e i ) /{(T 1) T (ê it e i ) 2 } Q 2, ˆρ i = T t=2 (ê it e i )(ê i,t 1 e i )/ T t=1 (ê it e i ) 2 ˆρ < 1, ML, REML Q 2 (4.4) (4.6) (T = 5) ˆθ T R = , ˆρ = EBLUP i 2001 EBLUP i 5, (4.4) 6 ˆv it ˆv it Nos.1, 3, 4, 13, 14, 33 ˆv it ˆv it (No.1, 3, 4) No.13, 14, 33 t=1 4.3 (GLMM) k i n i y i1,..., y ini 92

31 2.0 No. 1 No.13 No. 3 No. 14 No. 4 No No No No.4 No No.3 No : ˆv it ˆv it v i y ij f(y ij v i ) = exp {[y ij θ ij b(θ ij )]/τ ij + c(y ij, τ ij )}, j = 1,..., n i ; i = 1,..., k, θ ij τ ij (> 0) τ ij y ij E[y ij v i ] = µ ij µ ij g( ) x ij g(µ ij ) = x ijβ + v i v i N (0, σ 2 v) GLMM GLMM McCullagh and Nelder (1989, 14.5 ) Fahrmeir and Tutz (2001), McCulloch (2003) McCulloch and Searle (2000) Lawson, Browne and Vidal Rodeiro (2003), Lawson (2006) GLMM 93

32 (Standardized Mortality Rate, SMR), ( )/( ) SMR GLMM (1988) 4.4 (2.2) y ij = µ ij + e ij, µ ij = x ijβ + v i y ij (µ ij, σ 2 e) N (µ ij, σ 2 e) µ ij µ ij N (x ijβ, σ 2 v) β, σ 2 v, σ 2 e β, σ 2 v, σ 2 e (2.2) β, σ 2 v, σ 2 e (i, j)- µ ij µ (µ, σ 2 e) (β, σ 2 v) π 1 (µ, σ 2 e β, σ 2 v) (β, σ 2 v) π 2 (β, σ 2 v) π 1 (µ, σ 2 e β, σ 2 v) µ ij (β, σ 2 v) N (x iβ, σ 2 v), σe 2 σe 2 dσe 2 σe 2 dσe 2 π 2 (β, σv) 2 σv 2 dσv 2 β (1) dβ, (2) β σ2 v N (β 0, σva), 2 σ 2 v 94

33 (3) β (σ 2 v, λ) N (β 0, λσ 2 va), λ π 3 (λ), β 0, A Kubokawa and Strawderman (2007) Banerjee, Carlin and Gelfand (2004) 5 C. Stein (MSE) n 1 = = n k = n (3.1) µ i = x iβ + v i µ = (µ 1,..., µ k ) µ S = X β { + max 1 (k p } 2)σ2 e n y X β, 0 (y X β) 2 β = (X X) 1 Xy β OLS Stein k p 3 µ S MSE y MSE Stein (1991) (2004) 20 n 1 = = n k = n (3.1) µ EBLUP θ REML (3.3) µ S (k p 2) (k p) Henderson BLUP 1950 Stein EBLUP Henderson Stein 95

34 2.4 LMM LMM, n 1 = = n k = n (2.2) (2.16) S 1 S 2 S 1 /σ 2 1 χ 2 m 1, S 2 /σ 2 2 χ 2 m 2 m 1, m 2 σ 2 1 = σ 2 e, σ 2 2 = σ 2 e + nσ 2 v σ2 1, σ 2 2 σ2 1 < σ 2 2 Srivastava and Kubokawa (1999), Kubokawa and Tsai (2006) LMM Jiang, Rao, Gu and Nguyen (2008) Fence Kubokawa and Srivastava (2010) LMM (AIC) Vaida and Blanchard (2005) AIC Kubokawa (2011a), Kubokawa and Nagashima (2011) LMM Carleton John N.K. Rao LMM Rao (Statistica Canada) PhD PhD Rao ,

35 [1] Banerjee, S., Carlin, B.P. and Gelfand, A.E. (2004). Hierarchical Modeling and Analysis for Spatial Data. Chapman and Hall, New York. [2] Basu, R., Ghosh, J.K., and Mukerjee, R. (2003). Empirical Bayes prediction intervals in a normal regression model: higher order asymptotics. Statist. Prob. Letters, 63, [3] Battese, G.E., Harter, R.M. and Fuller, W.A. (1988). An errorcomponents model for prediction of county crop areas using survey and satellite data. J. Amer. Statist. Assoc., 83, [4] Butar, F.B. and Lahiri, P. (2003). On measures of uncertainty of empirical Bayes small-area estimators. J. Statist. Plan. Inf., 112, [5] Chatterjee, S., Lahiri, P., and Li, H. (2008). Parametric bootstrap approximation to the distribution of EBLUP and related prediction intervals in linear mixed models. Ann. Statist., 36, [6] Das, K., Jiang, J. and Rao, J.N.K. (2004). Mean squared error of empirical predictor. Ann. Statist., 32, [7] Datta, G.S., Kubokawa, T., Rao, J.N.K., and Molina, I. (2011). Estimation of mean squared error of model-based small area estimators. Test, an Official Journal of the Spanish Society and Operations Research, 20, [8] Datta, G.S., Rao, J.N.K. and Smith, D.D. (2005). On measuring the variability of small area estimators under a basic area level model. Biometrika, 92, [9] Demidenko, E. (2004). Mixed Models: Theory and Applications. Wiley. [10] Diggle, P., Liang, K.-Y., and Zeger, S.L. (1994). Longitudinal Data Analysis. Oxford Univ. Press. 97

36 [11] Efron, B. and Morris, C. (1975). Data analysis using Stein s estimator and its generalizations. J. Amer. Statist. Assoc., 70, [12] Fahrmeir, L. and Tutz, G. (2001). Multivariate Statistical Modelling Based on Generalized Linear Models. 2nd ed. Springer, New York. [13] Fay, R.E. and Herriot, R. (1979). Estimates of income for small places: An application of James-Stein procedures to census data. J. Amer. Statist. Assoc., 74, [14] Fitzmaurice, G.M., Laird, N.M., and Ware, J.H. (2004). Applied Longitudinal Analysis. Wiley. [15] Hall, P. and Maiti, T. (2006a). Nonparametric estimation of meansquared prediction error in nested-error regression models. Ann. Statist., 34, [16] Hall, P. and Maiti, T. (2006b). On parametric bootstrap methods for small area prediction. J. Royal Statist. Soc., 68, [17] Henderson, C.R. (1950). Estimation of genetic parameters. Ann. Math. Statist., 21, [18] Hsiao, C. (2003). Analysis of Panel Data. Cambridge University Press. (2007) [19] Jiang, J., Rao, J.S., Gu, Z., and Nguyen, T. (2008). Fence methods for mixed model selection. Ann. Statist., 36, [20] Kubokawa, T. (2000). Estimation of variance and covariance components in elliptically contoured distributions. J. Japan Statist. Soc., 30, [21] Kubokawa, T. (2010). Corrected empirical Bayes confidence intervals in nested error regression models. J. Korean Statist. Soc., 39, [22] Kubokawa, T. (2011a). Conditional and unconditional methods for selecting variables in linear mixed models. J. Multivariate Analysis, 102,

37 [23] Kubokawa, T. (2011b). On measuring uncertainty of small area estimators with higher order accuracy. J. Japan Statist. Soc., to appear. [24] Kubokawa,T., and Nagashima, B. (2011). Parametric bootstrap methods for bias correction in linear mixed models. Discussion Paper Series, CIRJE-F-801. [25] Kubokawa, T., and Srivastava, M.S. (2010). An empirical Bayes information criterion for selecting variables in linear mixed models. J. Japan Statist. Soc., 40, [26] Kubokawa, T. and Strawderman, W.E. (2007). On minimaxity and admissibility of hierarchical Bayes estimators. J. Multivariate Analysis, 98, [27] Kubokawa, T. and Tsai, M.-T. (2006). Estimation of covariance matrices in fixed and mixed effects linear models. J. Multivariate Analysis, 97, [28] Laird, N.M. and Ware, J.H. (1982). Random-effects models for longitudinal data. Biometrics, 38, [29] Lawson, A.B. (2006). Statistical Methods in Spacial Epidemiology. 2nd ed. Wiley, England. [30] Lawson, A.B., Browne, W.J. and Vidal Rodeiro, C.L. (2003). Disease Mapping with WinBUGS and MLwiN. Wiley, England. [31] McCulloch, C.E. (2003). Generalized Linear Mixed Models. NSF-CBMS Regional Conference Series in Probability and Statistics, Volume 7. IMS, USA. [32] McCulloch, C.E. and Searle, S.R. (2001). Generalized, Linear and Mixed Models. Wiley, New York. [33] Molenberghs, G. and Verbeke, G. (2006). Models for Discrete Longitudinal Data. Springer. [34] Rao, J.N.K. (2003). Small Area Estimation. Wiley, New Jersey. 99

38 [35] Searle, S.R., Casella, G., and McCulloch, C.E. (1992). Variance Components, Wiley, New York. [36] Srivastava, M.S. and Kubokawa, T. (1999). Improved nonnegative estimation of multivariate components of variance. Ann. Statist., 27, [37] Tsimikas, J.V. and Ledolter, J. (1997). Mixed model representation of state space models: New smoothing results and their application to REML estimation. Statistica Sinica, 7, [38] Vaida, F., and Blanchard, S. (2005). Conditional Akaike information for mixed-effects models. Biometrika, 92, [39] Verbeke, G. and Molenberghs, G. (2000). Linear Mixed Models for Longitudinal Data. Springer, New York. [40] (1992)... [41] (2007).. 35, [42] (2007). BLUP.. [43],,, (2004). :. [44] (2005).. ), 35, [45] (1991). Stein., 20, [46] (1988).., 17,

untitled

untitled 17 5 13 1 2 1.1... 2 1.2... 2 1.3... 3 2 3 2.1... 3 2.2... 5 3 6 3.1... 6 3.2... 7 3.3 t... 7 3.4 BC a... 9 3.5... 10 4 11 1 1 θ n ˆθ. ˆθ, ˆθ, ˆθ.,, ˆθ.,.,,,. 1.1 ˆθ σ 2 = E(ˆθ E ˆθ) 2 b = E(ˆθ θ). Y 1,,Y

More information

dvi

dvi 2017 65 2 185 200 2017 1 2 2016 12 28 2017 5 17 5 24 PITCHf/x PITCHf/x PITCHf/x MLB 2014 PITCHf/x 1. 1 223 8522 3 14 1 2 223 8522 3 14 1 186 65 2 2017 PITCHf/x 1.1 PITCHf/x PITCHf/x SPORTVISION MLB 30

More information

カルマンフィルターによるベータ推定( )

カルマンフィルターによるベータ推定( ) β TOPIX 1 22 β β smoothness priors (the Capital Asset Pricing Model, CAPM) CAPM 1 β β β β smoothness priors :,,. E-mail: koiti@ism.ac.jp., 104 1 TOPIX β Z i = β i Z m + α i (1) Z i Z m α i α i β i (the

More information

seminar0220a.dvi

seminar0220a.dvi 1 Hi-Stat 2 16 2 20 16:30-18:00 2 2 217 1 COE 4 COE RA E-MAIL: ged0104@srv.cc.hit-u.ac.jp 2004 2 25 S-PLUS S-PLUS S-PLUS S-code 2 [8] [8] [8] 1 2 ARFIMA(p, d, q) FI(d) φ(l)(1 L) d x t = θ(l)ε t ({ε t }

More information

Kobe University Repository : Kernel タイトル Title 著者 Author(s) 掲載誌 巻号 ページ Citation 刊行日 Issue date 資源タイプ Resource Type 版区分 Resource Version 権利 Rights DOI

Kobe University Repository : Kernel タイトル Title 著者 Author(s) 掲載誌 巻号 ページ Citation 刊行日 Issue date 資源タイプ Resource Type 版区分 Resource Version 権利 Rights DOI Kobe University Repository : Kernel タイトル Title 著者 Author(s) 掲載誌 巻号 ページ Citation 刊行日 Issue date 資源タイプ Resource Type 版区分 Resource Version 権利 Rights DOI 平均に対する平滑化ブートストラップ法におけるバンド幅の選択に関する一考察 (A Study about

More information

03.Œk’ì

03.Œk’ì HRS KG NG-HRS NG-KG AIC Fama 1965 Mandelbrot Blattberg Gonedes t t Kariya, et. al. Nagahara ARCH EngleGARCH Bollerslev EGARCH Nelson GARCH Heynen, et. al. r n r n =σ n w n logσ n =α +βlogσ n 1 + v n w

More information

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003) 3 1 1 1 2 1 2 1,2,3 1 0 50 3000, 2 ( ) 1 3 1 0 4 3 (1) (2) (3) (4) 1 1 1 2 3 Cameron and Trivedi(1998) 4 1974, (1987) (1982) Agresti(2003) 3 (1)-(4) AAA, AA+,A (1) (2) (3) (4) (5) (1)-(5) 1 2 5 3 5 (DI)

More information

ohpmain.dvi

ohpmain.dvi fujisawa@ism.ac.jp 1 Contents 1. 2. 3. 4. γ- 2 1. 3 10 5.6, 5.7, 5.4, 5.5, 5.8, 5.5, 5.3, 5.6, 5.4, 5.2. 5.5 5.6 +5.7 +5.4 +5.5 +5.8 +5.5 +5.3 +5.6 +5.4 +5.2 =5.5. 10 outlier 5 5.6, 5.7, 5.4, 5.5, 5.8,

More information

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like () 10 9 30 1 Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [], [13]) Poincaré e m Poincaré e m Kähler-like Kähler-like Kähler M g M X, Y, Z (.1) Xg(Y, Z) = g( X Y, Z) + g(y, XZ)

More information

1 Tokyo Daily Rainfall (mm) Days (mm)

1 Tokyo Daily Rainfall (mm) Days (mm) ( ) r-taka@maritime.kobe-u.ac.jp 1 Tokyo Daily Rainfall (mm) 0 100 200 300 0 10000 20000 30000 40000 50000 Days (mm) 1876 1 1 2013 12 31 Tokyo, 1876 Daily Rainfall (mm) 0 50 100 150 0 100 200 300 Tokyo,

More information

untitled

untitled 17 5 16 1 2 2 2 3 4 4 5 5 7 5.1... 8 5.2... 9 6 10 1 1 (sample survey metod) 1981 4 27 28 51.5% 48.5% 5 10 51.75% 48.24% (complete survey ( ) ) (populatio) (sample) (parameter) (estimator) 1936 200 2 N

More information

( 30 ) 30 4 5 1 4 1.1............................................... 4 1.............................................. 4 1..1.................................. 4 1.......................................

More information

X X X Y R Y R Y R MCAR MAR MNAR Figure 1: MCAR, MAR, MNAR Y R X 1.2 Missing At Random (MAR) MAR MCAR MCAR Y X X Y MCAR 2 1 R X Y Table 1 3 IQ MCAR Y I

X X X Y R Y R Y R MCAR MAR MNAR Figure 1: MCAR, MAR, MNAR Y R X 1.2 Missing At Random (MAR) MAR MCAR MCAR Y X X Y MCAR 2 1 R X Y Table 1 3 IQ MCAR Y I (missing data analysis) - - 1/16/2011 (missing data, missing value) (list-wise deletion) (pair-wise deletion) (full information maximum likelihood method, FIML) (multiple imputation method) 1 missing completely

More information

土木学会論文集 D3( 土木計画学 ), Vol. 71, No. 2, 31-43,

土木学会論文集 D3( 土木計画学 ), Vol. 71, No. 2, 31-43, 1 2 1 305 8506 16 2 E-mail: murakami.daisuke@nies.go.jp 2 305 8573 1 1 1 E-mail: tsutsumi@sk.tsukuba.ac.jp Key Words: sampling design, geostatistics, officially assessed land price, prefectural land price

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

untitled

untitled 18 1 2,000,000 2,000,000 2007 2 2 2008 3 31 (1) 6 JCOSSAR 2007pp.57-642007.6. LCC (1) (2) 2 10mm 1020 14 12 10 8 6 4 40,50,60 2 0 1998 27.5 1995 1960 40 1) 2) 3) LCC LCC LCC 1 1) Vol.42No.5pp.29-322004.5.

More information

GLM PROC GLM y = Xβ + ε y X β ε ε σ 2 E[ε] = 0 var[ε] = σ 2 I σ 2 0 σ 2 =... 0 σ 2 σ 2 I ε σ 2 y E[y] =Xβ var[y] =σ 2 I PROC GLM

GLM PROC GLM y = Xβ + ε y X β ε ε σ 2 E[ε] = 0 var[ε] = σ 2 I σ 2 0 σ 2 =... 0 σ 2 σ 2 I ε σ 2 y E[y] =Xβ var[y] =σ 2 I PROC GLM PROC MIXED ( ) An Introdunction to PROC MIXED Junji Kishimoto SAS Institute Japan / Keio Univ. SFC / Univ. of Tokyo e-mail address: jpnjak@jpn.sas.com PROC MIXED PROC GLM PROC MIXED,,,, 1 1.1 PROC MIXED

More information

chap10.dvi

chap10.dvi . q {y j } I( ( L y j =Δy j = u j = C l ε j l = C(L ε j, {ε j } i.i.d.(,i q ( l= y O p ( {u j } q {C l } A l C l

More information

講義のーと : データ解析のための統計モデリング. 第5回

講義のーと :  データ解析のための統計モデリング. 第5回 Title 講義のーと : データ解析のための統計モデリング Author(s) 久保, 拓弥 Issue Date 2008 Doc URL http://hdl.handle.net/2115/49477 Type learningobject Note この講義資料は, 著者のホームページ http://hosho.ees.hokudai.ac.jp/~kub ードできます Note(URL)http://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture20

More information

研究シリーズ第40号

研究シリーズ第40号 165 PEN WPI CPI WAGE IIP Feige and Pearce 166 167 168 169 Vector Autoregression n (z) z z p p p zt = φ1zt 1 + φ2zt 2 + + φ pzt p + t Cov( 0 ε t, ε t j )= Σ for for j 0 j = 0 Cov( ε t, zt j ) = 0 j = >

More information

waseda2010a-jukaiki1-main.dvi

waseda2010a-jukaiki1-main.dvi November, 2 Contents 6 2 8 3 3 3 32 32 33 5 34 34 6 35 35 7 4 R 2 7 4 4 9 42 42 2 43 44 2 5 : 2 5 5 23 52 52 23 53 53 23 54 24 6 24 6 6 26 62 62 26 63 t 27 7 27 7 7 28 72 72 28 73 36) 29 8 29 8 29 82 3

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

L. S. Abstract. Date: last revised on 9 Feb translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, L. Onsager and S.

L. S. Abstract. Date: last revised on 9 Feb translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, L. Onsager and S. L. S. Abstract. Date: last revised on 9 Feb 01. translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, 1953. L. Onsager and S. Machlup, Fluctuations and Irreversibel Processes, Physical

More information

橡表紙参照.PDF

橡表紙参照.PDF CIRJE-J-58 X-12-ARIMA 2000 : 2001 6 How to use X-12-ARIMA2000 when you must: A Case Study of Hojinkigyo-Tokei Naoto Kunitomo Faculty of Economics, The University of Tokyo Abstract: We illustrate how to

More information

x T = (x 1,, x M ) x T x M K C 1,, C K 22 x w y 1: 2 2

x T = (x 1,, x M ) x T x M K C 1,, C K 22 x w y 1: 2 2 Takio Kurita Neurosceince Research Institute, National Institute of Advanced Indastrial Science and Technology takio-kurita@aistgojp (Support Vector Machine, SVM) 1 (Support Vector Machine, SVM) ( ) 2

More information

わが国企業による資金調達方法の選択問題

わが国企業による資金調達方法の選択問題 * takeshi.shimatani@boj.or.jp ** kawai@ml.me.titech.ac.jp *** naohiko.baba@boj.or.jp No.05-J-3 2005 3 103-8660 30 No.05-J-3 2005 3 1990 * E-mailtakeshi.shimatani@boj.or.jp ** E-mailkawai@ml.me.titech.ac.jp

More information

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1 t χ F Q t χ F µ, σ N(µ, σ ) f(x µ, σ ) = ( exp (x ) µ) πσ σ 0, N(0, ) (00 α) z(α) t χ *. t (i)x N(µ, σ ) x µ σ N(0, ) (ii)x,, x N(µ, σ ) x = x+ +x N(µ, σ ) (iii) (i),(ii) z = x µ N(0, ) σ N(0, ) ( 9 97.

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

(pdf) (cdf) Matlab χ ( ) F t

(pdf) (cdf) Matlab χ ( ) F t (, ) (univariate) (bivariate) (multi-variate) Matlab Octave Matlab Matlab/Octave --...............3. (pdf) (cdf)...3.4....4.5....4.6....7.7. Matlab...8.7.....9.7.. χ ( )...0.7.3.....7.4. F....7.5. t-...3.8....4.8.....4.8.....5.8.3....6.8.4....8.8.5....8.8.6....8.9....9.9.....9.9.....0.9.3....0.9.4.....9.5.....0....3

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

2 fukui@econ.tohoku.ac.jp http://www.econ.tohoku.ac.jp/~fukui/site.htm 200 7 Cookbook-style . (Inference) (Population) (Sample) f(x = θ = θ ) (up to parameter values) (estimation) 2 3 (multicolinearity)

More information

Mantel-Haenszelの方法

Mantel-Haenszelの方法 Mantel-Haenszel 2008 6 12 ) 2008 6 12 1 / 39 Mantel & Haenzel 1959) Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J. Nat. Cancer Inst. 1959; 224):

More information

kato-kuriki-2012-jjas-41-1.pdf

kato-kuriki-2012-jjas-41-1.pdf Vol. 41, No. 1 (2012), 1 14 2 / JST CREST T 2 T 2 2 K K K K 2,,,,,. 1. t i y i 2 2 y i = f (t i ; c) + ε i, f (t; c) = c h t h = c ψ(t), i = 1,...,N (1) h=0 c = (c 0, c 1, c 2 ), ψ(t) = (1, t, t 2 ) 3

More information

AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t

AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t 87 6.1 AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t 2, V(y t y t 1, y t 2, ) = σ 2 3. Thus, y t y t 1,

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x 80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = n λ x i e λ x i! = λ n x i e nλ n x i! n n log l(λ) = log(λ) x i nλ log( x i!) log l(λ) λ = 1 λ n x i n =

More information

Power Transformation and Its Modifications Toshimitsu HAMASAKI, Tatsuya ISOMURA, Megu OHTAKI and Masashi GOTO Key words : identity transformation, pow

Power Transformation and Its Modifications Toshimitsu HAMASAKI, Tatsuya ISOMURA, Megu OHTAKI and Masashi GOTO Key words : identity transformation, pow Power Transformation and Its Modifications Toshimitsu HAMASAKI, Tatsuya ISOMURA, Megu OHTAKI and Masashi GOTO Key words : identity transformation, power-normal distribution, structured data, unstructured

More information

k3 ( :07 ) 2 (A) k = 1 (B) k = 7 y x x 1 (k2)?? x y (A) GLM (k

k3 ( :07 ) 2 (A) k = 1 (B) k = 7 y x x 1 (k2)?? x y (A) GLM (k 2012 11 01 k3 (2012-10-24 14:07 ) 1 6 3 (2012 11 01 k3) kubo@ees.hokudai.ac.jp web http://goo.gl/wijx2 web http://goo.gl/ufq2 1 3 2 : 4 3 AIC 6 4 7 5 8 6 : 9 7 11 8 12 8.1 (1)........ 13 8.2 (2) χ 2....................

More information

kubostat2018d p.2 :? bod size x and fertilization f change seed number? : a statistical model for this example? i response variable seed number : { i

kubostat2018d p.2 :? bod size x and fertilization f change seed number? : a statistical model for this example? i response variable seed number : { i kubostat2018d p.1 I 2018 (d) model selection and kubo@ees.hokudai.ac.jp http://goo.gl/76c4i 2018 06 25 : 2018 06 21 17:45 1 2 3 4 :? AIC : deviance model selection misunderstanding kubostat2018d (http://goo.gl/76c4i)

More information

「スウェーデン企業におけるワーク・ライフ・バランス調査 」報告書

「スウェーデン企業におけるワーク・ライフ・バランス調査 」報告書 1 2004 12 2005 4 5 100 25 3 1 76 2 Demoskop 2 2004 11 24 30 7 2 10 1 2005 1 31 2 4 5 2 3-1-1 3-1-1 Micromediabanken 2005 1 507 1000 55.0 2 77 50 50 /CEO 36.3 37.4 18.1 3-2-1 43.0 34.4 / 17.6 3-2-2 78 79.4

More information

第11回:線形回帰モデルのOLS推定

第11回:線形回帰モデルのOLS推定 11 OLS 2018 7 13 1 / 45 1. 2. 3. 2 / 45 n 2 ((y 1, x 1 ), (y 2, x 2 ),, (y n, x n )) linear regression model y i = β 0 + β 1 x i + u i, E(u i x i ) = 0, E(u i u j x i ) = 0 (i j), V(u i x i ) = σ 2, i

More information

Hi-Stat Discussion Paper Series No.248 東京圏における 1990 年代以降の住み替え行動 住宅需要実態調査 を用いた Mixed Logit 分析 小林庸平行武憲史 March 2008 Hitotsubashi University Research Unit

Hi-Stat Discussion Paper Series No.248 東京圏における 1990 年代以降の住み替え行動 住宅需要実態調査 を用いた Mixed Logit 分析 小林庸平行武憲史 March 2008 Hitotsubashi University Research Unit Hi-Stat Discussion Paper Series No.248 東京圏における 1990 年代以降の住み替え行動 住宅需要実態調査 を用いた Logit 分析 小林庸平行武憲史 March 2008 Hitotsubashi University Research Unit for Statistical Analysis in Social Sciences A 21st-Century

More information

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206,

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206, H28. (TMU) 206 8 29 / 34 2 3 4 5 6 Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206, http://link.springer.com/article/0.007/s409-06-0008-x

More information

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,. (1 C205) 4 10 (2 C206) 4 11 (2 B202) 4 12 25(2013) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7. 8. 1., 2007 ( ).,. 2. P. G., 1995. 3. J. C., 1988. 1... 2.,,. ii 3.,. 4. F. ( ),..

More information

1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3.

1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3. 1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, 2013. Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3. 2 4, 2. 1 2 2 Depress Conservative. 3., 3,. SES66 Alien67 Alien71,

More information

untitled

untitled c 1. 2 2011 2012 0.248 0.252 1 Data Envelopment Analysis DEA 4 2 180 8633 3 3 1 IT DHARMA Ltd. 272 0122 1 14 12 13.10.7 14.5.27 DEA-AR (Assurance Region) 1 DEA 1 1 [1] 2011 2012 220 446 [2] 2. [2] 1 1

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

151021slide.dvi

151021slide.dvi : Mac I 1 ( 5 Windows (Mac Excel : Excel 2007 9 10 1 4 http://asakura.co.jp/ books/isbn/978-4-254-12172-8/ (1 1 9 1/29 (,,... (,,,... (,,, (3 3/29 (, (F7, Ctrl + i, (Shift +, Shift + Ctrl (, a i (, Enter,

More information

kubostat2017b p.1 agenda I 2017 (b) probability distribution and maximum likelihood estimation :

kubostat2017b p.1 agenda I 2017 (b) probability distribution and maximum likelihood estimation : kubostat2017b p.1 agenda I 2017 (b) probabilit distribution and maimum likelihood estimation kubo@ees.hokudai.ac.jp http://goo.gl/76c4i 2017 11 14 : 2017 11 07 15:43 1 : 2 3? 4 kubostat2017b (http://goo.gl/76c4i)

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

kubostat2015e p.2 how to specify Poisson regression model, a GLM GLM how to specify model, a GLM GLM logistic probability distribution Poisson distrib

kubostat2015e p.2 how to specify Poisson regression model, a GLM GLM how to specify model, a GLM GLM logistic probability distribution Poisson distrib kubostat2015e p.1 I 2015 (e) GLM kubo@ees.hokudai.ac.jp http://goo.gl/76c4i 2015 07 22 2015 07 21 16:26 kubostat2015e (http://goo.gl/76c4i) 2015 (e) 2015 07 22 1 / 42 1 N k 2 binomial distribution logit

More information

4.9 Hausman Test Time Fixed Effects Model vs Time Random Effects Model Two-way Fixed Effects Model

4.9 Hausman Test Time Fixed Effects Model vs Time Random Effects Model Two-way Fixed Effects Model 1 EViews 5 2007 7 11 2010 5 17 1 ( ) 3 1.1........................................... 4 1.2................................... 9 2 11 3 14 3.1 Pooled OLS.............................................. 14

More information

COE-RES Discussion Paper Series Center of Excellence Project The Normative Evaluation and Social Choice of Contemporary Economic Systems Graduate Scho

COE-RES Discussion Paper Series Center of Excellence Project The Normative Evaluation and Social Choice of Contemporary Economic Systems Graduate Scho COE-RES Discussion Paper Series Center of Excellence Project The Normative Evaluation and Social Choice of Contemporary Economic Systems Graduate School of Economics and Institute of Economic Research

More information

最小2乗法

最小2乗法 2 2012 4 ( ) 2 2012 4 1 / 42 X Y Y = f (X ; Z) linear regression model X Y slope X 1 Y (X, Y ) 1 (X, Y ) ( ) 2 2012 4 2 / 42 1 β = β = β (4.2) = β 0 + β (4.3) ( ) 2 2012 4 3 / 42 = β 0 + β + (4.4) ( )

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

12/1 ( ) GLM, R MCMC, WinBUGS 12/2 ( ) WinBUGS WinBUGS 12/2 ( ) : 12/3 ( ) :? ( :51 ) 2/ 71

12/1 ( ) GLM, R MCMC, WinBUGS 12/2 ( ) WinBUGS WinBUGS 12/2 ( ) : 12/3 ( ) :? ( :51 ) 2/ 71 2010-12-02 (2010 12 02 10 :51 ) 1/ 71 GCOE 2010-12-02 WinBUGS kubo@ees.hokudai.ac.jp http://goo.gl/bukrb 12/1 ( ) GLM, R MCMC, WinBUGS 12/2 ( ) WinBUGS WinBUGS 12/2 ( ) : 12/3 ( ) :? 2010-12-02 (2010 12

More information

c (y it 2 y it 3 ) y it 2 y it 3 (y it 1 y it 2 ) 4 Arellano and Bond (1991) Ahn and Schmidt (1995) 2 y 5 E[y is, (ν it ν it 1 )] = 0, s =0, 1,

c (y it 2 y it 3 ) y it 2 y it 3 (y it 1 y it 2 ) 4 Arellano and Bond (1991) Ahn and Schmidt (1995) 2 y 5 E[y is, (ν it ν it 1 )] = 0, s =0, 1, c 2000 1 6.1 y it = δy it 1 + x 0 itβ + u it i =1, 2,..., N t =1, 2,...T (1) δ x 0 it K β K u it u it = µ i + ν it (2) µ i IID(0, σµ) 2, ν it IID(0, σν) 2 u it N T 1 v it Anderson and Hsiao (1981) Arellano(1989)

More information

kubostat7f p GLM! logistic regression as usual? N? GLM GLM doesn t work! GLM!! probabilit distribution binomial distribution : : β + β x i link functi

kubostat7f p GLM! logistic regression as usual? N? GLM GLM doesn t work! GLM!! probabilit distribution binomial distribution : : β + β x i link functi kubostat7f p statistaical models appeared in the class 7 (f) kubo@eeshokudaiacjp https://googl/z9cjy 7 : 7 : The development of linear models Hierarchical Baesian Model Be more flexible Generalized Linear

More information

数理統計学Iノート

数理統計学Iノート I ver. 0/Apr/208 * (inferential statistics) *2 A, B *3 5.9 *4 *5 [6] [],.., 7 2004. [2].., 973. [3]. R (Wonderful R )., 9 206. [4]. ( )., 7 99. [5]. ( )., 8 992. [6],.., 989. [7]. - 30., 0 996. [4] [5]

More information

(p.2 ( ) 1 2 ( ) Fisher, Ronald A.1932, 1971, 1973a, 1973b) treatment group controll group (error function) 2 (Legendre, Adrian

(p.2 ( ) 1 2 ( ) Fisher, Ronald A.1932, 1971, 1973a, 1973b) treatment group controll group (error function) 2 (Legendre, Adrian 2004 1 1 1.1 Maddala(1993) Mátyás and Sevestre (1996) Hsiao(2003) Baltagi(2001) Lee(2002) Woolridge(2002a), Arellano(2003) Journal of Econometrics Econometrica Greene(2000) Maddala(2001) Johnston and Di-

More information

21世紀の統計科学 <Vol. III>

21世紀の統計科学 <Vol. III> 21 75 < Vol. III > 1 2 2008 8 ( ) 2012 1 ( HP ) 1 2 HP 21 Vol.I, Vol.II, Vol.III 2008 2011 2008 2012 2012 2012 1 i 21 8 21 3 3 (computational statistics) (statistical multivariate analysis) (statistical

More information

k2 ( :35 ) ( k2) (GLM) web web 1 :

k2 ( :35 ) ( k2) (GLM) web   web   1 : 2012 11 01 k2 (2012-10-26 16:35 ) 1 6 2 (2012 11 01 k2) (GLM) kubo@ees.hokudai.ac.jp web http://goo.gl/wijx2 web http://goo.gl/ufq2 1 : 2 2 4 3 7 4 9 5 : 11 5.1................... 13 6 14 6.1......................

More information

1 Stata SEM LightStone 3 2 SEM. 2., 2,. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press.

1 Stata SEM LightStone 3 2 SEM. 2., 2,. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press. 1 Stata SEM LightStone 3 2 SEM. 2., 2,. Alan C. Acock, 2013. Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press. 2 3 2 Conservative Depress. 3.1 2. SEM. 1. x SEM. Depress.

More information

Vol. 4 No (Mar. 2011) of location. We then measure the risk in real estate prices which are caused by it. Moreover, we apply our model t

Vol. 4 No (Mar. 2011) of location. We then measure the risk in real estate prices which are caused by it. Moreover, we apply our model t Vol. 4 No. 2 1 12 (Mar. 2011) 1 2 3 of location. We then measure the risk in real estate prices which are caused by it. Moreover, we apply our model to develop a prototype system called Real Estate Valuation

More information

kubostat2017e p.1 I 2017 (e) GLM logistic regression : : :02 1 N y count data or

kubostat2017e p.1 I 2017 (e) GLM logistic regression : : :02 1 N y count data or kubostat207e p. I 207 (e) GLM kubo@ees.hokudai.ac.jp https://goo.gl/z9ycjy 207 4 207 6:02 N y 2 binomial distribution logit link function 3 4! offset kubostat207e (https://goo.gl/z9ycjy) 207 (e) 207 4

More information

01.Œk’ì/“²fi¡*

01.Œk’ì/“²fi¡* AIC AIC y n r n = logy n = logy n logy n ARCHEngle r n = σ n w n logσ n 2 = α + β w n 2 () r n = σ n w n logσ n 2 = α + β logσ n 2 + v n (2) w n r n logr n 2 = logσ n 2 + logw n 2 logσ n 2 = α +β logσ

More information

1 (1997) (1997) 1974:Q3 1994:Q3 (i) (ii) ( ) ( ) 1 (iii) ( ( 1999 ) ( ) ( ) 1 ( ) ( 1995,pp ) 1

1 (1997) (1997) 1974:Q3 1994:Q3 (i) (ii) ( ) ( ) 1 (iii) ( ( 1999 ) ( ) ( ) 1 ( ) ( 1995,pp ) 1 1 (1997) (1997) 1974:Q3 1994:Q3 (i) (ii) ( ) ( ) 1 (iii) ( ( 1999 ) ( ) ( ) 1 ( ) ( 1995,pp.218 223 ) 1 2 ) (i) (ii) / (iii) ( ) (i ii) 1 2 1 ( ) 3 ( ) 2, 3 Dunning(1979) ( ) 1 2 ( ) ( ) ( ) (,p.218) (

More information

* n x 11,, x 1n N(µ 1, σ 2 ) x 21,, x 2n N(µ 2, σ 2 ) H 0 µ 1 = µ 2 (= µ ) H 1 µ 1 µ 2 H 0, H 1 *2 σ 2 σ 2 0, σ 2 1 *1 *2 H 0 H

* n x 11,, x 1n N(µ 1, σ 2 ) x 21,, x 2n N(µ 2, σ 2 ) H 0 µ 1 = µ 2 (= µ ) H 1 µ 1 µ 2 H 0, H 1 *2 σ 2 σ 2 0, σ 2 1 *1 *2 H 0 H 1 1 1.1 *1 1. 1.3.1 n x 11,, x 1n Nµ 1, σ x 1,, x n Nµ, σ H 0 µ 1 = µ = µ H 1 µ 1 µ H 0, H 1 * σ σ 0, σ 1 *1 * H 0 H 0, H 1 H 1 1 H 0 µ, σ 0 H 1 µ 1, µ, σ 1 L 0 µ, σ x L 1 µ 1, µ, σ x x H 0 L 0 µ, σ 0

More information

st.dvi

st.dvi 9 3 5................................... 5............................. 5....................................... 5.................................. 7.........................................................................

More information

Vol. 36, Special Issue, S 33 S 48 (2015) Fundamentals in Population Pharmacokinetics: Mathematics in Linear Mixed Effects Model and Nonlinear Mixed Ef

Vol. 36, Special Issue, S 33 S 48 (2015) Fundamentals in Population Pharmacokinetics: Mathematics in Linear Mixed Effects Model and Nonlinear Mixed Ef Vol. 36, Special Issue, S 33 S 48 (015) Fundamentals in Population Pharmacokinetics: Mathematics in Linear Mixed Effects Model and Nonlinear Mixed Effects Model 1 Ikuko Funatogawa 1 and Takashi Funatogawa

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

Vol. 29, No. 2, (2008) FDR Introduction of FDR and Comparisons of Multiple Testing Procedures that Control It Shin-ichi Matsuda Department of

Vol. 29, No. 2, (2008) FDR Introduction of FDR and Comparisons of Multiple Testing Procedures that Control It Shin-ichi Matsuda Department of Vol. 29, No. 2, 125 139 (2008) FDR Introduction of FDR and Comparisons of Multiple Testing Procedures that Control It Shin-ichi Matsuda Department of Information Systems and Mathematical Sciences, Faculty

More information

dvi

dvi Recent Advances in Statistical Inference - in Honor of Professor Masafumi Akahira 2008 12 16 Shrinkage estimators for covariance matrices in multivariate complex normal distributions December 12, 2008

More information

日本統計学会誌, 第44巻, 第2号, 251頁-270頁

日本統計学会誌, 第44巻, 第2号, 251頁-270頁 44, 2, 205 3 25 270 Multiple Comparison Procedures for Checking Differences among Sequence of Normal Means with Ordered Restriction Tsunehisa Imada Lee and Spurrier (995) Lee and Spurrier (995) (204) (2006)

More information

Microsoft Word - 表紙.docx

Microsoft Word - 表紙.docx 黒住英司 [ 著 ] サピエンティア 計量経済学 訂正および練習問題解答 (206/2/2 版 ) 訂正 練習問題解答 3 .69, 3.8 4 (X i X)U i i i (X i μ x )U i ( X μx ) U i. i E [ ] (X i μ x )U i i E[(X i μ x )]E[U i ]0. i V [ ] (X i μ x )U i i 2 i j E [(X i

More information

Vol.8 No (July 2015) 2/ [3] stratification / *1 2 J-REIT *2 *1 *2 J-REIT % J-REIT J-REIT 6 J-REIT J-REIT 10 J-REIT *3 J-

Vol.8 No (July 2015) 2/ [3] stratification / *1 2 J-REIT *2 *1 *2 J-REIT % J-REIT J-REIT 6 J-REIT J-REIT 10 J-REIT *3 J- Vol.8 No.2 1 9 (July 2015) 1,a) 2 3 2012 1 5 2012 3 24, 2013 12 12 2 1 2 A Factor Model for Measuring Market Risk in Real Estate Investment Hiroshi Ishijima 1,a) Akira Maeda 2 Tomohiko Taniyama 3 Received:

More information

10:30 12:00 P.G. vs vs vs 2

10:30 12:00 P.G. vs vs vs 2 1 10:30 12:00 P.G. vs vs vs 2 LOGIT PROBIT TOBIT mean median mode CV 3 4 5 0.5 1000 6 45 7 P(A B) = P(A) + P(B) - P(A B) P(B A)=P(A B)/P(A) P(A B)=P(B A) P(A) P(A B) P(A) P(B A) P(B) P(A B) P(A) P(B) P(B

More information

(X) (Y ) Y = intercept + c X + e (1) e c c M = intercept + ax + e (2) a Y = intercept + cx + bm + e (3) (1) X c c c (3) b X M Y (indirect effect) a b

(X) (Y ) Y = intercept + c X + e (1) e c c M = intercept + ax + e (2) a Y = intercept + cx + bm + e (3) (1) X c c c (3) b X M Y (indirect effect) a b 21 12 23 (mediation analysis) Figure 1 X Y M (mediator) mediation model Baron and Kenny (1986) 1 1) mediated moderation ( moderated mediation) 2) (multilevel mediation model) a M b X c (c ) Y 1: 1 1.1

More information

y i OLS [0, 1] OLS x i = (1, x 1,i,, x k,i ) β = (β 0, β 1,, β k ) G ( x i β) 1 G i 1 π i π i P {y i = 1 x i } = G (

y i OLS [0, 1] OLS x i = (1, x 1,i,, x k,i ) β = (β 0, β 1,, β k ) G ( x i β) 1 G i 1 π i π i P {y i = 1 x i } = G ( 7 2 2008 7 10 1 2 2 1.1 2............................................. 2 1.2 2.......................................... 2 1.3 2........................................ 3 1.4................................................

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,. 23(2011) (1 C104) 5 11 (2 C206) 5 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 ( ). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5.. 6.. 7.,,. 8.,. 1. (75%

More information

dvi

dvi 2017 65 2 217 234 2017 Covariate Balancing Propensity Score 1 2 2017 1 15 4 30 8 28 Covariate Balancing Propensity Score CBPS, Imai and Ratkovic, 2014 1 0 1 2 Covariate Balancing Propensity Score CBPS

More information

,, Poisson 3 3. t t y,, y n Nµ, σ 2 y i µ + ɛ i ɛ i N0, σ 2 E[y i ] µ * i y i x i y i α + βx i + ɛ i ɛ i N0, σ 2, α, β *3 y i E[y i ] α + βx i

,, Poisson 3 3. t t y,, y n Nµ, σ 2 y i µ + ɛ i ɛ i N0, σ 2 E[y i ] µ * i y i x i y i α + βx i + ɛ i ɛ i N0, σ 2, α, β *3 y i E[y i ] α + βx i Armitage.? SAS.2 µ, µ 2, µ 3 a, a 2, a 3 a µ + a 2 µ 2 + a 3 µ 3 µ, µ 2, µ 3 µ, µ 2, µ 3 log a, a 2, a 3 a µ + a 2 µ 2 + a 3 µ 3 µ, µ 2, µ 3 * 2 2. y t y y y Poisson y * ,, Poisson 3 3. t t y,, y n Nµ,

More information

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, PC ( 4 5 )., 5, Milnor Milnor., ( 6 )., (I) Z modulo

More information

tokei01.dvi

tokei01.dvi 2. :,,,. :.... Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 3. (probability),, 1. : : n, α A, A a/n. :, p, p Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN

More information

Duality in Bayesian prediction and its implication

Duality in Bayesian prediction and its implication $\theta$ 1860 2013 104-119 104 Duality in Bayesian prediction and its implication Toshio Ohnishi and Takemi Yanagimotob) a) Faculty of Economics, Kyushu University b) Department of Industrial and Systems

More information

untitled

untitled 1 3 23 4 ... 1 2... 3 3... 6 4... 10 4.1... 10 4.2... 14 4.2.1... 14 4.2.2... 16 4.2.3... 17 4.2.4 WASEDA / REINS... 19 4.3... 22 5... 25 5.1... 25 5.2... 26 5.3 S&P/... 29 5.4... 32 5.5... 32 5.6... 33

More information

Myers, Montgomery & Anderson-Cook (2009) Response Surface Methodology

Myers, Montgomery & Anderson-Cook (2009) Response Surface Methodology Myers, R.H., Montgomery, D.C. & Anderson-Cook, C.M. (2009) Response Surface Methodology, Third Edition. Chapter 7. Experimantal Designs for Fitting Response Surfaces - I. (response surface methodology)

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

Taro10-J-SERIES 表紙参照.jtd

Taro10-J-SERIES 表紙参照.jtd CIRJE-J-203 Lasso 分位点回帰の理論と損害保険への応用 東京大学大学院経済学研究科大学院生加藤賢悟東京大学大学院経済学研究科国友直人中央三井アセット信託銀行増田智巳 2008 年 8 月 CIRJE ディスカッションペーパーの多くは以下のサイトから無料で入手可能です http://www.e.u-tokyo.ac.jp/cirje/research/03research02dp_j.html

More information

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論 email: takahash@sci.u-hyogo.ac.jp May 14, 2009 Outline 1. 2. 3. 4. 5. 6. 2 / 262 Today s Lecture: Mode-mode Coupling Theory 100 / 262 Part I Effects of Non-linear Mode-Mode Coupling Effects of Non-linear

More information

c 2009 i

c 2009 i I 2009 c 2009 i 0 1 0.0................................... 1 0.1.............................. 3 0.2.............................. 5 1 7 1.1................................. 7 1.2..............................

More information

L P y P y + ɛ, ɛ y P y I P y,, y P y + I P y, 3 ŷ β 0 β y β 0 β y β β 0, β y x x, x,, x, y y, y,, y x x y y x x, y y, x x y y {}}{,,, / / L P / / y, P

L P y P y + ɛ, ɛ y P y I P y,, y P y + I P y, 3 ŷ β 0 β y β 0 β y β β 0, β y x x, x,, x, y y, y,, y x x y y x x, y y, x x y y {}}{,,, / / L P / / y, P 005 5 6 y β + ɛ {x, x,, x p } y, {x, x,, x p }, β, ɛ E ɛ 0 V ɛ σ I 3 rak p 4 ɛ i N 0, σ ɛ ɛ y β y β y y β y + β β, ɛ β y + β 0, β y β y ɛ ɛ β ɛ y β mi L y y ŷ β y β y β β L P y P y + ɛ, ɛ y P y I P y,,

More information

I L01( Wed) : Time-stamp: Wed 07:38 JST hig e, ( ) L01 I(2017) 1 / 19

I L01( Wed) : Time-stamp: Wed 07:38 JST hig e,   ( ) L01 I(2017) 1 / 19 I L01(2017-09-20 Wed) : Time-stamp: 2017-09-20 Wed 07:38 JST hig e, http://hig3.net ( ) L01 I(2017) 1 / 19 ? 1? 2? ( ) L01 I(2017) 2 / 19 ?,,.,., 1..,. 1,2,.,.,. ( ) L01 I(2017) 3 / 19 ? I. M (3 ) II,

More information

三石貴志.indd

三石貴志.indd 流通科学大学論集 - 経済 情報 政策編 - 第 21 巻第 1 号,23-33(2012) SIRMs SIRMs Fuzzy fuzzyapproximate approximatereasoning reasoningusing using Lukasiewicz Łukasiewicz logical Logical operations Operations Takashi Mitsuishi

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2 (2018 ) ( -1) TA Email : ohki@i.kyoto-u.ac.jp, ske.ta@bode.amp.i.kyoto-u.ac.jp : 411 : 10 308 1 1 2 2 2.1............................................ 2 2.2..................................................

More information

(lm) lm AIC 2 / 1

(lm) lm AIC 2 / 1 W707 s-taiji@is.titech.ac.jp 1 / 1 (lm) lm AIC 2 / 1 : y = β 1 x 1 + β 2 x 2 + + β d x d + β d+1 + ϵ (ϵ N(0, σ 2 )) y R: x R d : β i (i = 1,..., d):, β d+1 : ( ) (d = 1) y = β 1 x 1 + β 2 + ϵ (d > 1) y

More information

Dynkin Serre Weyl

Dynkin Serre Weyl Dynkin Naoya Enomoto 2003.3. paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie 4 1.1 Lie ( )................................ 4 1.2 Killing form...........................................

More information