経済統計分析1 イントロダクション
|
|
|
- ぜんぺい さわい
- 7 years ago
- Views:
Transcription
1 1 経済統計分析 3 よく使う記述統計量
2 事務連絡 Webclass を使ってみようと思います. 登録できる人はしておいてください. 宿題を webclass 経由で回収 返却する予定です. じつはすでにデータをアップロードしています. MS-Word, Excel が使えますか? VBA とかできなくてもいいです. 宿題をこれらで出していただけると, 採点しやすいです. 互換機能 ( 校閲機能含む ) があればいいです. 2
3 今日のおはなし. 記述統計, ただし 1 変数, ちょっと 2 変数 データの状況をおおまかに表す / 伝える たくさんあるデータをいくつかの数値で代表して表現する ふつー ってなんだ? いくつかの 平均 指数, ふたたび 散らばりと分位点, 丌平等度尺度 今日のタネ 中村隆英ほか 統計入門 東大出版会, 第 3 章 飯田泰之 考える技術としての統計学.NHK ブックス
4 見ただけで分かるか. あるひとつの事柄についてのデータの状況を伝えたい ある 1 変数の分布を伝えたい ヒストグラムは視覚に訴える 正確さを求めるなら, 度数分布表を用いる 度数分布表やヒストグラムでは? 度数分布表はまだデータ量が多い ヒストグラムは違いを表すにはよいが, 類似は示しにくい 記述統計 データの分布の状態をいくつかの数値で表現すること それらの指標をまとめて 特性値 と呼ぶ ふつう と ちらばり をあらわす特性値が基本中の基本 4
5 ふつう もいろいろ. データの状況を数値 1 つで代表させるには? 例 : 日本人の所得ってどれくらい? ふつう な値を1つ使う それだけ 情報を捨てている ふつう をあらわすいくつかの指標 平均値 算術平均, 幾何平均, 調和平均 加重平均 切り落とし平均 中位値 / 中央値 最頻値 5
6 算術平均 average, mean 定義 値の総和を観測値数 ( データのサイズ ) で割ったもの x1 x2... x 1 n n x xi n いわゆる 平均値 といえば, 算術平均を指すことが多い 特徴 6 n i 1 個々の観測値の値が分からなくても, サイズと総和から計算可能 例 :1 人当たりGDP = GDP / 人口 逆に, 平均とサイズから総和を計算できる 平均値 をもつ観測値は存在しない( ことが多い ) 例 : 試験の平均点が59.7 点であっても, 各点数は整数値 率 は質的変数の平均値と解釈できる
7 算術平均の性質 偏差の和がゼロ. 偏差 = 各観測値と平均値との差 n i 1 ( x x) 0 i 平均値の一次変換は, 一次変換の平均値に等しい ax b ax b 平均値の計算の簡単化 ( 暗算 ) によく用いられる 例 : 点数の平均値を求めるとき 主体が同じであれば, 平均の和は和の平均に等しい ax by ax by 例 : 平均収入額と平均支出額の差 = 平均黒字額 7
8 加重平均 重み weight をつけた和 ( 加重和 ) 重みの和が 1 になるようにしておく 単純平均は, すべての重みが 1/n であるような加重平均 例 :2 グループのそれぞれの単純平均がわかっているとき 全体の平均 n n x x x n n n n 度数分布からの平均値の計算 階級内の平均値の, 相対頻度をウェイトとする加重平均 階級内平均値が分からないときには, 階級値で代理 k f j 全体の平均 x xi j 1 n 8
9 伸び率の平均は単純平均でいい?: 幾何平均 原数値伸び率原数値伸び率 近似的に 伸び率の単純平均 が用いられることも多い. 複利計算 の恐ろしさ 9 左の例では 伸び率の単純平均 :0% 最後 / 最初 6 = % 最後 / 最初の 6 乗根 = -4.61% 幾何平均 積の n 乗根をとったもの 一般に幾何平均のほうが小さい 伸び率の平均値によく用いる 対数変換値の算術平均に等しい
10 時速の平均のばあい?: 調和平均 例 : 片道 10km の道のりを, 行きは平均時速 10km で, 帰りは平均時速 5km で往復したときの平均時速は? 往復 20km に合計 3 時間かかっているから,6.7km 算術平均 (7.5km) より小さい 一般に調和平均は幾何平均より小さい 定義 幾何平均 n x x... x 調和平均 1 2 n x x x 1 2 n n 10
11 例 : 金融資産保有額 ( 日本銀行金融広報中央委員会, 家計の金融行動に関する世論調査 [ 二人以上世帯調査 ] 平成 20 年 ) 頻度 相対頻度 階級値 > N.A 合計 平均の計算では無回答 (N.A.) は除去している. 11 公表されている平均値は 1,152 万円 しかしそれは少し多いのではない?
12 (%) 例 : 金融資産保有額 ( 続き ) 相対度数が最も多い階級 累積相対度数が 50% を超える階級 算術平均が含まれる階級 ( 階級値 ) 12
13 ふつう を表す他の特性値 中位値, 中央値,median データを大きさ順に並べたときの真ん中の値 累積相対度数が 50% になる観測値の値 中位値からの偏差の絶対値を最小化する 最頻値,mode 相対度数が最も大きくなる階級の階級値 平均値 中位値 最頻値の関係 ヒストグラムが左右対称ならすべて等しい 右に歪んだ分布 : 最頻値 < 中位値 < 平均値 所得 消費 資産など, 右に歪んだ分布は多い 金融資産保有額の中位値は 430 万円 13
14 中位値によく似た他の特性値 中位値の別名 :50% 分位点 下 から数えて 50% のところにあるから. q% 分位点 percentile 累積相対度数がq% になる観測値 例 :1% 分位点より小さな値を取る観測値は全体の1% 四分位点 quartile 25% 分位点が第 1 四分位点,75% 分位点が第 3 四分位点 十分位 decile 10%, 20%,, 90% 分位点のこと. 公表統計では階級が十分位に分けられていることもある 14
15 外れ値 outlier 算術平均は極端な値の影響を受けやすい 中位値は 外れた 値の影響が小さい しかし, 算術平均でも 外れた 値を外せば使えるのでは? 注意! 異常値 ではない 例 : 日本の都道府県データでの北海道や東京都 切り落とし平均 trimmed mean たとえば, 両側 1%(1% 分位点より小さいデータと 99% 分位点より大きいデータ ) を除去した残りについての算術平均 3 点平均 trimean:( 第 1 四分位 + 中位値の 2 倍 + 第 3 四分位 ) を 4 で割った値 15
16 指数 : ふつう がどう変化しているか 全体的な状況の変化を大雑把に知りたい 各時点における ふつう がどう変化しているか 指数 : 平均値 が時間によってどう動いているか 例 : 物価指数は各時点の平均的な物価を示す 例 : 株価指数は各時点の平均的な株価を示す 各時点のふつう をどう定義するか? 物価指数は, 単に値段の算術平均でよいのか? あまり買わないものの値段が変化しても 実感に合わない 各時点で, なんらかの加重平均を使おう 購入量で 値段が変わらなくて購入量が変化したら指数も変化 16 重みは変化させない どの時点での重みを使うの? ラスパイレス, パーシェ,...
17 散らばり の大きさ 使われる機会は比較的少ないものの, 簡単なもの 計算がめんどう, 数学的な扱いがめんどう 平均偏差 偏差 ( 平均との差 ) の絶対値の算術平均 レンジ range( 範囲 ) 最大値と最小値の差 外れ値の影響を受けやすい 四分位範囲 第 3 四分位と第 1 四分位の差 外れ値の影響が小さい 範囲内の散らばり方についてはなにも言えない 17
18 よく使う 散らばり の指標 : 分散 variance 散らばっている とは? 平均値 の周りに集まっているかどうか 偏差の平均値を取ればよい? 偏差の合計は常にゼロ 分散 偏差を2 乗して正の値に直してその平均をとったもの 2 2 n 2 x1 x... xn x x i 1 i x 分散 s n n 観測値がすべて同じ値を取ればゼロ 分散の公式の分子の部分を 変動 とも呼ぶ 2 単位 はもとのデータの単位の 2 乗 18 絶対値が出てこないので数学的にも扱いやすい
19 標準偏差 standard deviation 定義 : 分散の 2 乗根 性質 標準偏差 s s 2 i 1 標準偏差は 単位 がもとのデータと同じ 1 次変換 (ax + b) したデータの標準偏差はそのまま 1 次変換 (ax + b) したデータの標準偏差は 2 乗される 2 2 s 2 ax b a s, sax b a s いずれも, 定数 b に依存しない x x 2 平均から標準偏差 k 個分の範囲内に入らないデータの相対度数は (1/k 2 ) より小さい : チェブシェフの丌等式 n i n 19
20 変動係数 標準偏差は 単位 を持つ 平均を中心に,±3s の外にある観測値の相対度数は 1/9 以下 とはいえ, 他のデータとの比較は難しい 例 : 日本は他の国と比べて所得や資産の散らばりが大きいのか 変動係数 : 標準偏差を平均で割った値 単位を持たない ( 無名数 ) データの単位が異なっても比較できる 例 : 日本は他の国と比べて所得の分散が大きいのか 例 : 日本の所得分布は広がってきたのか : インフレの影響を除去 20
21 例 : 金融資産保有額 階級値 相対度数 平均 分散 平均 階級値と相対度数 /100 の積 すべて足すと算術平均 分散 階級値と平均の差の 2 乗に, 相対度数 /100 をかけたもの すべて足すと分散 分散の 2 乗根が標準偏差 標準偏差 = 変動係数 =
22 データの標準化 ここでは, それぞれのデータに注目. 標準偏差を使うと, 平均からどれくらい離れているか をそれぞれのデータについて計算できる 各観測値から平均を引いて, 標準偏差で割るもとの値 平均標準化されたデータ 標準偏差 標準化されたデータの平均はゼロ, 標準偏差は 1 異なるデータの 位置 を比較できる xi s x 偏差値 : 平均 50, 標準偏差 10に標準化した値 xi x 偏差値 s 22
23 丌平等 指標 ローレンツ曲線 (Lorenz curve) 所得や資産の小さい順に観測値を並べ替え, 下から x % の人たちが全体の y % を保有している, という関係を (x-y) 平面にプロットしたもの 累積相対度数と, 累積保有比率のプロット (0, 0) と (1, 1) を通るが, すべてが同じ量だけ保有しているとき, (0, 0) と (1, 1) を結ぶ 45 度線になる ( 完全平等線 ) 一般に,45 度線の右下にふくらんだ線となり, 右下にふくらむほど丌平等とされる 単位に依存しないので, 異なる集合の比較が可能. ただし, 曲線が交差するときは順位をつけられない 23
24 丌平等 指標 ジニ係数 (Gini coefficient) 定義はややこしいので省略. ローレンツ曲線と完全平等線 (45 線 ) で囲まれた弓形の面積の 2 倍に等しい ローレンツ曲線が交差するケースでも順位付けが可能 ハーフィンダール指数 (Herfindahl Index) 集中度の尺度として知られる 企業の市場占有率の 2 乗の和 例 : 複占で, シェアがともに 50% のとき, = 0.5 その他 丌平等 議論で使われる指標 24 タイル尺度 貧困率
25 例 : 金融資産保有額 階級値 累積度数 累積資産
Microsoft Word - lec_student-chp3_1-representative
1. はじめに この節でのテーマ データ分布の中心位置を数値で表す 可視化でとらえた分布の中心位置を数量化する 平均値とメジアン, 幾何平均 この節での到達目標 1 平均値 メジアン 幾何平均の定義を書ける 2 平均値とメジアン, 幾何平均の特徴と使える状況を説明できる. 3 平均値 メジアン 幾何平均を計算できる 2. 特性値 集めたデータを度数分布表やヒストグラムに整理する ( 可視化する )
3章 度数分布とヒストグラム
度数分布とヒストグラム データとは 複雑な確率ゲームから生まれたと考えてよい データ分析の第一歩として データの持つ基本的特性を把握することが重要である 分析の流れ データの分布 ( 散らばり ) を 度数分布表にまとめ グラフ化する グラフに 平均値や分散など 分布の特徴を示す客観的な数値を加える データが母集団からのランダムサンプルならば 母集団についての推測を行う 度数分布とヒストグラムの作成
DVIOUT-mem
統計学講義メモ (1): 記述統計 高木真吾, 北海道大学 目次 1 データの全体像を見る 1 1.1 全体像を把握する : ヒストグラム.................................. 1 1. 分布状態を比較する : ローレンツ曲線................................ 3 データを要約する 8.1 データを代表する尺度 : 代表値...................................
散布度
散布度 統計基礎の補足資料 2018 年 6 月 18 日金沢学院大学経営情報学部藤本祥二 基本統計量 基本統計量 : 分布の特徴を表す数値 代表値 ( 分布の中心を表す数値 ) 平均値 (mean, average) 中央値 (median) 最頻値 (mode) 散布度 ( 分布のばらつき具合を表す数値 ) 分散 (variance) 標準偏差 (standard deviation) 範囲 (
Excelによる統計分析検定_知識編_小塚明_1_4章.indd
第2章 1 変量データのまとめ方 本章では, 記述統計の手法について説明します 具体的には, 得られたデータから表やグラフを作成し, 意昧のある統計量を算出する方法など,1 変量データのまとめ方について学びます 本章から理解を深めるための数式が出てきますが, 必ずしも, これらの式を覚える必要はありません それぞれのデータの性質や統計量の意義を理解することが重要です 円グラフと棒グラフ 1 変量質的データをまとめる方法としてよく使われるグラフは,
平均値 () 次のデータは, ある高校生 7 人が ヵ月にカレーライスを食べた回数 x を調べたものである 0,8,4,6,9,5,7 ( 回 ) このデータの平均値 x を求めよ () 右の表から, テレビをみた時間 x の平均値を求めよ 階級 ( 分 ) 階級値度数 x( 分 ) f( 人 )
データの分析 データの整理右の度数分布表は,A 高校の 0 人について, 日にみたテレビの時間を記入したものである 次の問いに答えよ () テレビをみた時間が 85 分未満の生徒は何人いるか () テレビをみた時間が 95 分以上の生徒は全体の何 % であるか (3) 右の度数分布表をもとにして, ヒストグラムをかけ 階級 ( 分 ) 階級値度数相対 ( 分 ) ( 人 ) 度数 55 以上 ~65
3章 度数分布とヒストグラム
3 章度数分布とヒストグラム データの中の分析 ( 記述統計 ) であれ データの外への推論 ( 推測統計 ) であれ まず データの持つ基本的特性を把握することが重要である 1 分析の流れ データの分布 ( 散らばり ) を 度数分布表にまとめ グラフ化する 3 章 グラフに 平均値や分散など 分布の特徴を示す客観的な数値を加える 4 5 6 章 データが母集団からのランダムサンプルならば 母集団についての推測を行う
第4回
Excel で度数分布表を作成 表計算ソフトの Microsoft Excel を使って 度数分布表を作成する場合 関数を使わなくても 四則演算(+ */) だけでも作成できます しかし データ数が多い場合に度数を求めたり 度数などの合計を求めるときには 関数を使えばデータを処理しやすく なります 度数分布表の作成で使用する関数 合計は SUM SUM( 合計を計算する ) 書式 :SUM( 数値数値
Microsoft PowerPoint - データ解析基礎2.ppt
データ解析基礎. 度数分布と特性値 keyword データの要約 度数分布表, ヒストグラム 分布の中心を表す基本統計量 平均, 最頻値, 中央値 分布のばらつきを表す統計量 分散, 標準偏差 統計データの構造 - データ解析の目的 具体的な対象 ( 母集団 ) についての調査結果 ( 標本をどう加工 処理し, 有益な情報を引き出すかである. 加工 処理するための調査結果として, データ ( 観測データ
Microsoft PowerPoint ppt
情報科学第 07 回データ解析と統計代表値 平均 分散 度数分布表 1 本日の内容 データ解析とは 統計の基礎的な値 平均と分散 度数分布表とヒストグラム 講義のページ 第 7 回のその他の欄に 本日使用する教材があります 171025.xls というファイルがありますので ダウンロードして デスクトップに保存してください 2/45 はじめに データ解析とは この世の中には多くのデータが溢れています
統計学 Ⅰ(8) 累積度数 : ある階級以下に含まれる度数の合計 階級 度数 相対度数累積度数 累積相対度数 点以上 ~ 点未満.. ~.. ~. 7. ~ 6..6 ~. 6.8 ~ ~ ~ ~ ~.. ~.. 合計. - -
統計学 Ⅰ(8) 章度数分布とローレンツ曲線. 度数分布表 教科書 8- ページ. 度数分布表 () データの表し方 () 度数分布表 () 度数, 相対度数, 累積度数. ヒストグラム () ヒストグラム () 階級の決め方 () ヒストグラムにおける階級幅の調整 () クロス集計. ローレンツ曲線とジニ係数 () 所得格差の問題 () ローレンツ曲線 () ジニ係数 () データの表し方 例 :
講義ノート p.2 データの視覚化ヒストグラムの作成直感的な把握のために重要入力間違いがないか確認するデータの分布を把握する fig. ヒストグラムの作成 fig. ヒストグラムの出力例 度数分布表の作成 データの度数を把握する 入力間違いが無いかの確認にも便利 fig. 度数分布表の作成
講義ノート p.1 前回の復習 尺度について数字には情報量に応じて 4 段階の種類がある名義尺度順序尺度 : 質的データ間隔尺度比例尺度 : 量的データ 尺度によって利用できる分析方法に差異がある SPSS での入力の練習と簡単な操作の説明 変数ビューで変数を設定 ( 型や尺度に注意 ) fig. 変数ビュー データビューでデータを入力 fig. データビュー 講義ノート p.2 データの視覚化ヒストグラムの作成直感的な把握のために重要入力間違いがないか確認するデータの分布を把握する
PowerPoint プレゼンテーション
総務省 ICTスキル総合習得教材 概要版 eラーニング用 [ コース3] データ分析 3-3: 基本統計量 クロス集計表の作成 [ コース1] データ収集 [ コース2] データ蓄積 [ コース3] データ分析 [ コース4] データ利活用 1 2 3 4 5 座学実習紹介[3] ピボットテーブルとクロス集計表 本講座の学習内容 (3-3: 基本統計量 クロス集計表の作成 ) 講座概要 数値データの尺度に基づく
Microsoft PowerPoint - 11統計の分析と利用_1-1.pptx
統計の分析と利用. データとその扱い -. 一次元のデータ 度数分布 ヒストグラム 幹葉プロット 箱ひげ図代表値と散らばり データの尺度 -. 二次元のデータ 堀田敬介 散布図 クロス集計二次元データの関係 : 相関係数 相関比 連関係数 0/9/30, Fri.~ -. 一次元のデータ 度数分布 ヒストグラム 幹葉プロット, =9, =-3, =4, =5, =3, 67 = 箱ひげ図,, 3,
第 3 回講義の項目と概要 統計的手法入門 : 品質のばらつきを解析する 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均
第 3 回講義の項目と概要 016.8.9 1.3 統計的手法入門 : 品質のばらつきを解析する 1.3.1 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均 :AVERAGE 関数, 標準偏差 :STDEVP 関数とSTDEVという関数 1 取得したデータそのものの標準偏差
経営統計学
5 章基本統計量 3.5 節で量的データの集計方法について簡単に触れ 前章でデータの分布について学びましたが データの特徴をつの数値で示すこともよく行なわれます これは統計量と呼ばれ 主に分布の中心や拡がりなどを表わします この章ではよく利用される分布の統計量を特徴で分類して説明します 数式表示を統一的に行なうために データの個数を 個とし それらを,,, と表わすことにします ここで学ぶ統計量は統計分析の基礎となっており
Microsoft PowerPoint - 基礎・経済統計6.ppt
. 確率変数 基礎 経済統計 6 確率分布 事象を数値化したもの ( 事象ー > 数値 の関数 自然に数値されている場合 さいころの目 量的尺度 数値化が必要な場合 質的尺度, 順序的尺度 それらの尺度に数値を割り当てる 例えば, コインの表が出たら, 裏なら 0. 離散確率変数と連続確率変数 確率変数の値 連続値をとるもの 身長, 体重, 実質 GDP など とびとびの値 離散値をとるもの 新生児の性別
Microsoft Word - 保健医療統計学112817完成版.docx
講義で使用するので テキスト ( 地域診断のすすめ方 ) を必ず持参すること 5 4 統計処理のすすめ方 ( テキスト P. 134 136) 1. 6つのステップ 分布を知る ( 度数分布表 ヒストグラム ) 基礎統計量を求める Ø 代表値 Ø バラツキ : 範囲 ( 最大値 最小値 四分位偏位 ) 分散 標準偏差 標準誤差 集計する ( 単純集計 クロス集計 ) 母集団の情報を推定する ( 母平均
Microsoft PowerPoint - CVM.ppt [互換モード]
遺伝子組み換えコーン油を事例とした CVM 質問 問 1 現在 遺伝子組み換えトウモロコシを原料として使っているコーン油が 1 本 900gあたり約 600 円で販売されています もし 遺伝子組み換え原料を完全に使っていないコーン油を販売しようとすれば それは 流通管理を徹底しなければならないことから 値段がより高くなることが予想されます あなたは 900g のコーン油 1 本について 追加的な値上がりが何円までだったら
統計学入門 練習問題解答集
統計学入門練習問題解答集 この解答集は 995 年度ゼミ生椎野英樹 ( 回生 ) 奥井亮(3 回生 ) 北川宣治(3 回生 ) による学習の成果の一部です. ワープロ入力はもちろん井戸温子さんのおかげです. 利用される方々のご意見を待ちます.(996 年 3 月 6 日 ) 趙君が 7 章 8 章の解答を書き上げました.(996 年 7 月 ) 線型回帰に関する性質の追加. (996 年 8 月 )
Microsoft PowerPoint - 測量学.ppt [互換モード]
8/5/ 誤差理論 測定の分類 性格による分類 独立 ( な ) 測定 : 測定値がある条件を満たさなければならないなどの拘束や制約を持たないで独立して行う測定 条件 ( 付き ) 測定 : 三角形の 3 つの内角の和のように, 個々の測定値間に満たすべき条件式が存在する場合の測定 方法による分類 直接測定 : 距離や角度などを機器を用いて直接行う測定 間接測定 : 求めるべき量を直接測定するのではなく,
学習指導要領
(1) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 絶対値の意味を理解し適切な処理することができる 例題 1-3 の絶対値をはずせ 展開公式 ( a + b ) ( a - b ) = a 2 - b 2 を利用して根号を含む分数の分母を有理化することができる 例題 5 5 + 2 の分母を有理化せよ 実数の整数部分と小数部分の表し方を理解している
経済統計分析1 イントロダクション
1 経済統計分析 9 分散分析 今日のおはなし. 検定 statistical test のいろいろ 2 変数の関係を調べる手段のひとつ適合度検定独立性検定分散分析 今日のタネ 吉田耕作.2006. 直感的統計学. 日経 BP. 中村隆英ほか.1984. 統計入門. 東大出版会. 2 仮説検定の手続き 仮説検定のロジック もし帰無仮説が正しければ, 検定統計量が既知の分布に従う 計算された検定統計量の値から,
1.民営化
参考資料 最小二乗法 数学的性質 経済統計分析 3 年度秋学期 回帰分析と最小二乗法 被説明変数 の動きを説明変数 の動きで説明 = 回帰分析 説明変数がつ 単回帰 説明変数がつ以上 重回帰 被説明変数 従属変数 係数 定数項傾き 説明変数 独立変数 残差... で説明できる部分 説明できない部分 説明できない部分が小さくなるように回帰式の係数 を推定する有力な方法 = 最小二乗法 最小二乗法による回帰の考え方
Microsoft PowerPoint - ICS修士論文発表会資料.ppt
2011 年 9 月 28 日 ICS 修士論文発表会 我が国の年齢階級別 リスク資産保有比率に関する研究 2011 年 3 月修了生元利大輔 研究の動機 我が国では, 若年層のリスク資産保有比率が低いと言われている. 一方,FP の一般的なアドバイスでは, 若年層ほどリスクを積極的にとり, 株式等へ投資すべきと言われている. 高齢層は本来リスク資産の保有を少なくすべきかを考察したい. Sep 28,
Microsoft PowerPoint - e-stat(OLS).pptx
経済統計学 ( 補足 ) 最小二乗法について 担当 : 小塚匡文 2015 年 11 月 19 日 ( 改訂版 ) 神戸大学経済学部 2015 年度後期開講授業 補足 : 最小二乗法 ( 単回帰分析 ) 1.( 単純 ) 回帰分析とは? 標本サイズTの2 変数 ( ここではXとY) のデータが存在 YをXで説明する回帰方程式を推定するための方法 Y: 被説明変数 ( または従属変数 ) X: 説明変数
EBNと疫学
推定と検定 57 ( 復習 ) 記述統計と推測統計 統計解析は大きく 2 つに分けられる 記述統計 推測統計 記述統計 観察集団の特性を示すもの 代表値 ( 平均値や中央値 ) や ばらつきの指標 ( 標準偏差など ) 図表を効果的に使う 推測統計 観察集団のデータから母集団の特性を 推定 する 平均 / 分散 / 係数値などの推定 ( 点推定 ) 点推定値のばらつきを調べる ( 区間推定 ) 検定統計量を用いた検定
新学習指導要領における数学科 「資料の活用」および「データの分析」 で育む統計的問題解決授業
授業案 Ⅰ 中学 1 年 資料の整理 貧困率 を例にした分布と代表値の理解 筑波大学附属中学校 中本信子 本事例では 子どもたちの身の周りの事象を事象を実データを基にして 統計的な観点から考察させることをねらいとする 学習指導要領では 中学校 1 年生の 資料の整理 の目的として 小学校における学習の上にたって 資料を収集 整理する場合には 1 目的に応じた適切で能率的な資料の集め方や 合理的な処理の仕方が重要であることを理解できるようにする
データの整理 ( 度数分布表とヒストグラム ) 1 次元のデータの整理の仕方として代表的な ものに度数分布表とヒストグラムがあります 度数分布表観測値をその値に応じていくつかのグループ ( これを階級という ) に分類し 各階級に入る観測値の数 ( これを度数という ) を数えて表にしたもの 2
春学期統計学 I データの整理 : 度数分布 標本分散 等 担当 : 長倉大輔 ( ながくらだいすけ ) 1 データの整理 ( 度数分布表とヒストグラム ) 1 次元のデータの整理の仕方として代表的な ものに度数分布表とヒストグラムがあります 度数分布表観測値をその値に応じていくつかのグループ ( これを階級という ) に分類し 各階級に入る観測値の数 ( これを度数という ) を数えて表にしたもの
目次 はじめに データの種類 平均値 (Mean) と標準偏差 (Standard Deviation, SD) データの代表値である平均値データのばらつきを表す標準偏差 中央値 (Median) と四分位範囲 (Inter-Quartile Range) 平均値の問題点と中央値標準偏差の問題点と四
原稿作成日 : 2017 年 3 月 31 日 正しいデータの記述の仕方 < 教材提供 > AMED 支援 国際誌プロジェクト 提供 無断転載を禁じます 草案新谷歩大阪市立大学医学研究科医療統計学講座教授加葉田大志朗大阪市立大学医学研究科医療統計学講座特任助教 査読大門貴志兵庫医科大学医療統計学教授角間辰之久留米大学バイオ統計センター教授市川家國信州大学特任教授山本紘司大阪市立大学大学院医学研究科医療統計学講座准教授石原拓磨大阪市立大学大学院医学研究科医療統計学講座特任助教
データ 統計 情報 計算 分析 ( 数量的情報 定性的情報 ) 上の図にもあるように 統計学 の目的の一つとして データ ( 中学校では資料と呼んでいた ) や 統計 を正しく分析し 我々の判断や 行動に役立つ 情報 を導き出す力を養うことが挙げられる ( 度数分布表とヒストグラム ) 1 年 A
第 4 章データの分析 No.01 ( 中学校での履修事項 ) 1 年生 : 資料の整理 1 階級 階級の幅 度数 度数分布表 ヒストグラム ( 柱状グラフ ) 度数折れ線 相対度数 2 範囲 代表値 ( 平均値 中央値 最頻値 ) 3 近似値 誤差 有効数字 3 年生 : 標本調査 1 標本 母集団 標本調査 全数調査 無作為抽出を学んだそうですね? ( なぜ データの分析 を学ぶのか?) 社会活動で
PowerPoint プレゼンテーション
1/X Chapter 9: Linear correlation Cohen, B. H. (2007). In B. H. Cohen (Ed.), Explaining Psychological Statistics (3rd ed.) (pp. 255-285). NJ: Wiley. 概要 2/X 相関係数とは何か 相関係数の数式 検定 注意点 フィッシャーのZ 変換 信頼区間 相関係数の差の検定
ビジネス統計 統計基礎とエクセル分析 正誤表
ビジネス統計統計基礎とエクセル分析 ビジネス統計スペシャリスト エクセル分析スペシャリスト 公式テキスト正誤表と学習用データ更新履歴 平成 30 年 5 月 14 日現在 公式テキスト正誤表 頁場所誤正修正 6 知識編第 章 -3-3 最頻値の解説内容 たとえば, 表.1 のデータであれば, 最頻値は 167.5cm というたとえば, 表.1 のデータであれば, 最頻値は 165.0cm ということになります
これに対する度数分布表は次のようになる : 階級 階級値 度数 相対度数 累積度数 累積相対度数 ( 以上 ) ~ ( 未満 ) 0 ~ (3/50 = ) ~ (2/50 = ) ~ (6/5
1. 分布を把握する ( 度数分布表 ヒストグラム ) 本章の目標 度数分布やヒストグラムの必要性やその方法を理解する 度数分布やヒストグラムを用いて, 分布の様子を調べることができる 相対度数や累積相対度数を用いて, 異なるグループの分布を比較することができる Key Words: 階級 度数 相対度数 度数分布 ヒストグラム 1. 度数分布表 ( 量的 ) 変数 ( 例 : 世帯人員数 ) がとる値の範囲をグループ分けしたそれぞれの区間を階級という.
13章 回帰分析
単回帰分析 つ以上の変数についての関係を見る つの 目的 被説明 変数を その他の 説明 変数を使って 予測しようというものである 因果関係とは限らない ここで勉強すること 最小 乗法と回帰直線 決定係数とは何か? 最小 乗法と回帰直線 これまで 変数の間の関係の深さについて考えてきた 相関係数 ここでは 変数に役割を与え 一方の 説明 変数を用いて他方の 目的 被説明 変数を説明することを考える
相関係数と偏差ベクトル
相関係数と偏差ベクトル 経営統計演習の補足資料 07 年 月 9 日金沢学院大学経営情報学部藤本祥二 相関係数の復習 r = s xy s x s y = = n σ n i= σn i= n σ n i= n σ i= x i xҧ y i തy x i xҧ n σ n i= y i തy x i xҧ x i xҧ y i തy σn i= y i തy 式が長くなるので u, v の文字で偏差を表すことにする
統計学 - 社会統計の基礎 - 正規分布 標準正規分布累積分布関数の逆関数 t 分布正規分布に従うサンプルの平均の信頼区間 担当 : 岸 康人 資料ページ :
統計学 - 社会統計の基礎 - 正規分布 標準正規分布累積分布関数の逆関数 t 分布正規分布に従うサンプルの平均の信頼区間 担当 : 岸 康人 資料ページ : https://goo.gl/qw1djw 正規分布 ( 復習 ) 正規分布 (Normal Distribution)N (μ, σ 2 ) 別名 : ガウス分布 (Gaussian Distribution) 密度関数 Excel:= NORM.DIST
Microsoft Word - スーパーナビ 第6回 数学.docx
1 ⑴ 与式 =- 5 35 +14 35 =9 35 1 ⑵ 与式 =9-(-5)=9+5=14 1 ⑶ 与式 = 4(a-b)-3(5a-3b) = 8a-4b-15a+9b = -7a+5b 1 1 1 1 ⑷ 与式 =(²+ 1+1²)-{²+(-3+)+(-3) } 1 ⑷ 与式 =(²++1)-(²--6)=²++1-²++6=3+7 1 ⑸ 与式 = - ² + 16 = - +16
ファイナンスのための数学基礎 第1回 オリエンテーション、ベクトル
春学期統計学 I 記述統計と推測統計 担当 : 長倉大輔 ( ながくらだいすけ ) 1 本日の予定 本日はまず記述統計と推測統計の違い 推測統計学の基本的な構造について説明します 2 記述統計と推測統計 統計学とは? 与えられたデータの背後にある 特性 法則 を 検証 発見 分析 するための手法の開発 その応用などに関わる学問の事です 3 記述統計と推測統計 データの種類 データの種類はおおまかに
Microsoft PowerPoint - R-stat-intro_04.ppt [互換モード]
R で統計解析入門 (4) 散布図と回帰直線と相関係数 準備 : データ DEP の読み込み 1. データ DEP を以下からダウンロードする http://www.cwk.zaq.ne.jp/fkhud708/files/dep.csv 2. ダウンロードした場所を把握する ここでは c:/temp とする 3. R を起動し,2. の場所に移動し, データを読み込む 4. データ DEP から薬剤
モジュール1のまとめ
数理統計学 第 0 回 復習 標本分散と ( 標本 ) 不偏分散両方とも 分散 というのが実情 二乗偏差計標本分散 = データ数 (0ページ) ( 標本 ) 不偏分散 = (03 ページ ) 二乗偏差計 データ数 - 分析ではこちらをとることが多い 復習 ここまで 実験結果 ( 万回 ) 平均 50Kg 標準偏差 0Kg 0 人 全体に小さすぎる > mea(jkke) [] 89.4373 標準偏差
測量試補 重要事項
重量平均による標高の最確値 < 試験合格へのポイント > 標高の最確値を重量平均によって求める問題である 士補試験では 定番 問題であり 水準測量の計算問題としては この形式か 往復観測の較差と許容範囲 の どちらか または両方がほぼ毎年出題されている 定番の計算問題であるがその難易度は低く 基本的な解き方をマスターしてしまえば 容易に解くことができる ( : 最重要事項 : 重要事項 : 知っておくと良い
Microsoft Word - 操作マニュアル-Excel-2.doc
Excel プログラム開発の練習マニュアルー 1 ( 関数の学習 ) 作成 2015.01.31 修正 2015.02.04 本マニュアルでは Excel のプログラム開発を行なうに当たって まずは Excel の関数に関する学習 について記述する Ⅰ.Excel の関数に関する学習 1. 初めに Excel は単なる表計算のソフトと思っている方も多いと思います しかし Excel には 一般的に使用する
. 角の二等分線と調和平均 平面上に点 を端点とする線分 と を重ならないようにとる, とし とする の二等分線が線分 と交わる点を とし 点 から に垂直に引いた直線が線分 と交わる点 とする 線分 の長さを求めてみよう 点 から に垂直な直線と および との交点をそれぞれ, Dとする つの直角三
角の二等分線で開くいろいろな平均 札幌旭丘高校中村文則 0. 数直線上に現れるいろいろな平均下図は 数 (, ) の調和平均 相乗平均 相加平均 二乗平均を数直線上に置いたものである, とし 直径 中心 である円を用いていろいろな平均の大小関係を表現するもっとも美しい配置方法であり その証明も容易である Q D E F < 相加平均 > (0), ( ), ( とすると 線分 ) の中点 の座標はである
Microsoft Word - 町田・全 H30学力スタ 別紙1 1年 数学Ⅰ.doc
(1) 数と式 学習指導要領 都立町田高校 学力スタンダード ア 数と集合 ( ア ) 実数 根号を含む式の計算 数を実数まで拡張する意義を理解し 簡単な 循環小数を表す記号を用いて, 分数を循環小数で表 無理数の四則計算をすること すことができる 今まで学習してきた数の体系について整理し, 考察 しようとする 絶対値の意味と記号表示を理解している 根号を含む式の加法, 減法, 乗法の計算ができる
森林水文 水資源学 2 2. 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 1 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,10 年に 1 回の渇水を対象として計画が立て
. 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,0 年に 回の渇水を対象として計画が立てられる. このように, 水利構造物の設計や, 治水や利水の計画などでは, 年に 回起こるような降雨事象 ( 最大降雨強度, 最大連続干天日数など
微分方程式による現象記述と解きかた
微分方程式による現象記述と解きかた 土木工学 : 公共諸施設 構造物の有用目的にむけた合理的な実現をはかる方法 ( 技術 ) に関する学 橋梁 トンネル ダム 道路 港湾 治水利水施設 安全化 利便化 快適化 合法則的 経済的 自然および人口素材によって作られた 質量保存則 構造物の自然的な性質 作用 ( 外力による応答 ) エネルギー則 の解明 社会的諸現象のうち マスとしての移動 流通 運動量則
2. 幹葉図数表はデータの詳細な値を知ることができますが, 一見してデータ全体の傾向を読み取るのは困難です. 一方, グラフはデータ全体の傾向を視覚的に捉えることができますが, 細かい値を知るには適していません. 幹葉図はこの両面性を備え, かつ, データの集計にも使えるという方法です. 例 次のデ
小学生にもできる統計の手法 幹葉図と箱ヒゲ図 吉田一 0. はじめに 数学教室 No.603(2002 年 2 月号 ) の AMI International で Quantitative Literacy とは とい う文を書きましたが, そこで取り上げたみきはず幹葉図 Stem-and-Leaf Plot と箱ヒゲ図 Box-and-Whisker Plot について, その考え方と手法を説明します.
測量士補 重要事項「標準偏差」
標準偏差 < 試験合格へのポイント > 士補試験における標準偏差に関する問題は 平成元年が最後の出題となっており それ以来 0 年間に渡って出題された形跡がない このため 受験対策本の中には標準偏差に関して 触れることすら無くなっている物もあるのが現状である しかし平成 0 年度試験において 再び出題が確認されたため ここに解説し過去に出題された問題について触れてみる 標準偏差に関する問題は 基本的にはその公式に当てはめて解けば良いため
講座内容 第 1 週 データサイエンスとは 第 2 週 分析の概念と事例ビジネス課題解決のためのデータ分析基礎 ( 事例と手法 )1 第 3 週 分析の具体的手法ビジネス課題解決のためのデータ分析基礎 ( 事例と手法 )2 第 4 週 ビジネスにおける予測と分析結果の報告ビジネス課題解決のためのデー
社会人のためのデータサイエンス演習第 2 週 : 分析の概念と事例第 1 回 :Analysis( 分析 ) とは講師名 : 今津義充 1 講座内容 第 1 週 データサイエンスとは 第 2 週 分析の概念と事例ビジネス課題解決のためのデータ分析基礎 ( 事例と手法 )1 第 3 週 分析の具体的手法ビジネス課題解決のためのデータ分析基礎 ( 事例と手法 )2 第 4 週 ビジネスにおける予測と分析結果の報告ビジネス課題解決のためのデータ分析基礎
学習指導要領
(1) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 自然数 整数 有理数 無理数の包含関係など 実数 の構成を理解する ( 例 ) 次の空欄に適当な言葉をいれて, 数の集合を表しなさい ア イ 無理数 整数 ウ 無理数の加法及び減法 乗法公式などを利用した計 算ができる また 分母だけが二項である無理数の 分母の有理化ができる ( 例 1)
Microsoft Word - 補論3.2
補論 3. 多変量 GARC モデル 07//6 新谷元嗣 藪友良 対数尤度関数 3 章 7 節では 変量の対数尤度を求めた ここでは多変量の場合 とくに 変量について対数尤度を求める 誤差項 は平均 0 で 次元の正規分布に従うとする 単純化のため 分散と共分散は時間を通じて一定としよう ( この仮定は後で変更される ) したがって ij から添え字 を除くことができる このとき と の尤度関数は
画像類似度測定の初歩的な手法の検証
画像類似度測定の初歩的な手法の検証 島根大学総合理工学部数理 情報システム学科 計算機科学講座田中研究室 S539 森瀧昌志 1 目次 第 1 章序論第 章画像間類似度測定の初歩的な手法について.1 A. 画素値の平均を用いる手法.. 画素値のヒストグラムを用いる手法.3 C. 相関係数を用いる手法.4 D. 解像度を合わせる手法.5 E. 振れ幅のヒストグラムを用いる手法.6 F. 周波数ごとの振れ幅を比較する手法第
Microsoft Word - apstattext04.docx
4 章母集団と指定値との量的データの検定 4.1 検定手順今までは質的データの検定の方法を学んで来ましたが これからは量的データについてよく利用される方法を説明します 量的データでは データの分布が正規分布か否かで検定の方法が著しく異なります この章ではまずデータの分布の正規性を調べる方法を述べ 次にデータの平均値または中央値がある指定された値と違うかどうかの検定方法を説明します 以下の図 4.1.1
<4D F736F F D208CF68BA48C6F8DCF8A C30342C CFA90B68C6F8DCF8A7782CC8AEE967B92E8979D32288F4390B394C529332E646F63>
2. 厚生経済学の ( 第 ) 基本定理 2 203 年 4 月 7 日 ( 水曜 3 限 )/8 本章では 純粋交換経済において厚生経済学の ( 第 ) 基本定理 が成立することを示す なお より一般的な生産技術のケースについては 4.5 補論 2 で議論する 2. 予算集合と最適消費点 ( 完全 ) 競争市場で達成される資源配分がパレート効率的であることを示すための準備として 個人の最適化行動を検討する
Microsoft PowerPoint - Statistics[B]
講義の目的 サンプルサイズの大きい標本比率の分布は正規分布で近似できることを理解します 科目コード 130509, 130609, 110225 統計学講義第 19/20 回 2019 年 6 月 25 日 ( 火 )6/7 限 担当教員 : 唐渡広志 ( からと こうじ ) 研究室 : email: website: 経済学研究棟 4 階 432 号室 [email protected]
Matrix and summation convention Kronecker delta δ ij 1 = 0 ( i = j) ( i j) permutation symbol e ijk = (even permutation) (odd permutation) (othe
Matr ad summato covto Krockr dlta δ ( ) ( ) prmutato symbol k (v prmutato) (odd prmutato) (othrs) gvalu dtrmat dt 6 k rst r s kt opyrght s rsrvd. No part of ths documt may b rproducd for proft. 行列 行 正方行列
目次 1 章 SPSS の基礎 基本 はじめに 基本操作方法 章データの編集 はじめに 値ラベルの利用 計算結果に基づく新変数の作成 値のグループ化 値の昇順
SPSS 講習会テキスト 明治大学教育の情報化推進本部 IZM20140527 目次 1 章 SPSS の基礎 基本... 3 1.1 はじめに... 3 1.2 基本操作方法... 3 2 章データの編集... 6 2.1 はじめに... 6 2.2 値ラベルの利用... 6 2.3 計算結果に基づく新変数の作成... 7 2.4 値のグループ化... 8 2.5 値の昇順 降順... 10 3
振動学特論火曜 1 限 TA332J 藤井康介 6 章スペクトルの平滑化 スペクトルの平滑化とはギザギザした地震波のフーリエ スペクトルやパワ スペクトルでは正確にスペクトルの山がどこにあるかはよく分からない このようなスペクトルから不純なものを取り去って 本当の性質を浮き彫
6 章スペクトルの平滑化 スペクトルの平滑化とはギザギザした地震波のフーリエ スペクトルやパワ スペクトルでは正確にスペクトルの山がどこにあるかはよく分からない このようなスペクトルから不純なものを取り去って 本当の性質を浮き彫りにするために スペクトルを滑らかにする操作のことをいう 6.1 合積のフーリエ変換スペクトルの平滑化を行う際に必要な 合積とそのフーリエ変換について説明する 6.2 データ
各資産のリスク 相関の検証 分析に使用した期間 現行のポートフォリオ策定時 :1973 年 ~2003 年 (31 年間 ) 今回 :1973 年 ~2006 年 (34 年間 ) 使用データ 短期資産 : コールレート ( 有担保翌日 ) 年次リターン 国内債券 : NOMURA-BPI 総合指数
5 : 外国株式 外国債券と同様に円ベースの期待リターン = 円のインフレ率 + 円の実質短期金利 + 現地通貨ベースのリスクプレミアム リスクプレミアムは 過去実績で 7% 程度 但し 3% 程度は PER( 株価 1 株あたり利益 ) の上昇 すなわち株価が割高になったことによるもの 将来予想においては PER 上昇が起こらないものと想定し 7%-3%= 4% と設定 直近の外国株式の現地通貨建てのベンチマークリターンと
【FdData中間期末過去問題】中学数学2年(連立方程式の応用2/速さ/数の問題)
FdData 中間期末 : 中学数学 2 年 : 連立方程式の応用 2 [ 途中で速さを変える / 速さその他 /2 けた (3 けた ) の自然数 / その他の数の問題 ] [ 数学 2 年 pdf ファイル一覧 ] 速さ 途中で速さを変える [ 問題 ](1 学期期末 ) A 市から 160km はなれた B 町へ自動車で出かけた A 市から途中の C 市までは時速 80km で走り,C 市から
Microsoft PowerPoint - 10.pptx
m u. 固有値とその応用 8/7/( 水 ). 固有値とその応用 固有値と固有ベクトル 行列による写像から固有ベクトルへ m m 行列 によって線形写像 f : R R が表せることを見てきた ここでは 次元平面の行列による写像を調べる とし 写像 f : を考える R R まず 単位ベクトルの像 u y y f : R R u u, u この事から 線形写像の性質を用いると 次の格子上の点全ての写像先が求まる
したがって ばらつきを表すには 偏差の符号をなくしてから平均化する必要がある そのひとつの方法は 1 偏差の絶対値を用いることである 偏差の絶対値の算術平均を 平均偏差 という ( )/5=10.8 偏差の符号を取るもうひとつの方法は 2それを2 乗することです 偏差の2 乗の算
統計学テキストの69ページに 平均偏差 分散 標準偏差 変動係数 標準誤差 信頼区間に関する記述がある 分布を考える分布の中心の位置 ( 例 ) 65 53 44 78 50 の数値の算術平均は (65+53+44+78+50)/5=58 である 此れだけでは 分布の状態がわからない ばらつきの程度を表すには最大値と最小値との差 (78-44)=34 これをレンジ ( 範囲 ) と言う しかし 両端の数字だけでは
画像処理工学
画像処理工学 画像の空間周波数解析とテクスチャ特徴 フーリエ変換の基本概念 信号波形のフーリエ変換 信号波形を周波数の異なる三角関数 ( 正弦波など ) に分解する 逆に, 周波数の異なる三角関数を重ねあわせることにより, 任意の信号波形を合成できる 正弦波の重ね合わせによる矩形波の表現 フーリエ変換の基本概念 フーリエ変換 次元信号 f (t) のフーリエ変換 変換 ( ω) ( ) ωt F f
