SUSY DWs

Similar documents
3 exotica

YITP50.dvi

Kaluza-Klein(KK) SO(11) KK 1 2 1

susy.dvi

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

『共形場理論』



D-brane K 1, 2 ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

Z: Q: R: C: sin 6 5 ζ a, b

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e =

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

Dynkin Serre Weyl

Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38

kougiroku7_26.dvi

Step 2 O(3) Sym 0 (R 3 ), : a + := λ 1 λ 2 λ 3 a λ 1 λ 2 λ 3. a +. X a +, O(3).X. O(3).X = O(3)/O(3) X, O(3) X. 1.7 Step 3 O(3) Sym 0 (R 3 ),

TOP URL 1

Einstein ( ) YITP

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

arxiv: v1(astro-ph.co)

0. Intro ( K CohFT etc CohFT 5.IKKT 6.

,,..,. 1

( ),.,,., C A (2008, ). 1,, (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,, (M, g) p M, s p : M M p, : (1) p s p, (

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

Flux compactifications, N=2 gauged supergravities and black holes


SO(2)

Part () () Γ Part ,

' , 24 :,,,,, ( ) Cech Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing 66 1

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

/ 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point R n set space R n R n x = x 1 x n y = y 1 y n distance dx,

第1章 微分方程式と近似解法

Confinement dual Meissener effect dual Meissener effect

GJG160842_O.QXD

0406_total.pdf

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

Chern-Simons Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

Ł\”ƒ-2005

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

第90回日本感染症学会学術講演会抄録(I)

all.dvi

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

Norisuke Sakai (Tokyo Institute of Technology) In collaboration with M. Eto, T. Fujimori, Y. Isozumi, T. Nagashima, M. Nitta, K. Ohashi, K. Ohta, Y. T


磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

TOP URL 1

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t

CKY CKY CKY 4 Kerr CKY

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

linearal1.dvi

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

ADM-Hamiltonian Cheeger-Gromov 3. Penrose


量子力学 問題

Mott散乱によるParity対称性の破れを検証

DaisukeSatow.key

( )

Introduction 2 / 43

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w

中央大学セミナー.ppt

December 28, 2018

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo

Mathematical Logic I 12 Contents I Zorn

第86回日本感染症学会総会学術集会後抄録(I)


meiji_resume_1.PDF

D 24 D D D

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

n ( (

nsg02-13/ky045059301600033210


5 Calabi-Yau web

TOP URL 1


1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

(Tokyo Institute of Technology) Seminar at Ehime University ( ) 9 3 U(N C ), N F /2 BPS ( ) 12 5 (

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+

(1) (2) (3) (4) 1

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

tnbp59-21_Web:P2/ky132379509610002944

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

Transcription:

@ 2013 1 25 Supersymmetric Domain Walls Eric A. Bergshoeff, Axel Kleinschmidt, and Fabio Riccioni Phys. Rev. D86 (2012) 085043 (arxiv:1206.5697) ( )

Contents 1 2 SUSY Domain Walls Wess-Zumino Embedding Tensor Formalism

p-branes : D p p D 4 : standard branes p = D 3 : defect branes p = D 2 : Domain Walls T p (g s ) +α (l s = 1) α = 0 : fundamental α = 1 : Dirichlet α = 2 : solitonic S p-brane = T p ( ) + ( brane ) Dirac-Born-Infeld type Wess-Zumino type SUSY Domain Walls - 3 -

D = 10 IIA/IIB D = 10 p = 0 p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8 p = 9 α = 0 F1 IIA/IIB α = 1 D0 IIA D1 IIB D2 IIA D3 IIB D4 IIA D5 IIB D6 IIA (D7) IIB (D8) IIA (D9) IIB α = 2 NS5 IIA/IIB SUSY Domain Walls - 4 -

D = 10 IIA/IIB D = 10 p = 0 p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8 p = 9 α = 0 F1 IIA/IIB α = 1 D0 IIA D1 IIB D2 IIA D3 IIB D4 IIA D5 IIB D6 IIA (D7) IIB (D8) IIA (D9) IIB α = 2 NS5 IIA/IIB p 6 sources : F1 B (2), NS5 B (6), Dp C (p+1) (p 3), Dp C (p +1) (p > 4) db (2) = 10 db (6), dc (p+1) = 10 dc (7 p) 10 dc (p +1) Dp = standard branes (p 6) RR potentials C (p+1) D7 = defect branes scalar fields (+α) D8 = Domain Walls Romans mass ( ) D9 = spacetime-filling branes I SUSY Domain Walls - 5 -

Domain Walls (10 D8-brane Romans mass )

Motivation = 32 ( ) coset space G 0 /H D U-duality G 0 R- H dim(g 0 /H) T-duality 11 1 1 0 1 IIA R + 1 1 1 IIB SL(2, R) SO(2) 2 1 9 GL(2, R) SO(2) 3 SO(1, 1) 8 SL(3, R) SL(2, R) SO(3) SO(2) 7 SL(2, R) SL(2, R) 7 SL(5, R) Sp(2) 14 SL(4, R) 6 SO(5, 5) Sp(2) Sp(2) 25 SO(4, 4) 5 E 6(6) USp(8) 42 SO(5, 5) 4 E 7(7) SU(8) 70 SO(6, 6) 3 E 8(8) SO(16) 128 SO(7, 7) SUSY Domain Walls - 7 -

Motivation Domain Walls D8-brane in 10-dim. Ramond-Ramond potential C (9) 10 dc (9) = m ( ) IIA Romans massive IIA SUGRA SUSY Domain Walls - 8 -

Motivation Domain Walls D8-brane in 10-dim. Ramond-Ramond potential C (9) 10 dc (9) = m ( ) IIA Romans massive IIA SUGRA (D 2)-branes in D-dim. SUSY Domain Walls Domain Walls SUSY Domain Walls - 9 -

1 SUSY Domain Walls Wess-Zumino 7 Domain Walls

D8-brane in 10D D8-brane ds 2 10 = H 9 8 (y) dy 2 + H 1 8 (y) ds 2 9 e ϕ = H 5 4 (y) dilaton C 012 8 = ± 1 H(y), m = ± yh(y) RR potential (Romans mass) mass m 0 RR potentials δb 2 = dσ 1, δc 1 = mσ 1 F 2 dc 1 + mb 2 : Stückelberg pairing gauging C 1 B 2 C 3 C 5 B 6 C 7 m eaten massive massless massless eaten massive SUSY Domain Walls - 11 -

D8-brane in 10D D8-brane (D8 back reaction ) δc 9 = dλ 8 + H 3 λ 6 : RR tensor in bulk δb 2 = dσ 1 : NSNS tensor in bulk δx = 0 : transverse scalar δb µ = dσ 0 Σ 1 : D8-brane D8-brane SUSY {X, b µ ; ψ} : on-shell (8 boson + 8 fermion ) SUSY Wess-Zumino L WZ = C 9 + C 7 F 2 +... = ( C e F 2 ) 9 F 2 = db 1 + B 2, H 3 = db 2 ( ) m 0 SUSY Domain Walls - 12 -

D SUSY DWs D Wess-Zumino L WZ (A e F ) D 1 A : F : D ( ) Domain Walls A, F D U-duality G 0 1. (A, F) SUSY 2. SUSY Domain Walls SUSY Domain Walls - 13 -

U-duality G 0 form fields D U-duality G 0 1-forms 2-forms 3-forms 4-forms 5-forms 6-forms 7-forms 8-forms 9-forms 10-forms IIA R + 1 1 1 1 1 1 1 1 1 1 IIB SL(2, R) 2 1 2 3 4 2 9 GL(2, R) 2 1 2 1 1 2 2 1 3 1 3 2 4 2 2 8 SL(3, R) SL(2, R) (3, 2) (3, 1) (1, 2) (3, 1) (3, 2) (8, 1) (1, 3) 7 SL(5, R) 10 5 5 10 24 40 15 6 SO(5, 5) 16 10 16 45 144 5 E 6(6) 27 27 78 351 4 E 7(7) 56 133 912 3 E 8(8) 248 3875 1 147250 3875 248 8645 133 1728 27 320 126 10 (6, 2) (3, 2) 70 45 5 (15, 1) (3, 3) (3, 1) (3, 1) F.Riccioni, D.Steele and P.West, arxiv:0906.1177 SUSY Domain Walls - 14 -

U-duality G 0 form fields D U-duality G 0 1-forms 2-forms 3-forms 4-forms 5-forms 6-forms 7-forms 8-forms 9-forms 10-forms IIA R + 1 1 1 1 1 1 1 1 1 1 IIB SL(2, R) 2 1 2 3 4 2 9 GL(2, R) 2 1 2 1 1 2 2 1 3 1 3 2 4 2 2 8 SL(3, R) SL(2, R) (3, 2) (3, 1) (1, 2) (3, 1) (3, 2) (8, 1) (1, 3) 7 SL(5, R) 10 5 5 10 24 40 15 6 SO(5, 5) 16 10 16 45 144 5 E 6(6) 27 27 78 351 4 E 7(7) 56 133 912 3 E 8(8) 248 3875 1 147250 3875 248 8645 133 1728 27 320 126 10 (6, 2) (3, 2) 70 45 5 (15, 1) (3, 3) (3, 1) (3, 1) Domain walls : (D 1)-forms F.Riccioni, D.Steele and P.West, arxiv:0906.1177 SUSY Domain Walls - 15 -

U-duality G 0 form fields D U-duality G 0 1-forms 2-forms 3-forms 4-forms 5-forms 6-forms 7-forms 8-forms 9-forms 10-forms IIA R + 1 1 1 1 1 1 1 1 1 1 IIB SL(2, R) 2 1 2 3 4 2 9 GL(2, R) 2 1 2 1 1 2 2 1 3 1 3 2 4 2 2 8 SL(3, R) SL(2, R) (3, 2) (3, 1) (1, 2) (3, 1) (3, 2) (8, 1) (1, 3) 7 SL(5) 10 5 5 10 24 40 15 6 SO(5, 5) 16 10 16 45 144 5 E 6(6) 27 27 78 351 4 E 7(7) 56 133 912 3 E 8(8) 248 3875 1 147250 3875 248 8645 133 1728 27 320 126 10 (6, 2) (3, 2) 70 45 5 (15, 1) (3, 3) (3, 1) (3, 1) 7 F.Riccioni, D.Steele and P.West, arxiv:0906.1177 SUSY Domain Walls - 16 -

7 SUSY DWs 7 Domain Walls = 5-branes 7D A G 0 = SL(5, R) A 1,[MN] 1-form 10 A M 2 2-form 5 A 3,M 3-form 5 A [MN] 4 4-form 10 A 5,M N 5-form 24 (adjoint) A 6,(MN) A [MN],P 6 6-forms 15 40 (M, N = 1,..., 5 of SL(5, R)) SUSY Domain Walls - 17 -

7 SUSY DWs 15 5-brane L 15 WZ A 6,(MN) + A 5,(M P F 1,N)P + A 3,(M F 3,N) +... F 3,N = db 2,N + A 3,N F 1,NP = db 0,NP + A 1,NP X y SUSY Domain Walls - 18 -

7 SUSY DWs 15 5-brane L 15 WZ A 6,(MN) + A 5,(M P F 1,N)P + A 3,(M F 3,N) +... F 3,N = db 2,N + A 3,N F 1,NP = db 0,NP + A 1,NP X y SUSY Domain Walls - 19 -

7 SUSY DWs 15 5-brane L 15 WZ A 6,(MN) + A 5,(M P F 1,N)P + A 3,(M F 3,N) +... F 3,N = db 2,N + A 3,N F 1,NP = db 0,NP + A 1,NP X y M = N(= 1) case : SUSY 5-branes b 2,N=1 : 4C 2 /2 = 3 b 0,[N=1,P ] : 1 4 = 4 X y : 1 8 boson + 8 fermion 1 2 -SUSY! M = 1,..., 5 SUSY Domain Walls - 20 -

7 SUSY DWs 15 5-brane L 15 WZ A 6,(MN) + A 5,(M P F 1,N)P + A 3,(M F 3,N) +... F 3,N = db 2,N + A 3,N F 1,NP = db 0,NP + A 1,NP X y M = N(= 1) case : SUSY 5-branes 5 b 2,N=1 : 4C 2 /2 = 3 b 0,[N=1,P ] : 1 4 = 4 X y : 1 8 boson + 8 fermion 1 2 -SUSY! M = 1,..., 5 M N case : SUSY 5-branes boson 4 SUSY SUSY Domain Walls - 21 -

7 SUSY DWs 15 5-brane L 15 WZ A 6,(MN) + A 5,(M P F 1,N)P + A 3,(M F 3,N) +... F 3,N = db 2,N + A 3,N F 1,NP = db 0,NP + A 1,NP X y M = N(= 1) case : SUSY 5-branes 5 b 2,N=1 : 4C 2 /2 = 3 b 0,[N=1,P ] : 1 4 = 4 X y : 1 8 boson + 8 fermion 1 2 -SUSY! M = 1,..., 5 5 < 15 Elementary SUSY DWs M N case : SUSY 5-branes boson 4 SUSY SUSY Domain Walls - 22 -

7 SUSY DWs 40 L 40 WZ A [MN],P 6 + A 5,Q P F 1,RS ϵ MNQRS + A [MN] 4 F P 2 ( ) [MNP ] +... 5-brane F P 2 = db P 1 + A P 2 F 1,RS = db 0,RS + A 1,RS X y SUSY Domain Walls - 23 -

7 SUSY DWs 40 L 40 WZ A [MN],P 6 + A 5,Q P F 1,RS ϵ MNQRS + A [MN] 4 F P 2 ( ) [MNP ] +... 5-brane F P 2 = db P 1 + A P 2 F 1,RS = db 0,RS + A 1,RS X y SUSY Domain Walls - 24 -

7 SUSY DWs 40 L 40 WZ A [MN],P 6 + A 5,Q P F 1,RS ϵ MNQRS + A [MN] 4 F P 2 ( ) [MNP ] +... 5-brane F P 2 = db P 1 + A P 2 F 1,RS = db 0,RS + A 1,RS X y P = M(= 1 N) case : SUSY 5-branes 20 b P 1 : 4 b 0,[RS] : 1 3 = 3 X y : 1 8 boson + 8 fermion 1 2 -SUSY! M ( 5 C 2 = 20) P M N case : SUSY 5-branes boson 4 SUSY SUSY Domain Walls - 25 -

7 SUSY DWs 40 L 40 WZ A [MN],P 6 + A 5,Q P F 1,RS ϵ MNQRS + A [MN] 4 F P 2 ( ) [MNP ] +... 5-brane F P 2 = db P 1 + A P 2 F 1,RS = db 0,RS + A 1,RS X y P = M(= 1 N) case : SUSY 5-branes 20 b P 1 : 4 b 0,[RS] : 1 3 = 3 X y : 1 8 boson + 8 fermion 1 2 -SUSY! M ( 5 C 2 = 20) P M N case : SUSY 5-branes boson 4 SUSY SUSY Domain Walls - 26 -

7 SUSY DWs 40 L 40 WZ A [MN],P 6 + A 5,Q P F 1,RS ϵ MNQRS + A [MN] 4 F P 2 ( ) [MNP ] +... 5-brane F P 2 = db P 1 + A P 2 F 1,RS = db 0,RS + A 1,RS X y P = M(= 1 N) case : SUSY 5-branes 20 b P 1 : 4 b 0,[RS] : 1 3 = 3 X y : 1 8 boson + 8 fermion 1 2 -SUSY! M ( 5 C 2 = 20) 20 < 40 Elementary SUSY DWs P M N case : SUSY 5-branes boson 4 SUSY SUSY Domain Walls - 27 -

Elementary SUSY DWs fundamental Dirichlet solitonic (brane s tension) (g s ) +α D U T # of EDWs α = 0 α = 1 α = 2 α = 3 α = 4 α = 5 IIA R + 1 1 1 9 GL(2, R) SO(1, 1) 2 3 U 1 1 8 SL(3, R) SL(2, R) SL(2, R) SL(2, R) 6 (6, 2) U (1, 2) T 4 (3, 2) T 7 SL(5, R) SL(4, R) 20 40 U 4 T 4 10 T 12 20 T 5 15 U 4 10 T 1 T 6 SO(5, 5) SO(4, 4) 80 144 U 8 S T 32 56 C T 32 56 S T 8 C T 5 E 6(6) SO(5, 5) 216 351 U 16 T 80 120 T 80 144 T 40 45 T 4 E 7(7) SO(6, 6) 576 912 U 32 T 160 220 T 192 352 T 160 220 T 32 T 3 E 8(8) SO(7, 7) 2160 3875 U 1 T 64 T 280 364 T 448 832 T 560 1001 T 14 104 T 448 832 T (α 6) 280 364 T, 6 64 T, 7 1 T, 8 D = 3, 4, 6 S-dual branes α = α 4(D 1) D 2 D = 3, 4, 6 S-dual branes by D-dim. S-duality (g µν) S ((g s ) α d D 2 x [NG(g µν )] = (g s ) α = e 8ϕ/(D 2) (g µν ) S ) d D 2 x [NG(g µν)] SUSY Domain Walls - 28 -

String theory origin of Domain Walls in D-dim. fundamental Dirichlet solitonic α = α 4(D 1) D 2 via S-duality D α = 0 α = 1 α = 2 α = 3 α = 4 α = 5 α = 6 α = 7 α = 8 IIA C 9 [D8] 9 C 8 [D7] E 9,1,1 [7 (0,1) 3 ] 8 C 7 [D6] E 9,2,1 [6 (1,1) 3 ] 7 C 6 [D5] D 6 [NS5] D 7,1 [KK5] D 8,2 [5 2 2] E 9,3,1 [5 (2,1) 3 ] F 9,3 [5 3 4] 6 C 5 [D4] E 9,4,1 [4 (3,1) 3 ] F 9,4,1 [4 (3,1) 4 ] 5 C 4 [D3] E 9,5,1 [3 (4,1) 3 ] F 9,5,2 [3 (3,2) 4 ] 4 C 3 [D2] E 9,6,1 [2 (5,1) 3 ] F 9,6,3 [2 (3,3) 4 ] 3 B 2 [F1] C 2 [D1] E 9,7,1 [1 (6,1) 3 ] F 9,7,4 [1 (3,4) 4 ] F 9,7,1,1 [1 (6,0,1) 4 ] G 9,6,2m G 9,6,2m+1 G 9,7,2m,1 G 9,7,2m+1,1 H 9,7,4+n,n (S 3 (C 2 )) (S 3 (B 2 )) A D T,I1 +I 2,I 2 -forms : mixed-symmetry tensors p (I 1,I 2 ) α -branes T + p + i I i = D 1 with T = 1 : transverse, p : spatial, I i : isometry directions E.A. Bergshoeff et al, arxiv:1108.5067, arxiv:1210.1422 SUSY Domain Walls - 29 -

Elementary SUSY DWs Z (a) : a-form central charge D R- H Z (1) Z (2) # of EDWs 9 SO(2) 1 2 2 8 SO(3) SO(2) (1, 2) 6 3 7 Sp(2) 5 + 1 20 + 5 4 (V), 5 (T) 6 Sp(2) Sp(2) (4, 4) 80 5 5 U Sp(8) 36 216 6 4 SU(8) 36 + + 36 576 8 3 SO(16) 135 2160 16 # of EDWs = {(10 D) + 1} (# of Z (2) ) 5 D 9 8 D = 4 16 D = 3 ( ) standard branes central charges 1 1 SUSY Domain Walls - 30 -

Elementary SUSY DWs D # of (D 1)-forms # of EDWs # of non-edws 9 3 2 2 + 0 1 + 2 8 (6, 2) (3, 2) 6 + 0 6 + 6 7 40 15 20 + 5 20 + 10 6 144 80 64 5 351 216 135 4 912 576 336 3 3875 1 2160 + 0 1715 + 1 Elementary SUSY DWs (EDWs) (D 1)-forms EDWs (D 2)-branes ( ) EDWs 1 2-SUSY threshold bound states of EDWs EDWs 1 2-SUSY non-threshold bound states of EDWs SUSY Domain Walls - 31 -

2 ( ) Embedding Tensor Formalism

coset space G 0 /H D U-duality G 0 R- H dim(g 0 /H) T-duality 11 1 1 0 1 IIA R + 1 1 1 IIB SL(2, R) SO(2) 2 1 9 GL(2, R) SO(2) 3 SO(1, 1) 8 SL(3, R) SL(2, R) SO(3) SO(2) 7 SL(2, R) SL(2, R) 7 SL(5, R) Sp(2) 14 SL(4, R) 6 SO(5, 5) Sp(2) Sp(2) 25 SO(4, 4) 5 E 6(6) USp(8) 42 SO(5, 5) 4 E 7(7) SU(8) 70 SO(6, 6) 3 E 8(8) SO(16) 128 SO(7, 7) SUSY Domain Walls - 33 -

Embedding tensor formalism embedding tensor Θ M α T M Θ M α t α t α Lie G 0 global T M Lie G local µ D µ µ ga M µ T M SUSY Domain Walls - 34 -

Embedding tensor formalism embedding tensor Θ M α T M Θ M α t α t α Lie G 0 global T M Lie G local µ D µ µ ga M µ T M [T M, T N ] = T MN P T P, T MN P Θ M α (t α ) N P [D µ, D ν ] gf M µν T M F M µν µ A M ν ν A M µ + gt [NP ] M A N µ A P ν : 0 = f αβ γ Θ M α Θ N β + (t α ) N P Θ M α Θ P γ SUSY Domain Walls - 35 -

Embedding tensor formalism T (MN) P Θ P α = 0 [T M, T N ] = T MN P T P T (MN) P = 0 δf M µν = 2D [µ δa M ν] 2g T (P Q) M A P [µ δaq ν] δa M µ = D µ Λ M tensor gauge fields B (NP ) µν Stückelberg pairing H M µν F M µν + g T (NP ) M B (NP ) µν SUSY Domain Walls - 36 -

Embedding tensor formalism : Θ M α dim G dim G 0 ( Dµ = µ ga M µ Θ M α t α ) M G 0 SUSY Domain Walls - 37 -

Embedding tensor formalism : Θ M α dim G dim G 0 ( Dµ = µ ga M µ Θ M α t α ) M G 0 D U-duality G 0 constraints on R(M) R(α) 9 GL(2, R) (2 1) (3 1) = 1 2 2 3 4 8 SL(3, R) SL(2, R) (3, 2) [(1, 3) (8, 1)] = (3, 2) (3, 2) (3, 4) (6, 2) (15, 2) 7 SL(5, R) 10 24 = 10 15 40 175 6 SO(5, 5) 16 45 = 16 144 560 5 E 6(6) 27 78 = 27 351 1728 4 E 7(7) 56 133 = 56 912 6480 3 E 8(8) 248 248 = 1 248 3875 27000 30380 F.Riccioni, D.Steele and P.West, arxiv:0906.1177 SUSY Domain Walls - 38 -

Θ M α D (D 1)-form SUSY Domain Walls - 39 -

U-duality G 0 form fields D U-duality G 0 1-forms 2-forms 3-forms 4-forms 5-forms 6-forms 7-forms 8-forms 9-forms 10-forms IIA R + 1 1 1 1 1 1 1 1 1 1 IIB SL(2, R) 2 1 2 3 4 2 9 GL(2, R) 2 1 2 1 1 2 2 1 3 1 3 2 4 2 2 8 SL(3, R) SL(2, R) (3, 2) (3, 1) (1, 2) (3, 1) (3, 2) (8, 1) (1, 3) 7 SL(5, R) 10 5 5 10 24 40 15 6 SO(5, 5) 16 10 16 45 144 5 E 6(6) 27 27 78 351 4 E 7(7) 56 133 912 3 E 8(8) 248 3875 1 147250 3875 248 8645 133 1728 27 320 126 10 (6, 2) (3, 2) 70 45 5 (15, 1) (3, 3) (3, 1) (3, 1) (D 1)-forms Embedding Tensors F.Riccioni, D.Steele and P.West, arxiv:0906.1177 SUSY Domain Walls - 40 -

Θ α M D (D 1)-form (D 1)-form DWs Elementary SUSY DWs Θ α M SUSY Domain Walls - 41 -

Θ α M D (D 1)-form (D 1)-form DWs Elementary SUSY DWs Θ α M SUSY Domain Walls - 42 -

9 A 1, A 1,a, A 2,a, A 3 (a = 1, 2 of GL(2, R)) SUSY Domain Walls - 43 -

9 A 1, A 1,a, A 2,a, A 3 (a = 1, 2 of GL(2, R)) embedding tensors Θ a in 2, Θ ab in 3 ; with constraints Θ a Θ bc ϵ ab = 0, Θ (a Θ bc) = 0 SUSY Domain Walls - 44 -

9 A 1, A 1,a, A 2,a, A 3 (a = 1, 2 of GL(2, R)) embedding tensors Θ a in 2, Θ ab in 3 ; with constraints Stückelberg pairing Θ a Θ bc ϵ ab = 0, Θ (a Θ bc) = 0 δa 1 = dλ 0 Θ a λ 1,a δa 1,a = dλ 0,a ϵ ab Θ bc λ 1,c δa 2,a = dλ 1,a ϵ ab Θ b λ 2 δa 3 = dλ 2 F 2 = da 1 + Θ a A 2,a F 2,a = da 1,a + ϵ ab Θ bc A 2,c F 3,a = da 2,a + ϵ ab Θ b A 3 F 4 = da 3 SUSY Domain Walls - 45 -

9 A 1, A 1,a, A 2,a, A 3 (a = 1, 2 of GL(2, R)) embedding tensors Θ a in 2, Θ ab in 3 ; with constraints Stückelberg pairing Θ a Θ bc ϵ ab = 0, Θ (a Θ bc) = 0 δa 1 = dλ 0 Θ a λ 1,a δa 1,a = dλ 0,a ϵ ab Θ bc λ 1,c δa 2,a = dλ 1,a ϵ ab Θ b λ 2 δa 3 = dλ 2 F 2 = da 1 + Θ a A 2,a F 2,a = da 1,a + ϵ ab Θ bc A 2,c F 3,a = da 2,a + ϵ ab Θ b A 3 F 4 = da 3 Minimal Gauging (Θ a, Θ ab ) Gauging A 1 A 1,a=1 A 1,a=2 A 2,a=1 A 2,a=2 A 3 Θ 1 = 1, Θ 2 = 0, Θ ab = 0 eaten massless massless massive eaten massive Θ a = 0, Θ 11 = 1, Θ 22 = ±1 massive eaten eaten massive massive massless Θ a = 0, Θ 11 = 1, Θ 22 = 0 massive massless eaten massive massless massless 2 SUSY Domain Walls - 46 -

8 A 1,Ma, A M 2, A 3,a (M = 1, 2, 3 of SL(3, R), a = 1, 2 of SL(2, R)) SUSY Domain Walls - 47 -

8 A 1,Ma, A M 2, A 3,a Minimal gauging (M = 1, 2, 3 of SL(3, R), a = 1, 2 of SL(2, R)) (Θ Ma in (3, 2) EDWs ) Θ MN a = {Θ 11 1, Θ 11 2, Θ 22 1, Θ 22 2, Θ 33 1, Θ 33 2 } in (6, 2) 6 SUSY Domain Walls - 48 -

8 A 1,Ma, A M 2, A 3,a Minimal gauging (M = 1, 2, 3 of SL(3, R), a = 1, 2 of SL(2, R)) (Θ Ma in (3, 2) EDWs ) Θ MN a = {Θ 11 1, Θ 11 2, Θ 22 1, Θ 22 2, Θ 33 1, Θ 33 2 } in (6, 2) 6 Θ MN 1 Θ 1 MN = diag(1 p, 1 q, 0 r ) with p + q + r = 3 CSO(p, q, r) with f MN P = ϵ MNQ Θ P Q [T 1, T 2 ] = Θ 1 33 T 3, [T 2, T 3 ] = Θ 1 11 T 1, [T 3, T 1 ] = Θ 1 22 T 2 (Θ MN 2 = 0) Minimal Θ 22 1 = Θ 33 1 = 0 CSO(1, 0, 2) = Heisenberg algebra (i = 2, 3) Gauging A 1,11 A 1,12 A 1,i1 A 1,i2 A 1 2 A i 2 A 3,a Θ 11 1 = 1, others = 0 massless eaten massive massless massive massless massless (i = 2, 3) SUSY Domain Walls - 49 -

7 A 1,MN, A M 2 (M = 1, 2,..., 5 of SL(5, R)) SUSY Domain Walls - 50 -

7 A 1,MN, A M 2 (M = 1, 2,..., 5 of SL(5, R)) embedding tensors Θ [MN],P v [M w N]P in 40 20 w NP = diag(1 p, 1 q, 0 r ) with p + q + r = 4 minimal gauging = CSO(1, 0, 3) Gauging A 1,ij A 1,12 A 1,1i A 1,2i A 1 2 A 2 2 A i 2 Θ 12,1 = 1, others = 0 massive eaten massless massless massive massless massless (i = 3, 4, 5) embedding tensors Θ (MN) in 15 5 Θ MN = diag(1 p, 1 q, 0 r ) with p + q + r = 5 minimal gauging = CSO(1, 0, 4) Gauging A 1,1i A 1,ij A 1 2 A i 2 A 3,1 Θ 11 = 1, others = 0 massive massless eaten massless massive (i = 2, 3, 4, 5) SUSY Domain Walls - 51 -

minimal gauging elementary SUSY Domain Walls non-minimal gauging (non)-threshold bound states of EDWs SUSY Domain Walls - 52 -

D Domain Walls (DWs) 1 2-SUSY DWs (EDWs) U-duality non-edws (EDWs ) Central charges ( ) EDWs minimal gauging Non-EDWs non-minimal gauging SUSY Domain Walls - 54 -

Elementary SUSY DWs D U T # of EDWs α = 0 α = 1 α = 2 α = 3 α = 4 α = 5 IIA R + 1 1 1 9 GL(2, R) SO(1, 1) 2 3 U 1 1 8 SL(3, R) SL(2, R) SL(2, R) SL(2, R) 6 (6, 2) U (1, 2) T 4 (3, 2) T 7 SL(5, R) SL(4, R) 20 40 U 4 T 4 10 T 12 20 T 5 15 U 4 10 T 1 T 6 SO(5, 5) SO(4, 4) 80 144 U 8 S T 32 56 C T 32 56 S T 8 C T 5 E 6(6) SO(5, 5) 216 351 U 16 T 80 120 T 80 144 T 40 45 T 4 E 7(7) SO(6, 6) 576 912 U 32 T 160 220 T 192 352 T 160 220 T 32 T 3 E 8(8) SO(7, 7) 2160 3875 U 1 T 64 T 280 364 T 448 832 T 560 1001 T 14 104 T 448 832 T (α 6) 280 364 T, 6 64 T, 7 1 T, 8 D R- H Z (1) Z (2) # of EDWs 9 SO(2) 1 2 2 8 SO(3) SO(2) (1, 2) 6 3 7 Sp(2) 5 + 1 20 + 5 4 (V), 5 (T) 6 Sp(2) Sp(2) (4, 4) 80 5 5 U Sp(8) 36 216 6 4 SU(8) 36 + + 36 576 8 3 SO(16) 135 2160 16 SUSY Domain Walls - 55 -

Embedding tensor D 32-SUSY 16-SUSY 8-SUSY 9 arxiv:1105.1760 (unknown) 8 arxiv:1203.6562 (unknown) 7 hep-th/0506237 (unknown) 6 arxiv:0712.4277 (unknown) arxiv:1012.1818 5 hep-th/0412173 hep-th/0702084 (unknown) 4 arxiv:0705.2101 hep-th/0602024 arxiv:1107.3305 3 hep-th/0103032 arxiv:0806.2584 arxiv:0807.2841 SUSY Domain Walls - 56 -

Defect branes

U-duality G 0 form fields D U-duality G 0 1-forms 2-forms 3-forms 4-forms 5-forms 6-forms 7-forms 8-forms 9-forms 10-forms IIA R + 1 1 1 1 1 1 1 1 1 1 IIB SL(2, R) 2 1 2 3 4 2 9 GL(2, R) 2 1 2 1 1 2 2 1 3 1 3 2 4 2 2 8 SL(3, R) SL(2, R) (3, 2) (3, 1) (1, 2) (3, 1) (3, 2) (8, 1) (1, 3) 7 SL(5, R) 10 5 5 10 24 40 15 6 SO(5, 5) 16 10 16 45 144 5 E 6(6) 27 27 78 351 4 E 7(7) 56 133 912 3 E 8(8) 248 3875 1 147250 3875 248 8645 133 1728 27 320 126 10 (6, 2) (3, 2) 70 45 5 (15, 1) (3, 3) (3, 1) (3, 1) (D 2)-forms U-duality group G 0 F.Riccioni, D.Steele and P.West, arxiv:0906.1177 SUSY Domain Walls - 59 -

Wess-Zumino terms for 7-branes in 10D L WZ i A 8,i + F 2 Γ i A 6 +... A 8,i : 8-forms in bulk Γ i : SO(2, 1) SL(2, R) (i = +,, 3) F 2 = (db 1, S(db 1 )) : curvatures of DBI vector and its S-dual / spinor repr. of SO(2, 1) A 6 = (B (6), C (6) ) : 6-forms in bulk / spinor repr. of SO(2, 1) i = + i = 7-brane S-dual project-out i = 3 SUSY Domain Walls - 60 -

Wess-Zumino terms for defect branes in D-dim. Defect branes (D 2)-form potentials scalar fields U-duality group G 0 T-duality group ( R + ) d = 10 D fundamental Dirichlet solitonic U T α = 0 α = 1 α = 2 α = 3 α = 4 D 5 E d+1(d+1) SO(d, d) Adj U spinor T (Adj + singlet) T conj. spinor T D = 4 E 7(7) SO(6, 6) Adj U singlet T spinor T (Adj + singlet) T conj. spinor T singlet T D = 3 E 8(8) SO(7, 7) Adj U vector T spinor T (Adj + singlet) T conj. spinor T vector T α = α 4 by D-dim. S-duality (g µν) S ((g s ) α d D 2 x [NG(g µν )] = (g s ) α = e 8ϕ/(D 2) (g µν ) S ) d D 2 x [NG(g µν)] E.A. Bergshoeff et al, arxiv:1009.4657, arxiv:1102.0934, arxiv:1108.5067 SUSY Domain Walls - 61 -

Defect branes (co-dim. 2) solitonic defect brane (α = 2) supersymmetric fundamental Dirichlet solitonic (brane s tension) (g s ) +α D # of SUSY defect branes α = 0 α = 1 α = 2 α = 3 α = 4 IIB 2 3 1 1 9 2 3 3 1 1 8 6 (8, 1) (2, 1) 2 (3, 1) (2, 1) 2 (1, 3) 2 (1, 3) 7 20 24 4 12 15 4 6 40 45 8 V 24 28 8 V 5 72 78 16 40 45 16 4 126 133 1 32 60 66 32 1 3 240 248 14 64 84 91 64 14 E.A. Bergshoeff et al, arxiv:1009.4657, arxiv:1102.0934, arxiv:1108.5067 SUSY Domain Walls - 62 -

String theory origin of defect branes in D-dim. fundamental Dirichlet solitonic S D -dual of (Dirichlet) S D -dual of (fundamental) D α = 0 α = 1 α = 2 α = 3 α = 4 IIB C 8 [D7] E 8 = S 10 (C 8 ) [7 3 ] 9 C 7 [D6] E 8,1 = S 9 (C 7 ) [6 1 3] 8 C 6 [D5] D 6 [NS5] D 7,1 [KK5 = 5 1 2] D 8,2 [5 2 2] E 8,2 = S 8 (C 7 ) [5 2 3] 7 C 5 [D4] E 8,3 = S 7 (C 5 ) [4 3 3] 6 C 4 [D3] E 8,4 = S 6 (C 4 ) [3 4 3] 5 C 3 [D2] E 8,5 = S 5 (C 3 ) [2 5 3] 4 B 2 [F1] C 2 [D1] E 8,6 = S 4 (C 2 ) [1 6 3] F 8,6 = S 4 (B 2 ) [1 6 4] 3 [P] C 1 [D0] E 8,7 = S 3 (C 1 ) [0 7 3] F 8,7,1 [0 (6,1) 4 ] p (I 1,I 2 ) α -brane A D T,I1 +I 2,I 2 (T, p, I 1, I 2 ) α with T + p + i I i = D 1 Mass (T,p,I1,I 2 ) α = R 1 R p (R p+1 R p+i1 ) 2 (R p+i1 +1 R p+i1 +I 2 ) 3 (g s ) α SUSY Domain Walls - 63 -

Defect branes (co-dim. 2) D G 0 /H n P n D n S IIB SL(2, R)/SO(2) 3 2 2 9 SL(2, R)/SO(2) R + 3 + 1 2 + 0 2 + 1 8 SL(3, R)/SO(3) SL(2, R)/SO(2) 8 + 3 6 + 2 5 + 2 7 SL(5, R)/SO(5) 24 20 14 6 SO(5, 5)/[SO(5) SO(5)] 45 40 24 5 E 6(6) /Sp(8) 78 72 42 4 E 7(7) /SU(8) 133 126 70 3 E 8(8) /SO(16) 248 240 128 n P = dim G 0 : # of (D 2)-form potentials n D = dim G 0 rank G 0 : # of SUSY defect branes (rank G 0 = rank T + 1) n S = dim G 0 dim H : # of coset scalars in D-dim. maximal SUGRA SUSY Domain Walls - 64 -

Defect branes (co-dim. 2) Z (a) : a-form central charge D R- H Z (0) Z (1) Z (2) Z (3) n D IIB SO(2) 1 2 2 9 SO(2) 1 2 2 8 SO(3) SO(2) 3 + 1 6 + 2 2 7 Sp(2) 10 20 2 6 Sp(2) Sp(2) (10, 1) + + (1, 10) 40 2 5 U Sp(8) 36 72 2 4 SU(8) 63 126 2 3 SO(16) 120 240 2 SUSY Domain Walls - 65 -

CSO(p, q, r) CSO(p, q, r) jump CSO(p, q, 0) = SO(p, q) CSO(p, q, 1) = ISO(p, q) CSO(p, q, r) SO(p, q) U(1) r(r 1) 2 for r 2 C.M. Hull, PL 142B (1984) 39, PL 148B (1984) 297, NPB 253 (1985) 650 L. Andrianopoli et al, hep-th/0009048, etc. SUSY Domain Walls - 66 -