k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+

Similar documents
2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

1

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

meiji_resume_1.PDF

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

非可換Lubin-Tate理論の一般化に向けて

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2

9 Feb 2008 NOGUCHI (UT) HDVT 9 Feb / 33

QMII_10.dvi

TOP URL 1

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

Note.tex 2008/09/19( )

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

x 3 a (mod p) ( ). a, b, m Z a b m a b (mod m) a b m 2.2 (Z/mZ). a = {x x a (mod m)} a Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} a + b = a +

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

all.dvi

untitled

量子力学 問題

R R P N (C) 7 C Riemann R K ( ) C R C K 8 (R ) R C K 9 Riemann /C /C Riemann 10 C k 11 k C/k 12 Riemann k Riemann C/k k(c)/k R k F q Riemann 15

Dynkin Serre Weyl

平成 29 年度 ( 第 39 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 29 ~8 年月 73 月日開催 31 日 Riemann Riemann ( ). π(x) := #{p : p x} x log x (x ) Hadamard de


24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

四変数基本対称式の解放

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

Z: Q: R: C: sin 6 5 ζ a, b

基礎数学I

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

I = [a, b] R γ : I C γ(a) = γ(b) z C \ γ(i) 1(4) γ z winding number index Ind γ (z) = φ(b, z) φ(a, z) φ 1(1) (i)(ii) 1 1 c C \ {0} B(c; c ) L c z B(c;

xia2.dvi

II 1 II 2012 II Gauss-Bonnet II

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )


1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

TOP URL 1


compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

2 2 L 5 2. L L L L k.....

prime number theorem

201711grade1ouyou.pdf

2011de.dvi

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

コホモロジー的AGT対応とK群類似

Q p G Qp Q G Q p Ramanujan 12 q- (q) : (q) = q n=1 (1 qn ) 24 S 12 (SL 2 (Z))., p (ordinary) (, q- p a p ( ) p ). p = 11 a p ( ) p. p 11 p a p


,2,4

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

: , 2.0, 3.0, 2.0, (%) ( 2.

2017 II 1 Schwinger Yang-Mills 5. Higgs 1

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

17 Θ Hodge Θ Hodge Kummer Hodge Hodge


LLG-R8.Nisus.pdf

本文/目次(裏白)

Z: Q: R: C:

gr09.dvi

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.


K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X

1 c Koichi Suga, ISBN

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%


( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

On a branched Zp-cover of Q-homology 3-spheres

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

Z: Q: R: C: 3. Green Cauchy

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

Jacobi, Stieltjes, Gauss : :

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

nsg02-13/ky045059301600033210

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

( ) (, ) ( )

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

°ÌÁê¿ô³ØII

²ÄÀÑʬΥ»¶ÈóÀþ·¿¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤ÎÁ²¶á²òÀÏ Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation

C p (.2 C p [[T ]] Bernoull B n,χ C p p q p 2 q = p p = 2 q = 4 ω Techmüller a Z p ω(a a ( mod q φ(q ω(a Z p a pz p ω(a = 0 Z p φ Euler Techmüller ω Q

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

Transcription:

1 SL 2 (R) γ(z) = az + b cz + d ( ) a b z h, γ = SL c d 2 (R) h 4 N Γ 0 (N) {( ) } a b Γ 0 (N) = SL c d 2 (Z) c 0 mod N θ(z) θ(z) = q n2 q = e 2π 1z, z h n Z Γ 0 (4) j(γ, z) ( ) a b θ(γ(z)) = j(γ, z)θ(z) z h, γ = Γ c d 0 (4) ( ) ( ) 1 j(γ, z) 2 a b = (cz + d) γ = Γ d c d 0 (4) k > 0 f(z) Γ 0 (N) k + (1/2) f(γ(z)) = j(γ, z) 2k+1 f(z) γ Γ 0 (N)

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+(1/2) (Γ 0 (N)) p N Hecke T k+(1/2) (p 2 )f = λ p f p N. Hecke T 2k (p) g S 2k (Γ 0 (M)) T 2k) (p)g = λ p g p N. 2 SL 2 (Q)\SL 2 (A Q ) SL 2 (Q)\SL 2 (A Q ) SL 2 (A Q ) SL 2 (A Q ) Siegel Sp n (A Q ) Sp n (A Q ) F SL 2 (F ) 2 SL 2 (F ) g SL 2 (F ) x(g) = { c d c 0 c = 0 c(g 1, g 2 ) = x(g 1) x(g 1 g 2 ), x(g 2 ) x(g 1 g 2 ) g 1, g 2 SL 2 (F )

, F Hilbert c(g 1, g 2 ) SL 2 (F ) 2 2 2 SL 2 (F ) 2 SL 2 (F ) F C F SL 2 (o F ) o F F F 2 SL 2 (F ) SL 2 (F ) SL 2 (o F ) {( ) } a b Γ 0 (4) = SL c d 2 (o) c 4o F 4 SL 2 (A Q ) 2 SL 2 (A Q ) SL 2 (A Q ) v SL 2 (Q v ) SL 2 (A Q ) SL 2 (Q v ) SL 2 (A Q ) SL 2 (Q v ) SL 2 (A Q ) SL 2 (Q v ) SL 2 (A Q ) SL 2 (A Q ) SL 2 (Q) SL 2 (Q) SL 2 (A Q ) SL 2 (Q) SL 2 (A Q ) SL 2 (Q) SL 2 (A Q ) SL 2 (Q)\ SL 2 (A Q ) 3 Waldspurger-Shimura F ψ : F C SL 2 (F ) π SL 2 (F ) SL 2 (F ) {±1} genuine π SL 2 (F ) genuine π

PGL 2 (F ) τ = θ( π, θ) θ( π, ψ) (0) π ψ-whittaker model ξ F ψ ξ (x) = ψ(ξx), χ ξ (t) = ξ, t, x F, t F θ( π, ψ ξ ) χ ξ (0) ξ F θ( π, ψ ξ ) χ ξ ξ θ( π, ψ ξ ) χ ξ (0) Wald( π, ψ) (1) π τ = Wald( π, ψ) Wald( π, ψ) = τ SL 2 (F ) genuine π π (2) π τ = Wald( π, ψ) Wald( π, ψ) = τ SL 2 (F ) genuine π 2 π +, π π + = π F A F ψ : A/F C π = v π v SL 2 (A) π 1 τ = Wald( π, ψ) := v Wald( π v, ψ v ) PGL2(A) S π v F π Wald( π, ψ) = Wald( π, ψ) (1) v / S π = π (2) v / S τ = π +, π π = π ε v, ε v {±1} ε v = 1 v S (1), (2) SL 2 (A) π = v π v SL 2 (A) 4 2 SL 2 (A) SL 2 (A)

3 n > 2 SL 2 (Q) SL 2 (A Q ) n n p 1 mod n SL 2 (Q p ) n n F G G(A F ) G(A F ) G(F ) G F K K 2 (F ) K 2 (F ) = F F / x (1 x) x F, x 0, 1 x (1 x) x F, x 0, 1 {x (1 x) x F, x 0, 1} F F F F K 2 (F ) (x, y) x, y x, 1 x = 1 (x 0, 1) G F 1 K 2 (F ) E G(F ) 1 G Sp n (F ) F 0 F 1 µ(f ), 1 n µ n µ n µ(f ) F v n Hilbert F v F v µ n K 2 (F v ) µ n 1 K 2 (F v ) E v G(F v ) 1 K 2 (F v ) µ n push out 1 µ n G(F v ) G(F v ) 1

v n v G(F v ) G(F v ) G(o v ) v 1 µ n G(F v ) G(F v ) 1 1 µ n G(A F ) G(A F ) 1 G(A F ) G(A F ) 1 K 2 (F ) v µ(f v ) µ n 1 G(A F ) G(A F ) G(F ) G(F ) G(A F ) G(F ) G(A F ) G(F ) G(A F ) Brylinski-Deligne G F 0 F F G F G derived group G der G der G der ( F ) = [G( F ), G( F )] T F Y = Hom F (G m, T ) T cocharacter group Y Galois Gal( F /F ) S Zar F Zariski site K K 2, G S Zar K 2, G Brylinsky-Deligne [1] S Zar 1 K 2 E G 1 Z Y 2 Q Weyl Galois Gal( F /F )

5. SL 2 (A) n F n µ(f ), µ n Hilbert SL n (F ) n 2 2 (( )) a b x = c d 2 c(g 1, g 2 ) { c if c 0, d if c = 0. c(g 1, g 2 ) = x(g 1) x(g 1 g 2 ), x(g 2 ) x(g 1 g 2 ) SL 2 (F ) n [g 1, ζ 1 ], [g 2, ζ 2 ] SL 2 (F ) µ n [g 1, ζ 1 ] [g 2, ζ 2 ] = [g 1 g 2, ζ 1 ζ 2 c(g 1, g 2 )]. SL 2 (F ) SL 2 (F ) g SL 2 (F ) [g, 1] [g] SL 2 (F ) H H SL 2 (F ) H F n o SL 2 (o) SL 2 (o) s : SL 2 (o) SL 2 (o) s(sl 2 (o)) SL 2 (o) τ + : GL 2 (F ) SL 2 (F ) τ : GL 2 (F ) SL 2 (F ) τ + (g) = (det g) n/2 g n τ (g) = (det g) n/2 g n PGL 2 (F ) PGL 2 (F ) SL 2 (F ) τ + : PGL 2 (F ) SL 2 (F ), τ : PGL 2 (F ) SL 2 (F ) h SL 2 (F ) good Z SL2 (F )(h) = Z SL2 ([h]) (F ) Z SL2 (F )(h) h SL 2 (F ) Z SL2 ([h]) [h] SL (F ) 2 (F ) SL 2 (F ) h SL 2 (F )

good h = τ + (g) h = τ (g) g PGL 2 (F ) h SL 2 (F ) τ + g PGL 2 (F ) τ + (g) h SL 2 ( F ) h SL 2 (F ) τ g PGL 2 (F ) τ (g) h F ψ : F C x F Schwartz ϕ S(F ) F ϕ(t)ψ(xt 2 ) dt = α ψ (x) 2x 1/2 F ˆϕ(t)ψ( x 1 t 2 /4) dt, α ψ (x) C ˆϕ(t) ϕ Fourier ˆϕ(t) = F ϕ(u)ψ(tu) du α ψ (x) x Weil h SL 2 (F ) g GL 2 (F ) τ + δ + ψ ([h, ζ], g) δ + ψ ([h, ζ], g) = α ψ (1) ζ α ψ (det g) (det g)n/2, x(h) if n 2 mod 4, ζ (det g) n/2, x(h) if n 0 mod 4. h g τ + δ + ψ ([h, ζ], g) = 0 g g PGL 2 (F ) δ + ψ ([h, ζ], g) g PGL 2(F ), h = τ (g) SL 2 (F ) δ ψ ( h, g) := α ψ (1) 2 δ + ψ ([ 1 2] h, g). δ + ψ ([h, ζ], g), δ ψ ([h, ζ], g) [h, ζ] SL 2 (F ) C 0 (PGL 2 (F )) PGL 2 (F ) φ C 0 (PGL 2 (F )) g PGL 2 (F ) I(g, φ) = (g) φ(xgx 1 ) dx, PGL 2 (F )/Z PGL2 (F )(g) Z PGL2 (F )(g) g PGL 2 (F ) (g) Weyl

SL 2 (F ) φ anti-genuine φ(ζ h) = ζ 1 φ( h), ζ µ n C 0 ( SL 2 (F )) SL 2 (F ) anti-genuine φ C 0 ( SL 2 (F )) h = [h, ζ] SL 2 (F ) I( h, φ) = (h) φ( x h x 1 ) d x SL 2 (F )/Z ( h) SL2 (F ) h SL 2 (F ) good I( h, φ) = 0 φ + C 0 (PGL 2 ) φ C 0 ( SL 2 (F )) δ + ψ δ + ψ ([h], g)i([h], φ) = I(g, φ+ ), g PGL 2 (F ) h h SL 2 (F ) g τ + φ C 0 ( SL 2 (F )) δ + ψ φ C 0 (PGL 2 (F )) δ ψ ([h], g)i([h], φ) = I(g, φ ), g PGL 2 (F ) h φ +, φ n o Hecke PGL 2 (o) Hecke H( SL 2 //SL 2 (o)) φ +, φ F µ n µ(f ) n SL 2 (A) n SL 2 (A) A/F ψ : A/F C C 0 (PGL 2 (A)) PGL 2 (A) g = (g v ) PGL 2 (A) φ = v φ v C 0 (PGL 2 (A)) I(g, φ) = v I(g v, φ v ).

C 0 ( SL 2 (A)) SL 2 (A) anti-genuine SL 2 (A) φ anti-genuine φ(ζ h) = ζ 1 φ( h), ζ µ n h = (h v ) SL 2 (A), φ = v φ v C 0 ( SL 2 (A)) I(h, φ) = v I(h v, φ v ). φ C 0 ( SL 2 (A)) φ +, φ C 0 (PGL 2 (A)) 5.1. 2 h SL 2 (F )/ h: ell. reg. I(h, φ) = g PGL 2 (F )/ τ ± (g): ell. reg. ( I(g, φ + ) + I(g, φ ) ). h g τ ± SL 2 (A) PGL 2 (A) Wen-Wei Li [3] [1] J.-L. Brylinski and P. Deligne, Central extensions of reductive groups by K 2, Publ. Math. IHES 94 (2001), 5 85. [2] P. Delinge, Extensions centrales de groupes algebriques simplement connexes et cohomologie galoisienne, Publ. Math. IHES 84 (1996), 35 89. [3] Wen-Wei Li, La formule des traces pour les revêtements de groupes réductifs connexes, I, arxiv:1004.4011, II. arxiv:1107.1865, III. arxiv:1107.2220, IV. arxiv:1209.4156, [4] J. Milnor, Introduction to algebraic K-theory, Annals of Mathematics Studies, 72 Princeton University Press.

[5] G. Shimura, On modular forms of half integral weight Ann. of Math. (2) 97 (1973), 440 481. [6] T. Shintani On construction of holomorphic cusp forms of half integral weight, Nagoya Math. J. 58 (1975), 83 126. [7] J.-L. Waldspurger, Sur les coefficients de Fourier des formes modulair de poid demi entier J. Math. Pures Appl. (9) 60 (1981), no. 4, 375 484. [8] J.-L. Waldspurger, Correspondence de Shimura, J. Math. Pures Appl. (9) 59 (1980), no. 1, 1 132. [9] J.-L. Waldspurger, Correspondances de Shimura et quaternions Forum Math. 3 (1991), no. 3, 219 307. [10] A. Weil, Sur certains groupes d operateurs unitaires Acta Math. 111 (1964) 143 211. [11] Weissman, Metaplectic Tori over Local Fields Pacific J. Math. 241 (2009), no. 1, 169 200.