Date Wed, 20 Jun (JST) From Kuroki Gen Message-Id Subject Part 4

Similar documents
1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th


x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R



( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

II Time-stamp: <05/09/30 17:14:06 waki> ii

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

koji07-01.dvi

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %


1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0,

B's Recorderマニュアル_B's Recorderマニュアル

B's Recorderマニュアル

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2


1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id

untitled

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

/ 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point R n set space R n R n x = x 1 x n y = y 1 y n distance dx,


x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

1 1.1 [ ]., D R m, f : D R n C -. f p D (df) p : (df) p : R m R n f(p + vt) f(p) : v lim. t 0 t, (df) p., R m {x 1,..., x m }, (df) p (x i ) =

働く女性の母性健康管理、母性保護に関する法律のあらまし

linearal1.dvi

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト

phs.dvi

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

平成 15 年度 ( 第 25 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 15 月年 78 日開催月 4 日 ) X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = (

(1) θ a = 5(cm) θ c = 4(cm) b = 3(cm) (2) ABC A A BC AD 10cm BC B D C 99 (1) A B 10m O AOB 37 sin 37 = cos 37 = tan 37

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

空き容量一覧表(154kV以上)

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

30

2/8 一次二次当該 42 AX 変圧器 なし 43 AY 変圧器 なし 44 BA 変圧器 なし 45 BB 変圧器 なし 46 BC 変圧器 なし


Part () () Γ Part ,

ٽ’¬24flNfix+3mm-‡½‡¹724

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

Relaxation scheme of Besse t t n = n t, u n = u(t n ) (n = 0, 1,,...)., t u(t) = F (u(t)) (1). (1), u n+1 u n t = F (u n ) u n+1 = u n + tf (u n )., t

I

all.dvi

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 :

i

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

等質空間の幾何学入門

モノグラフ・中学生の世界 Vol.62

s d

a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552

all.dvi


4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

16 B


. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2


Transcription:

Part 4 2001 6 20 1 2 2 generator 3 3 L 7 4 Manin triple 8 5 KP Hamiltonian 10 6 n-component KP 12 7 nonlinear Schrödinger Hamiltonian 13 http//wwwmathtohokuacjp/ kuroki/hyogen/soliton-4txt TEX 2002 1 17 2001 6 20, 1

Date Wed, 20 Jun 2001 003743 +0900 (JST) From Kuroki Gen <kuroki@mathtohokuacjp> Message-Id <200106191537AAA00013@sakakimathtohokuacjp> Subject Part 4 http//wwwmathtohokuacjp/~kuroki/hyogen/soliton-10txt http//wwwmathtohokuacjp/~kuroki/hyogen/soliton-11txt http//wwwmathtohokuacjp/~kuroki/hyogen/soliton-2txt http//wwwmathtohokuacjp/~kuroki/hyogen/soliton-3txt Part 3 Lie algebra Hamiltonian KP nonlinear Schrödinger Lie algebra Hamiltonian, R C Nonlinear Schrödinger (NLS) Hamiltonian 7 NLS Davey-Stewartson (DS) ( 2-component KP) Hamiltonian 1 R derivation = / x (differential algebra) (R, ), R associative algebra, R R (fg) = (f)g + f (g) (f, g R), f = (f), f (n) = n (f), etc R (subalgebra C of constants) C = { f R f = (f) = 0 } R, C 11, (1) R = R 1 = C[[x]], C = C (2) R = R 2 = M(n, R 1 ), C = M(n, C) (3) R = R 3 = C((x)), C = C (4) R = R 4 = M(n, R 3 ) = M(n, C((x))), C = M(n, C) (5) R = R 5 = C (S 1 ) = {S 1 C }, C = C (6) R = R 6 = M(n, R 5 ) = M(n, C (S 1 )), C = M(n, C) 2

(R, ) D = D R E = E R R D = D R = R[ ] = { M a i i M Z 0, a i R }, m=0 E = E R = R(( 1 )) = { a i i M Z, ai R } m m D E f = f + f, 1 f = f 1 f 2 + f 3 f 4 +, f R, D E associative algebra with 1 E 1 -adic topology, x n f = ( ) n f (k) x n k, f x n = ( ) n ( 1) k f (k) x n k k k k 0 k 0, ( n k) E Lie subalgebras E +, E E + = D, E = R[[ 1 ]] 1, E = E + E ( ) 2 generator 21 n, n { A E n A = A n } = C(( 1 )) A E A = i M A i i, A i R (A i = 0 if i > M) n A = A n = A i C (i M) ), Leibnitz, [ n, A] = i M ( n j [ n, A i ] i = i M n 1 ( ) n A (n j) i i+j = j j=0 k M+n 1 n 1 j=0 ( ) n A (n j) k j k j 3

, i > M A i = 0, [ n, A] = 0, ( ) n 0 = A n 1 M A M C 0 = ( ) ( ) ( ) n n n A M + A M 1 = A n 2 n 1 n 1 M 1 A M 1 C 0 = ( ) ( ) ( ) n n n A M + + A M 2 = A n 3 n 1 n 1 M 2 A M 2 C, i M A i C 22 a, b m, n a m b n, A E, (a m )A = A(b n ) = A = 0 A E A = i M A i i, A i R (A i = 0 if i > M) A 0 A M 0, (a m )A = a i M A(b n ) = b k M+n m j=0 ( ) m A (m j) i i+j = a j k M+m A k n k m j=0 ( ) m A (m j) k j k, j a m b n (1) a 0 b = 0 (2) a = 0 b 0 (3) ab 0 m > n (4) ab 0 m < n (5) ab 0 m = n a b 4

, (1) (2), (a m )A A(b n ) 0, (a m )A A(b n ), (3), (a m )A A(b n ) M + m, aa M 0, (a m )A A(b n ), (4), (a m )A A(b n ) M + n, ba M 0, (a m )A A(b n ), (5), (a m )A A(b n ) M + m, (a b)a M 0, (a m )A A(b n ) e 1,, e S C = { A R A = 0 } (1) e 1 + + e S = 1, (2) e a e b = e a δ a,b C C e 23 C e = { A C e a A = Ae a } C e = { S a=1 e a Ae a A C } A = b,c e bae c, A C e, b c e b Ae c = 0 e a A = Ae a, 0 = e b (e a A Ae a )e c = (δ a,b δ a,c )e b Ae c, b c a = b e b Ae c = 0 c 1,, c S n 1,, n S a b = c a n1 c b n S, P D P = c 1 e 1 n 1 + + c S e S n S generator P P 24, { A E P A = AP } = C e (( 1 )), A P A C e 5

{ A E P A = AP } C e (( 1 )) C e, A E,,, P A = AP, A a,b = e a Ae b e a P Ae b = (c a n a )A a,b, e a AP e b = A a,b (c b n b ) (c a n a )A a,b = A a,b (c b n b ) 21 A a,a C(( 1 )), 22, a b A a,b = 0, 23, A C e (( 1 )) 25 F, F C F R = M(n, F ) {1,, n} {K 1,, K S }, e a = (E ij ) i K a E ii,, C = M(n, C F ) C e C e = S a=1 i,j K a C F E ij, C e K a 26 (nonlinear Schrödinger (NLS) ) 25 n = 2,,, S = 2, e 1 = E 11, e 2 = E 22 (E ij ) C e = C F e 1 C F e 2 = diag(c F, C F ) P = e 1 m e 2 m = diag( m, m ), A P, A diag(c F, C F ), S = 1, e 1 = E 11 + E 22 = ( ) 6

, C e = M(2, C F ), P = e 1 m = diag( m, m ), A P, A M(2, C F ) 3 L G G = 1 + E G A E, A n n, A + A 2 + A 3 +, A E, (1 A) 1 = 1 + A + A 2 + A 3 + 1 + E, G G Lie algebra E P D (1) e 1 + + e S = 1 (2) e a e b = e a δ a,b (3) c 1,, c S (4) n 1,, n S (5) a b = c a na c b n b (6) P = c 1 e 1 n 1 + + c S e S n S G G (C e ) G (C e ) = G C e (( 1 )) = 1 + C e [[ 1 ]] 1 W G, L = W P W 1 L, W L 31 W, V G, W P W 1 = V P V 1 = W 1 V 1 + C e [[ 1 ]] 1 W QW 1 = V QV 1 QW 1 V = W 1 V Q, 24, W 1 V G (C e ) 7

32 {P L } = { W P W 1 W G } = G /G (C e ) 33 (NLS ) 25 n = 2,,, S = 2, e 1 = E 11, e 2 = E 22 (E ij ) C e = C F e 1 C F e 2 = diag(c F, C F ) P = e 1 m e 2 m = diag( m, m ), W G P, W 1 + diag(c F [[ 1 ]] 1, C F [[ 1 ]] 1 ) m, S = 1, e 1 = E 11 + E 22 = ( ), C e = M(2, C F ), P = e 1 m = diag( m, m ), W G P, W 1 + M(2, C F [[ 1 ]] 1 ) m 4 Manin triple R restr (1) restr(ab) = restr(ba) (A, B R) (2) A R, restr(ab) = 0 B = 0 8

(3) restr(a ) = 0 (A R) 41 (1) R = C((x)), restr(f) = Res x=0 (f dx) (f R) (2) R = M(n, C((x))), restr(f ) = Res(tr(F ) dx) (F R) x=0 tr(f ) trace (3) R = C (S 1 ), restr(f) = f dx (f R) S 1 (4) R = M(n, C (S 1 )), restr(f ) = tr(f ) dx S 1 (F R) tr(f ) trace (5) R = C[[x]] (R) = R, restr R restr E trace trace(p ) = restr(a 1 ) (P = a i i E), E bilinear form, P, Q = trace(p Q) (P, Q E) 42 E trace, (1) trace(p Q) = trace(qp ) (P, Q E), (2) P E, trace(p Q) = 0 Q = 0 (3), E nondegenerate symmetric bilinear form (4), E +, E isotropic (, E +, E + = 0, E, E = 0 E + E, ) (5) AB, C = A, BC (A, B, C R) (6) [A, B], C = A, [B, C] (A, B, C R) 43 42 (3), (4), (6), (E, E +, E ) Manin triple Manin triple http//wwwmathtohokuacjp/~kuroki/hyogen/classical-r-3txt r Part 3 10 Manin triples and the double of Lie bialgebras, E, E +, E Lie bialgebras 9

5 KP Hamiltonian, KP linear (= first) Poisson bracket Hamiltonian (quadratic Poisson bracket ), E = C((x))(( 1 )),, E trace invariant nondegenerate bilinear form, trace(a) = Res x=0 (a 1 dx) (A = a i i E), A, B = trace(ab) (A, B E) A E, A A + E + = D, A A E A = A + A, A + E + = D, A E E r-bracket [A, B] r = [A +, B + ] [A, B ] (A, B E) r-bracket E Lie algebra Lie algera E r A E A +, A r +, r E E 51 A, L, M E,, [M, L] = 0, L, [A, M] r = r +[M, L] + [r (M), L], A L, [A, M] r = [M, L], A = [M +, L], A [A, M] r = [r + (A), M] + [A, r (M)],, [M, L] = 0,, M = M + M L, [A, M] r = L, [r + (A), M] + [A, r (M)] = [M, L], r + (A) + [r (M), L], A = r +[M, L], A + [r (M), L], A = r +[M, L] + [r (M), L], A L, [A, M] r = [M, L], A [M, L] = [M + M, L] = [M +, L] 10

52,, E = E, E r Lie algebra [, ] r E Poisson {, } 1 {F, G} 1 (L) = L, [ F (L), G(L)] r (F, G E ), F (L) E F (L), A = df (L)(A) = [df (L + sa)/ds] s=0 {, } 1 KP linear Poisson bracket first Poisson bracket 53 (E, E +, E ) Manin triple, linear Poisson bracket, quadratic Poisson bracket Sklyanin bracket 54 E linear function a(l) = A, L = trace(al), da(l) = trace(a dl), da(l)(b) = trace(ab) = A, B, a(l) = A 55 E H m, H m (L) = 1 m + 1 trace(lm+1 ), dh m (L) = trace(l m dl), dh m (L)(A) = trace(l m A) = L m, A H m (L) = L m 51 54, 55, A E, {a, H m } 1 (L) = [(L m ), L], A = [(L m ) +, L], A, L {, H m } 1 E {L, H m } 1 (L), {L, H m } 1 (L) = [(L m ), L] = [(L m ) +, L], Hamiltonian H m Poisson bracket {, } 1 Hamilton Lax L t m = [(L m ), L] = [(L m ) +, L], KP hierarchy 11

6 n-component KP, E = E n = M(n, E 1 ), E 1 = C((x))(( 1 )),, E trace invariant nondegenerate bilinear form, trace(a) = Res x=0 (tr(a 1) dx) (A = A i i E), A, B = trace(ab) (A, B E) A E, A A + E + = D, A A E A = A + A, A + E + = D, A E E r-bracket [A, B] r = [A +, B + ] [A, B ] (A, B E) r-bracket E Lie algebra Lie algera E r A E A +, A r +, r E E 51 61,, E = E, E r Lie algebra [, ] r E Poisson {, } 1 {F, G} 1 (L) = L, [ F (L), G(L)] r (F, G E ), F (L) E F (L), A = df (L)(A) = [df (L + sa)/ds] s=0 {, } 1 n-component KP linear Poisson bracket first Poisson bracket 62 (E, E +, E ) Manin triple, linear Poisson bracket, quadratic Poisson bracket Sklyanin bracket n-component KP generators P P basis P = diag(c[ ],, C[ ]) D P i,m = E ii m (E ij, i = 1,, n, m = 1, 2, 3, ) 12

P basis t i,m, G = 1 + M(n, C((x))[[ 1 ]] 1 ) flow W t i,m = (L i,m ) W, L i,m = W P i,m W 1 (W G ) n-compinent KP hierarchy (n-ckp), A P, L A = W AW 1, L A Lax L A t i,m = [(L i,m ), L A ] = [(L i,m ) +, L A ] Q P, n-ckp Q-reduction constraint L Q (L Q ) = 0, L Q = (L Q ) + (Q-reduction) Q = c i,m P i,m P, [ ] ci,m W = 0 (Q-reduction) t i,m 7 nonlinear Schrödinger Hamiltonian, nonlinear Schrödinger (NLS) linear (= first) Poisson bracket Hamiltonian, nonlinear Schrödinger (NLS) hierarchy 2-component KP hierarchy Q = diag(, ) Q-reduction constraint Q-reduction constraint W diag(, )W 1 = diag(, ) 13

, 33,, W 1 + M(n, C[[ 1 ]] 1 ), W x = 0 Q-reduction, P 1,m = E 11 m = diag( m, 0), P 2,m = E 22 m = diag(0, m ), t 1,m, t 2,m derivation 1,m, 2,m 1,m = Q-reduction,, 2,m = t 1,m t 2,m ( 1,m + 2,m )W = 0,, s m = t 1,m + t 2,m, t m = t 1,m t 2,m, Q-reduction, sm = 1,m + 2,m, tm = 1,m 2,m sm W = 0, t m tm W = (L m ) W, L m = W diag( m, m )W 1 L m, Q = diag(, ), L m = Q m 1 L 1 ( ) 33, W L m C 1 + diag(c F [[ 1 ]] 1, C F [[ 1 ]] 1 ) 14

L m W m,, L 1 (0) = W (0) diag(, )W (0) 1, Lax L 1 well-defined tm L 1 = [(L m ), L 1 ] = [(L m ) +, L 1 ] Lax W, W (t) L 1 (t) C 71 ( ) (1-component) KP hierarchy 1 NLS hierarchy E H m H m (L) = 1 2 trace(qm 1 L 2 ) (L E), Q = diag(, ), H m linear (= first) Poisson bracket Hamilton NLS Lax, NLS L 1 L Q = diag(, ),, dh m (L) = trace(q m 1 L dl), dh m (L)(A) = trace(q m 1 LA) = Q m 1 L, A H m (L) = Q m 1 L, KP, Q = diag(, ) L, {L, H m } 1 (L) = [(Q m 1 L), L] = [(Q m 1 L) +, L], Hamilton, Q = diag(, ) L, tm L = [(Q m 1 L), L] = [(Q m 1 L) +, L], ( ) L m = Q m 1 L 1, NLS L 1 Lax 72 Q = diag(, ) L, L H m (L) = 0, dh m (L) 1 L m L = L 1 L KP L m = L m, NLS L m = Q m 1 L 15

73 Q diag(, ), L Q, Lax Hamiltonian t L = [(Q m L n ), L] = [(Q m L n ) +, L] H(L) = 1 n + 1 trace(qm L n+1 ) Hamilton, Lax pair (L, M + ) M Q 1,, Q K L M = f(q 1,, Q K ; L), Lax t L = [M, L] = [M +, L] Hamiltonian H(L) = trace(f (Q 1,, Q K ; L)), F (x 1,, x K ; y) = f(x 1,, x K ; y) dy Hamilton, 74 Hamiltonian Lax L Hamiltonian vector field, m, NLS L m L m = L m 1, L m Hamiltonian, H m (L) = 1 m + 1 trace(lm+1 1 ), NLS L, L L 1, L 0 = W diag(1, 1)W 1 ( ) L, L m = Q m L 0, Hamiltonian, H m (L) = 1 2 trace(qm L 2 ) 16