カレツキアン2階級モデルにおける所得分配と経済変動 (マクロ経済動学の非線形数理)

Similar documents
keyneshicks4.dvi

_07.indd

Masahiro NAKANO Keynes benchmark Keynes 89

一般演題(ポスター)


, Exchange & Finamce

商学 65‐5☆/14.植田


dプログラム_1

sakigake1.dvi

xia2.dvi


Walter et al. 2009: 1 Helleiner 1994 Strange 1971: Gilpin 1987: -65 Strange b, 1998c,

DGE DGE (1) ( 1

放射線専門医認定試験(2009・20回)/HOHS‐01(基礎一次)

(CFW ) CFW 1

z.prn(Gray)

# _信金7月号.indb

_Œkž−01


Stepwise Chow Test * Chow Test Chow Test Stepwise Chow Test Stepwise Chow Test Stepwise Chow Test Riddell Riddell first step second step sub-step Step

第85 回日本感染症学会総会学術集会後抄録(I)

19世紀の物価動向―コンドラチェフによる物価長波の検討を通じて―*

Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue Date Type Technical Report Text Version publisher URL

2015 : (heterogenous) Heterogeneous homogeneous Heterogenous agent model Bewley 1 (The Overlapping-Generations Models:OLG) OLG OLG Allais (1

橡同居選択における所得の影響(DP原稿).PDF

わが国企業による資金調達方法の選択問題

COE-RES Discussion Paper Series Center of Excellence Project The Normative Evaluation and Social Choice of Contemporary Economic Systems Graduate Scho

日本糖尿病学会誌第58巻第2号

Keynes 1936 Tobin 1 Hicks 1937 Keynes IS LM 2 IS LM 3 IS LM Keynes Keynes animal spirits

p *2 DSGEDynamic Stochastic General Equilibrium New Keynesian *2 2

物価指数の計測誤差と品質調整手法:わが国CPIからの教訓

01[ ]小畑(責)山.indd

shuron.dvi

第89回日本感染症学会学術講演会後抄録(I)

株式分割払込制度と企業金融、設備投資の関係について ─1930年代初において株式追加払込が果たした役割を中心に─


日本内科学会雑誌第98巻第3号

2301/1     目次・広告

パーキンソン病治療ガイドライン2002

27巻3号/FUJSYU03‐107(プログラム)

第101回 日本美容外科学会誌/nbgkp‐01(大扉)

本文27/A(CD-ROM

tnbp59-20_Web:P1/ky108679509610002943

untitled

yakuri06023‡Ì…R…s†[


Shunsuke Kobayashi 1 [6] [11] [7] u t = D 2 u 1 x 2 + f(u, v) + s L u(t, x)dx, L x (0.L), t > 0, Neumann 0 v t = D 2 v 2 + g(u, v), x (0, L), t > 0. x

JSPS Grants-in-Aid for Creative Scientific Research Understanding Inflation Dynamics of the Japanese Economy Working Paper Series No.7 日本家計の消費 貯蓄 労働プロ

物価変動の決定要因について ― 需給ギャップと物価変動の関係の国際比較を中心に―

( ) z W n u K P N P = (1 + z)wn N = nuk (1) (2) I/K u e f r l (= L/PK) (4) I K = g(u, r, e f, l ) g u > 0, g r < 0, g e f > 0,

Jorgenson F, L : L: Inada lim F =, lim F L = k L lim F =, lim F L = 2 L F >, F L > 3 F <, F LL < 4 λ >, λf, L = F λ, λl 5 Y = Const a L a < α < CES? C




jigp60-★WEB用★/ky494773452500058730

プログラム

ẋ = ax + y ẏ = x x by 2 Griffith a b Saddle Node Saddle-Node (phase plane) Griffith mrna(y) Protein(x) (nullcline) 0 (nullcline) (


プリント

2011年10月 179号 新レイアウト/001     4C

,398 4% 017,

商学 63‐3☆/6.山本

untitled

商学56‐5・6◆/8.二村

表紙_目次.PDF

ron04-02/ky768450316800035946

2017 : (heterogenous) Heterogeneous homogeneous Heterogenous agent model Bewley 1 exante (The Overlapping-Generations Models:OLG) OLG OLG Al

診療ガイドライン外来編2014(A4)/FUJGG2014‐01(大扉)

産業・企業レベルデータで見た日本の経済成長.pdf

Robert B Ekelund Jr and Edward O Price III The Economics of Edwin Chadwick: Incentives Matter Cheltenham UK and Northampton MA: Edward Elgar 2012 xi 2

Microsoft Word - Šv”|“Å‘I.DOC

日本の高齢者世帯の貯蓄行動に関する実証分析

日本糖尿病学会誌第58巻第1号

Centralizers of Cantor minimal systems

橡motonishi.PDF

<93638CB48FBA8E6C2E696E6464>

46−ª3�=4�“ƒ‚S“·‚Ö‡¦

_03.indd

tnbp59-17_Web:プO1/ky079888509610003201



GDPギャップと潜在成長率


Auerbach and Kotlikoff(1987) (1987) (1988) 4 (2004) 5 Diamond(1965) Auerbach and Kotlikoff(1987) 1 ( ) ,

日本株式市場における経済レジームファクターの役割

デフレ不況下の金融政策をめぐる政治過程

MAE.indb

Winter 図 1 図 OECD OECD OECD OECD 2003

Title ベンチャー企業の研究開発支出の決定要因 日本と台湾の事例を中心に Author(s) 蘇, 顯揚 Citation 經濟論叢 (1996), 158(1): Issue Date URL Right

株式保有構成と企業価値 ─コーポレート・ガバナンスに関する一考察─

商学 64‐5☆/21.太田原

【表紙】経済学論叢_18号/表1・3・背

メイン寄せリスクと貸出債権価値の評価:ゲーム論的リアルオプションによるアプローチ

292 Vol. 44 No refundable tax credit Mirrlees 1971 Friedman

アロー『やってみて学習』から学習:経済成長にとっての教訓 Learning from `Learning by Doing': Lessons for Economic Growth

村本 孜51‐85/51‐85

( β K ) p β W W p β K K aβ β W W β β K K ) 1/(βW +β K ) 3 ln C =lnα + 1 β W + β K ln Q (3) 1/(β W + β K ) ( β W + β K ) 4 ( ) ( ) ( ) ( 1998

untitled

BB 報告書完成版_修正版) doc

Transcription:

$\dagger$ 1768 2011 125-142 125 2 * \dagger \ddagger 2 2 $JEL$ : E12; E32 : 1 2 2 $*$ ; E-mail address: tsuzukie5@gmail.com \ddagger

126 Keynes (1936) $F\iota$ Chang and Smyth (1971) ( ) Kaldor (1940) Asada (2001, 2004) ( 1) Asada (2004) ( ) Fisher (1933) Asada (2001,2004) Chang and Smyth (1971) Asada (2001, 2004) 3 ( / ) 2 2 $2$ $1)$ $($ lminsky (1975, 1986) 2Kalecki (1971)

127 ( 1 ) 3 1 Goodwin (1967) Lancaster (1973) ( ) 2 2 ( $+$ ) ( ) 4 2-5 3Asada (2001, 2004) 2 4 ( ) 21 5 Goodwin (1967) Asada (2001) Asada (2001)

$\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$ 128 ( ) ( ) ( $=1$ ) 2 2.1 3 2 $C=C_{w}+C_{r}$ (1) $C_{w}=(1-\tau)zY$ (2) $C_{r}=(1-s)(1-\tau)(1-z)Y+(1-s)(p_{B}B-p_{B}\dot{B})$ (3) $C$ $C_{w}$ $C_{r}$ ( $1-z$ ) $Y$ ( ) $B$ ( ) $p_{b}(>0)$ $\tau(0<\tau<1)$ $s(0<s<1)$ ( 1) $($ $0<1-s<1)$ Chang and Smyth(1971) (1997) 1

129 $p_{b}$ $h= \frac{i}{k}=\frac{\dot{k}}{k}=\overline{h}=const$. $>0$ (4) ( / ) $I$ $K$ $(0<\gamma<1)$ $G=\gamma Y$ (5) $G+p_{B}B-\tau Y=p_{B}\dot{B}$ (6) $\dot{y}=\alpha(c+i+g-y)$ (7) $\alpha(>0)$ (7) $(C+I+G>Y)$ $(C+I+G<Y)$ (1)$-(6)$ (7) $\dot{y}=\alpha[-s(1-\tau)(1-z)y+\overline{h}+\{s(\gamma-\tau)-\frac{\overline{h}}{\alpha}\}y]$ (8) $y=y/k$ 2.2 ( ) $(1-z)$ $(y)$

130 $u_{2}(y)$ $u_{1}$ (1 -z) $u_{1}^{l}>0,$ $u_{1} <0,$ $u_{2}^{l}>0,$ $u_{2}$ $u_{2}^{\prime l}<0$ $u_{1}$ $a(0<a<1)$ $u(z, y)$ $u(z, y)=au_{1}(1-z)+(1-a)u_{2}(y)$ (9) $a>0.5$ $a<0.5$ (8) $y(0)$ : $V= \int_{0}^{\infty}[au_{1}(1-z)+(1-a)u_{2}(y)]e^{-\rho t}dt$ (10) $\rho(>0)$ $H=au_{1}(1-z)+(1-a)u_{2}(y)+ \mu\alpha[-s(1-\tau)(1-z)y+\overline{h}+\{s(\gamma-\tau)-\frac{\overline{h}}{\alpha}\}y]$ (11) $\mu$ $y$ 1 $\frac{m}{\partial z}=-au_{1} (1-z)+\mu\alpha s(1-\tau)y=0$ (12) $\dot{\mu}=\rho\mu-\frac{\partial \mathcal{h}}{\partial y}=\rho\mu-(1-a)u_{2} (y)+\mu\alpha s(1-\tau)(1-z)-\mu\alpha\{s(\gamma-\tau)-\frac{\overline{h}}{\alpha}\}$ (13) $\lim_{tarrow\infty}\mu ye^{-\rho t}=0$ (14) (12) $\mu=\frac{au_{1} (1-z)}{\alpha s(1-\tau)y}$ (15)

131 $\frac{\dot{\mu}}{\mu}=-\frac{u_{1}^{l/}(1-z)}{u_{1} (1-z)}\dot{z}-\frac{\dot{y}}{y}$ $= \eta\frac{\dot{z}}{1-z}-\frac{\dot{y}}{y}$ (16) $\eta$ $\eta=-\frac{(1-z)u_{1} (1-z)}{u_{1}(1-z)}$ (13) $\frac{\dot{\mu}}{\mu}=\rho-\frac{1}{\mu}(1-a)u_{2} (y)+\alpha s(1-\tau)(1-z)-\alpha\{s(\gamma-\tau)-\frac{\overline{h}}{\alpha}\}$ (17) (17) (15) (16) $\eta\frac{\dot{z}}{1-z}-\frac{\dot{y}}{y}=\rho-\alpha s(1-\tau)y\frac{1-a}{a}\frac{u_{2} (y)}{u_{1} (1-z)}+\alpha s(1-\tau)(1-z)-\alpha\{s(\gamma-\tau)-\frac{\overline{h}}{\alpha}\}$ $= \rho-\alpha s(1-\tau)(1-z)\{\frac{y}{1-z}\frac{1-a}{a}\frac{u_{2} (y)}{u_{1} (1-z)}-1\}-\alpha\{s(\gamma-\tau)-\frac{\overline{h}}{\alpha}\}$ (8) (18) $2=\frac{1}{\eta}[\alpha\{-s(1-\tau)(1-z)+\frac{\overline{h}}{y}+s(\gamma-\tau)-\frac{\overline{h}}{\alpha}\}(1-z)+\rho(1-z)$ (19) $- \alpha s(1-\tau)(1-z)^{2}\{\frac{y}{1-z}\frac{1-a}{a}\frac{u_{2} (y)}{u_{1} (1-z)}-1\}-\alpha\{s(\gamma-\tau)-\frac{\overline{h}}{\alpha}\}(1-z)]$

132 2.3 (8) (19) 2 (i) (ii) $\dot{y}=\alpha[-s(1-\tau)(1-z)y+\overline{h}+\{s(\gamma-\tau)-\frac{\overline{h}}{\alpha}\}y]$. $= \frac{1}{\eta}[\alpha\{-s(1-\tau)(1-z)+\overline{\frac{h}{y}}+s(\gamma-\tau)-\frac{\overline{h}}{\alpha}\}(1-z)+\rho(1-z)$ $- \alpha s(1-\tau)(1-z)^{2}\{\frac{y}{1-z}\frac{1-a}{a}\frac{u_{2}^{l}(y)}{u_{i} (1-z)}-1\}-\alpha\{s(\gamma-\tau)-\frac{\overline{h}}{\alpha}\}(1-z)]$ $B$ $y$ ( (6) $c$ $m$ $u(c)+v(m)$ $Y$ ) (20) $u$ $v$ $u >0,u^{\prime l}<0,$ $v >0,$ $v <0$ Siegel (1983) $\beta_{1}$ In $c+\beta_{2}\ln m$ $\beta_{1}$ $\beta_{2}$ $u= \frac{(c^{1-\beta}g^{\beta})^{1-\sigma}-1}{1-\sigma}$ Barro (1990) $c$ $g$ $u=(1-\beta)$ lnc $+\beta\ln g$ $0<\beta<1$ $\sigma>0$ $\sigmaarrow 1$ $u_{1}$ $u_{2}$ $u_{1}(1-z)=\ln(1-z)$ $u_{2}(y)=\ln y$ $u (1-z)= \frac{1}{1-z}$ $u_{2} $ (y) l $=$ $\eta=1$ (20) (i) $\dot{y}=\alpha[-s(1-\tau)(1-z)y+\overline{h}+\{s(\gamma-\tau)-\frac{\overline{h}}{\alpha}\}y]\equiv f_{1}(y, z)$ (ii) $\dot{z}=\alpha[-s(1-\tau)(1-z)+\frac{\overline{h}}{y}+s(\gamma-\tau)-\frac{\overline{h}}{\alpha}](1-z)+\rho(1-z)$ (21) $- \alpha s(1-\tau)(1-z)^{2}(a-1)-\alpha\{s(\gamma-\tau)-\frac{\overline{h}}{\alpha}\}(1-z)\equiv f_{2}(y, z)$

133 $A= \frac{1-a}{a}$ (20) (21) (21) $(y^{*}, z^{*})$ $y^{*}= \frac{\overline{h}}{(1-z^{*})s(1-\tau)-s(\gamma-\tau)+\frac{\overline{h}}{\alpha}}$ (22) $z^{*}=1- \frac{\rho+\overline{h}-\alpha s(\gamma-\tau)}{\alpha s(1-\tau)(a-1)}$ (23) 1 (i) (ii) (iii) $(1-z^{*})s(1- \tau)+\frac{\overline{h}}{\alpha}>s(\gamma-\tau)$ $A>1$ $\rho+\overline{h}>\alpha s(\gamma-\tau)$ $A<1$ $\rho+\overline{h}<\alpha s(\gamma-\tau)$ $\frac{\rho+\overline{h}-\alpha s(\gamma-\tau)}{\alpha s(1-\tau)(a-1)}<1$ 1(i) $y^{*}>0$ 1(ii) (iii) $0<z^{*}<1$ (ii) $A<1$ $\gamma>\tau$ 3 (21) $*$ (21) $J^{*}=\{\begin{array}{ll}f_{ll}^{*} f_{l2}^{*}f_{2l}^{*} f_{22}^{*}\end{array}\}$ (24)

$\bullet$ $\bullet$ 134 $f_{11}^{*}=- \alpha s(1-\tau)(1-z)+\alpha\{s(\gamma-\tau)-\frac{\overline{h}}{\alpha}\}$ $f_{12}^{*}=\alpha s(1-\tau)y$ $f_{21}^{*}=- \alpha(1-z)\frac{\overline{h}}{y^{2}}$ $f_{22}^{*}= \alpha s(1-\tau)(i-z)-\rho+2\alpha s(1-\tau)(1-z)(a-1)+\alpha\{s(\gamma-\tau)-\frac{\overline{h}}{\alpha}\}$ $= \alpha s(1-\tau)(1-z)-\alpha s(1-\tau)(1-z)(a-1)-\alpha\{s(\gamma-\tau)-\frac{\overline{h}}{\alpha}\}$ $+2 \alpha s(1-\tau)(1-z)(a-1)+\alpha\{s(\gamma-\tau)-\frac{\overline{h}}{\alpha}\}$ $=\alpha s(1-\tau)(1-z)+\alpha s(1-\tau)(1-z)(a-1)$ $=\alpha s(1-\tau)(1-z)a$ $(*)$ $A_{0}=1- \frac{s(\gamma-\tau)-\underline{h\text{ }}}{s(1-\tau)(1-z\cdot)}$ $0<A_{0}<1$ 1(i) (ii) $A<1$ $*$ 1 $*$ $A>1$ 1 $J^{*}$ $A<1$ $A>A_{0}$ 2 $A<A_{0}$ $J^{*}$ 2

$\bullet$ $\bullet$ 135 $*$ $detj^{*}$ $detj^{*}=f_{11}^{*}f_{22}^{*}-f_{12}^{*}f_{21}^{*}$ $=-[ \alpha s(1-\tau)(1-z)]^{2}a+\alpha^{2}s(1-\tau)(1-z)a\{s(\gamma-\tau)-\frac{\overline{h}}{\alpha}\}+\alpha^{2}s(1-\tau)(1-z)\frac{\overline{h}}{y}$ $=-[ \alpha s(1-\tau)(1-z)]^{2}a+\alpha^{2}s(1-\tau)(1-z)a\{s(\gamma-\tau)-\frac{\overline{h}}{\alpha}\}+[\alpha s(1-\tau)(1-z)]^{2}$ $- \alpha^{2}s(1-\tau)(1-z)\{s(\gamma-\tau)-\frac{\overline{h}}{\alpha}\}$ $=[ \alpha s(1-\tau)(1-z)]^{2}(1-a)-\alpha^{2}s(1-\tau)(1-z)\{s(\gamma-\tau)-\frac{\overline{h}}{\alpha}\}(1-a)$ $= \alpha^{2}s(1-\tau)(1-z)(1-a)[(1-z)s(1-\tau)-\{s(\gamma-\tau)-\frac{\overline{h}}{\alpha}\}]$ $J^{*}$ $trj^{*}$ $trj^{*}=f_{11}^{*}+f_{22}^{*}$ $=- \alpha s(1-\tau)(1-z)+\alpha\{s(\gamma-\tau)-\frac{\overline{h}}{\alpha}\}+\alpha s(1-\tau)(1-z)a$ $= \alpha s(1-\tau)(1-z)(a-1)+\alpha\{s(\gamma-\tau)-\frac{\overline{h}}{\alpha}\}$ $=\alpha s(1-\tau)(1-z)(a-a_{0})$ $J^{*}$ 1(i) $A>1$ $detj^{*}<0$ 1 1(i) $A<1$ $detj^{*}>0$ $A>A_{0}$ $trj^{*}>0$ $A<A_{0}$ $trj^{*}<0$ $J^{*}$ $A>A_{0}$ 2 $A<A_{0}$ 2

136 (21) $\frac{dz}{dy}\dot{y}=0=-\frac{f_{11}^{*}}{f_{12}^{*}}>0$ $\frac{dz}{dy}\dot{z}=0=-\frac{f_{21}^{*}}{f_{22}^{*}}>0$ $\frac{dz}{dy} _{\dot{y}=0}-\frac{dz}{dy} _{\dot{z}=0}=-\frac{f_{11}^{*}f_{22}^{*}-f_{12}^{*}f_{21}^{*}}{f_{12}^{*}f_{22}^{*}}=-\frac{detj^{*}}{f_{12}^{*}f_{22}^{*}}$ $detj^{*}<0$ $\frac{dz}{dy} _{\dot{y}=0}-\frac{dz}{dy} _{\dot{z}=0}>0$ $(y, z)$ $\dot{z}=0$ $($ $\dot{y}=0$ $1)_{\text{ }}$ $detj^{*}>0$ $\frac{dz}{dy} _{\dot{y}=0}-\frac{dz}{dy} _{\dot{z}=0}<0$ $(y, z)$ $\dot{y}=0$ $\dot{z}=0$ ( 2, 3) $2$ $1$ $A>1$ $A_{0}<A<1$ $0<A<A_{0}$ 3 $0$ $y(0)$ $y$ 1: $A>1$ $A>1$ ( ) $A<1$ 2 3

137 $0$ 2: $A_{0}<A<1$ $y$ $A$ 2 $A=A(z),$ $A (z)>0$ for all $z\neq z^{*},$ $A (z^{*})=0,$ for $A^{l\prime}(z)<0$ $A (z)>0$ for. $z\in(z^{*}, 1)$ $z\in(0, z^{*})$, $A (z)>0$ for all $z\neq z$ $A$ ( ) $A$ ( ) ( ) 6 $A (z^{*})=0$ $A$ $A (z)<0$ for $z\in(0, z^{*})$ $A^{ll}(z)>0$ for $z\in(z^{*}, 1)$ $0<z<z^{*}$ $A(z)$ $z^{*}<z<1$ 6 $(a)$ $a$ (15) (16) $a$

138 $0$ 3: $0<A<A_{0}$ $y$ $A(z)$ $0<Z<Z^{*}$ $A(z)$ $Z^{*}<z<1$ $A(z)$ 2 $f_{21}=- \alpha(1-z)\frac{\overline{h}}{y^{2}}$ $f_{22}=\alpha s(1-\tau)(1-z)[a-(1-z)a (z)]$ 7 $(z, y)$ $\dot{z}=0$ $\frac{dy}{dz}\dot{z}=0=\frac{\alpha s(1-\tau)(1-z)[a-(1-z)a^{l}(z)]y^{2}}{\alpha(1-z)\overline{h}}$ (25) 3 $A<(1-z)A (z)$ ( ) $A>(1-z)A (z)$ 7 $A (z)=0$ $f_{22}^{*}=\alpha s(1-\tau)(1-z)a$

139 $(z, y)$ $\dot{z}=0$ $\grave$ 8 3 $\dot{z}=0$ $S$ 4 $\lim_{zarrow 0}A^{l}(z)=\infty$ $C^{1}$ 1( ) Hirsch and Smale (1974) Guckenheimer and Holmes (1983) 2 $A_{0}<A(z^{*})<1$ (21) $0$ 4: $\Omega$ $y$ 8 2

140 $\Omega$ $\Omega$ 4 $\Omega$ $\Omega$ $\Omega$ $\Omega$ $\ovalbox{\tt\small REJECT}$ 1 $A_{0}<A(z^{*})<1$ 1 (21) 4 2 ( - ) $y$ $y$ $y$ $C$ $y$ $y\uparrow\rightarrow z\downarrow\rightarrow C\downarrow\Rightarrow y\downarrow\rightarrow z\uparrow\rightarrow C\uparrow\Rightarrow y\uparrow$ $A(= \frac{1-a}{a})$ $A>1$

141 $A<1$ $A>1$ $A<1$ $\ovalbox{\tt\small REJECT}$ [1] (1997). [2] Asada, T. (2001). Nonlinear Dynamics of Debt and Capital: A Post-Keynesian Analysis, in Y. Aruka and Japan Association for Evolutionary Economics (ed.) $Evo$ lutionary Controversies in Economics: A New Transdisciplinary Approach, Tokyo: Springer-Verlag, 73-87. [3] Asada, T. (2004). Price Flexibility and Instability in a Macrodynamic Model with a Debt Effect, Journal of International Economic Studies 18, 41-60. [4] Barro, R. J. (1990). Government Spending in a Simple Model of Endogenous Growth, Journal of Political Economy 98, $S103-S125$. [5] Chang, W. and Smyth, D. (1971). The Existence and Persistence of Cycles in a Nonlinear Model: Kaldor $s$ 38, 37-44. 1940 Model Re-examined, Review of Economic Studies [6] Fisher, I. (1933). The Debt-deflation Theory of Great Depressions, Econometrica 1, 337-357. [7] Goodwin, R. M. (1967). A Growth Cycle, in C. H. Feinstein (ed.) Socialism, Capitalism and Economic Growth, Cambridge: Cambridge University Press. [8] Guckenheimer, J. and Holmes, P. (1983). Nonlinear Oscillations; Dynamical Systems, and Bifurcation of Vector Fields, Berlin: Springer-Verlag.

142 [9] Hirsch, M. W. and Smale, S. (1974). Differential Equations, Dynamical Systems and Linear Algebm, New York: Academic Press. 1976) ( [10] Kaldor, N. (1940). A Model of the Thrade Cycle, Economic Joumal 50,78-92. [11] Kalecki, M. (1971). Selected Essays on the Dynamics of the Capitalist Economy, Cambridge: Cambridge University Press. [12] Keynes, J. M. (1936). The General Theory of Employment, Interest and Money, London: Macmillan. [13] Lancaster, K. (1973). The Dynamic Inefficiency of Capitalism, Joumal of Political Economy 81, 1092-1109. [14] Minsky, H. P. (1975). John Maynard Keynes, New York: Columbia University Press. [15] Minsky, H. P. (1986). Stabilizing an Unstable Economy, New Haven: Yale University Press. [16] Siegel, J. J. (1983). Technological Change and the Superneutrality of Money, Journal of Money, Credit and Banking 15, 363-367.