set element a A A a A a A 1 extensional definition, { } A = {1, 2, 3, 4, 5, 6, 7, 8, 9} 9 1, 2, 3, 4, 5, 6, 7, 8, 9..

Similar documents
1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0,

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.


¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È

( [1]) (1) ( ) 1: ( ) 2 2.1,,, X Y f X Y (a mapping, a map) X ( ) x Y f(x) X Y, f X Y f : X Y, X f Y f : X Y X Y f f 1 : X 1 Y 1 f 2 : X 2 Y 2 2 (X 1

2014 (2014/04/01)

( ) ( ) Iverson

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

inkiso.dvi

Armstrong culture Web

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

合併後の交付税について

i iii 1 ZFC Skolem

1


情報の構造とデータ処理

JFE.dvi

Perturbation method for determining the group of invariance of hierarchical models

27

Power Transformation and Its Modifications Toshimitsu HAMASAKI, Tatsuya ISOMURA, Megu OHTAKI and Masashi GOTO Key words : identity transformation, pow

四変数基本対称式の解放

[RP13]シリーズカタログ

わが国企業による資金調達方法の選択問題

26-横03-河村先生-三.indd

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac +

Page 1 of 6 B (The World of Mathematics) November 20, 2006 Final Exam 2006 Division: ID#: Name: 1. p, q, r (Let p, q, r are propositions. ) (10pts) (a

2 ( 8 ) Tachibana Alumni Association of Library and Information Science


Taro13-第6章(まとめ).PDF

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

A pp CALL College Life CD-ROM Development of CD-ROM English Teaching Materials, College Life Series, for Improving English Communica

category.dvi

1980年代半ば,米国中西部のモデル 理論,そして未来-モデル理論賛歌

untitled

橡点検記録(集約).PDF

ばらつき抑制のための確率最適制御


出展者マニュアル 01章 事務局からのお知らせ

1 Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier analog digital Fourier Fourier Fourier Fourier Fourier Fourier Green Fourier

‚æ01Łª“û†œ070203/1‘Í

広報かわぐち 2005年2月号

研究紀要 第14号 (研究ノート1)

untitled


A B A E

Microsoft PowerPoint _秀英体の取組み素材(予稿集).ppt

ISO/IEC 9798プロトコルの安全性評価

D _SR_DENSEI_QX


Lebesgue可測性に関するSoloayの定理と実数の集合の正則性=1This slide is available on ` `%%%`#`&12_`__~~~ౡ氀猀e

.V...z.\

201604_建築総合_2_架橋ポリ-ポリブテン_cs6.indd


x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

1 2 X X X X X X X X X X Russel (1) (2) (3) X = {A A A} 1.1.1

handout.dvi

untitled

Transcription:

12 -- 2 1 2009 5,,.,.,.. 1, 2, 3,., 4),, 4, 5),. 4, 6, 7).,, R A B, 8, (a) A, B 9), (b) {a (a, b) R b B }, {b (a, b) R a A } 10, 11, 12) 2. (a). 11, 13, R S {(a, c) (a, b) R, (b, c) S } (c) R S 14), 1, 15, (d) S R 16) 2. (d). f : X Y. 1, 6, 9,, (e) Y 17) 3, 4, 8, 10, 11, 12, 18, 19), (f) X f (X)., codomain range, (g) Y codomain 7, 9, 14, 16, 19, 20, 21) 3, 4, 8, 9, 10, 11, 12,, (h) f (X) range 15)., (e) (g), (f) (h)., (e) (g). 1-5 2.,.,,.. 1-1. 2,, 1-2, 1-3. 1-4.. 1-5. c 2014 1/(14)

12 -- 2 -- 1 1--1 2009 5 1--1--1 set element a A A a A a A 1 extensional definition, { } A = {1, 2, 3, 4, 5, 6, 7, 8, 9} 9 1, 2, 3, 4, 5, 6, 7, 8, 9... A A = {1, 2,..., 9} {1, 2, 3,...} intensional definition. : { }. x predicate P(x) {x P(x)} A = {2, 4, 6, 8, 10} A = {x x 2 10 } A = {2x x 1 5 } 1-4-3 2 finite set infinite 1-5 A A #A 0 empty set {} 3 A B A B subset A B B A A B A B A B A B A = B A B A B A B A B A B proper subset A B A : A A. : A B B C A C. (1 1) (1 2) 4 family F S F 14, 19) c 2014 2/(14)

A F A A F a A F a F order 5 N : N = {0, 1, 2,...} Z : Q : R : C : 1--1--2 A, B 2 1 A, B {x x A x B} A B union A B A, B, C : A = A = A. (1 3) : A A = A. (1 4) : A B = B A. (1 5) : (A B) C = A (B C). (1 6) A 1,, A n A 1 A n I i A i I i A i A i I index set i I 2 A, B {x x A x B} A B intersection A B A, B, C : A = A =. (1 7) : A A = A. (1 8) : A B = B A. (1 9) : (A B) C = A (B C). (1 10) A 1,, A n A 1 A n c 2014 3/(14)

I A i i I A B = A B disjoint A,B A B A + B A B direct sum A, B, C A (B C) = (A B) (A C). A (B C) = (A B) (A C). (1 11) (1 12) A (A B) = A. A (A B) = A. (1 13) (1 14) 3 A B {x x A x B} A B difference A B A B A\B 4 A B (A B) (B A) P Q symmetric difference P Q A B A B 1--1--3 A U U A U A complement U U universal set U U A A A A A c U A U = U, U =. (1 15) : A A = U, A A =. (1 16) : A = A. (1 17) 1--1--4 De Morgan's laws A, B A B = A B. A B = A B. (1 18) (1 19) U c 2014 4/(14)

1--1--5 A A power set 2 A P(A) 2 A = {S S A} A = {1, 2, 3} 2 A = {, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} 2 A, A 2 A 2 A = 2 A. (1 20) c 2014 5/(14)

12 -- 2 -- 1 1--2 2009 5 1--2--1 A, B a A, b B (a, b) ordered pair A B {(a, b) a A b B} A B direct product Cartesian product A B A A = A =. (1 21) A, B A B = A B. (1 22) 1--2--2 2 A,B A B R A B 2 binary relation 2 A R domain B codomain A R A A A (a, b) R R(a, b) arb R A B {(b, a) (a, b) R} B A R inverse relation R 1 R, S R = S 1--2--3 2 A 2 1 a A (a, a) R R reflexive 2 (a, b) R (b, a) R R symmetric 3 (a, b) R a b (b, a) R R antisymmetric 4 (a, b) R, (b, c) R (a, c) R R transitive 1--2--4 A B R A B B C S B C R S c 2014 6/(14)

{(a, c) R(a, b) S (b, c)} A C R S composition S R R A B S B C T C D T (S R) = (T S ) R. (1 23) n 2 R n R n n = 1 R 1 = R n = 0 R 0 = {(a, a) a A} R 0 identity relation 1--2--5 R A S R P A P S R S S S R P- P-closure R transitive closure reflexive transitive closure P P- R + R R + = R 1 R 2 R 3 = R = R 0 R 1 R 2 = 1--2--6 i=1 i=0 R i R i (1 24) (1 25) equivalence relation a A, {b A a b} a equivalence class [a] a [a] representative A A F A partition S F S = A S, T F S T S T = A a, b A [a] = [b] [a] [b] = I A F = {[i] i I} A A = [i] F A quotient set A/ i I A F R = {(a, b) S F a S b S } 1--2--7 partial order A A partially ordered set, poset, A, ) ( 14, 15, 17) c 2014 7/(14)

1 (A, ) a, b A a b a b a b (A, ) Hasse diagram 1. A a b a b 2. a b a, b a c b c a, b 1 1 (2 {1,2,3}, ) {1, 2} {1} {1, 2, 3} {1, 3} {2} {2, 3} {3} 1 1 2 a, b a b b a a b comparable incomparable A S S S chain S S S antichain 3 B A a 0 B a 0 a a B a 0 B maximal B a a 0 a B a 0 B minimal B a 0 B a 0 B a 0 a a B a 0 B maximum B a 0 B a a 0 a B a 0 B minimum B 1--2--8 (A, ) total order linear order (A, ) totally ordered set (A, ) A quasi-order c 2014 8/(14)

12 -- 2 -- 1 1--3 2009 5 1--3--1 X Y X Y mapping function f : X Y X domain Y codomain X = dom( f ), Y = codom( f ) f, g dom( f ) = dom(g), codom( f ) = codom(g), x dom( f ) f (x) = g(x) f = g 1 f A dom( f ) f A restriction f A f f A extension 2 f : X Y x X y Y y x image y = f (x) f : x y A X, f (A) = {y x A y = f (x)} f A A = X f (X) f range( f ) f : X Y B Y X {x x X, f (x) B} B f inverse image preimage f 1 (B) 1--3--2 f : X Y, g : Y Z x X g( f (x)) f g composition g f g f X Z g f : X Z f, g, h g f h g, h (g f ) = (h g) f, 1--3--3 1 f : X Y x 1, x 2 X x 1 x 2 f (x 1 ) f (x 2 ) f injection 1 1 one-to-one f, g g f f, g g f f g 2 f : X Y y Y f (x) = y x X f (X) = Y f surjection onto f, g g f f, g g f g f c 2014 9/(14)

3 bijection f, g g f f, g g f f g X f : X X X permutation 1--3--4 f : X Y y Y y = f (x) x X y x f inverse mapping f 1 f 1 ( f 1 ) 1 ( f 1 ) 1 = f 1--3--5 x dom( f ) a codom( f ) f (dom( f )) = {a} f constant function 1--3--6 f : X Y x X f (x) = x f identity function c 2014 10/(14)

12 -- 2 -- 1 1--4 2009 5 1--4--1 P(n) n 7 7-2 mathematical induction n N P(n) 1 n N P(n) 1. P(0) 2. n P(n) P(n + 1) 1. 2. 2 P(n) 2 (1) n N P(n) 1. P(0) 2. k n P(k) P(n + 1) 3 m, n N P(m, n) 1. P(0, 0) 2. m, n P(m, n) P(m + 1, n) P(m, n + 1) 1--4--2 Giuseppe Peano, 1858 1932 N Peano axioms c 2014 11/(14)

N 1. N 0 0 N 2. σ : N N σ(n) n (a) σ m n σ(m) σ(n) (b) σ(n) = 0 n N 0 (c) N S 0 n S σ(n) S S = N 2(c) n S 2(c) N 1--4--3 recursive definition S, a S S 0 S (S 0 ) b S S c S inductive definition c 2014 12/(14)

12 -- 2 -- 1 1--5 2009 5 1--5--1 2 2, 19) 1 A n {1, 2,..., n} A 2, 4, 9) 2 A A A A N N {0} f (n) = n + 1 N (1), N 1--5--2 A B A B equipotent A B cardinality A n {1, 2,..., n} A = n N ℵ 0 ℵ 0 countable set countably infinite set at most countable set uncountable set R 1), Information & computing 61,, 1992. 2) C.L. Liu,,,,, 1995. 3),,, Information&Computing 21,, 1999. 4),, E13,, 2008. J. W. R. Dedekind, 1831 1916 14, 20, 21) c 2014 13/(14)

5),,, 2007. 6),,, 1995. 7) R. Garnier and J. Taylor, Discrete Mathematics for New Technology 2nd edition, Taylor & Francis, 2001. 8),,,, 1995. 9),,,,,, 2007. 10) R. Johnsonbaugh, Discrete Mathematics The Jk Computer Science and Mathematics Series, 5th edition, Prentice Hall College Div., 2000. 11),,, 15,, 2006. 12), Information Science & Engineering F1,, 2008. 13),,,, 1993. 14) J.L. Hein, Discrete Mathematics 2nd edition, Jones & Bartlett Publishers, 2003. 15) J.K. Truss, Discrete Mathematics for Computer Scientists International Computer Science Series, 2nd edition, Addison-Wesley, 1999. 16) D.E. Ensley and J.W. Crawley, Discrete Mathematics, Textbook and Student Solutions Manual: Mathematical Reasoning and Proof with Puzzles, Patterns, and Games, Wiley, 2006. 17) R.J. McEliece, R.B. Ash, and C. Ash, Introduction to Discrete Mathematics, International Edition, 1989. 18),,, 1997. 19),,,, 1,, 2008. 20) R.P. Grimaldi, Discrete and Combinatorial Mathematics: An Applied Introduction 4th edition, Addison-Wesley, 1999. 21) K.A. Ross and C.R. Wright, Discrete Mathematics 5th edition, Prentice Hall, 2002. c 2014 14/(14)