- γ 1929 γ - SI γ 137 Cs 662 kev γ NaI active target NaI γ NaI 2 NaI γ NaI(Tl) γ 2 NaI γ γ γ

Similar documents
25 3 4

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

Mott散乱によるParity対称性の破れを検証

TOP URL 1

Muon Muon Muon lif

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.


23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

1 1 (proton, p) (neutron, n) (uud), (udd) u ( ) d ( ) u d ( ) 1: 2: /2 1 0 ( ) ( 2) 0 (γ) 0 (g) ( fm) W Z 0 0 β( )

Drift Chamber

SPECT(Single Photon Emission Computer Tomography ) SPECT FWHM 3 4mm [] MPPC SPECT MPPC LSO 6mm 67.5 photo electron 78% kev γ 4.6 photo electron SPECT

thesis.dvi

TOP URL 1

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

0 ϕ ( ) (x) 0 ϕ (+) (x)ϕ d 3 ( ) (y) 0 pd 3 q (2π) 6 a p a qe ipx e iqy 0 2Ep 2Eq d 3 pd 3 q 0 (2π) 6 [a p, a q]e ipx e iqy 0 2Ep 2Eq d 3 pd 3 q (2π)

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

量子力学 問題

IA

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

目次 2 1. イントロダクション 2. 実験原理 3. データ取得 4. データ解析 5. 結果 考察 まとめ

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

TOP URL 1

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

soturon.dvi

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2


( )


pdf


1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

0406_total.pdf




Donald Carl J. Choi, β ( )

untitled

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

Part () () Γ Part ,

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

,,..,. 1

Note.tex 2008/09/19( )

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a


1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

[ ] [ ] [ ] [ ] [ ] [ ] ADC

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

main.dvi

量子力学A

201711grade1ouyou.pdf

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

30

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3

The Physics of Atmospheres CAPTER :

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

構造と連続体の力学基礎

( ) ,

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

液晶の物理1:連続体理論(弾性,粘性)

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

LLG-R8.Nisus.pdf

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

I ( ) 2019

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

Microsoft Word - 11問題表紙(選択).docx

meiji_resume_1.PDF


Z: Q: R: C: sin 6 5 ζ a, b

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

Microsoft Word - 章末問題


, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

多体問題

( ) ) AGD 2) 7) 1

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

素粒子物理学2 素粒子物理学序論B 2010年度講義第2回

高知工科大学電子 光システム工学科

Transcription:

- 28 2 15

- γ 1929 γ - SI γ 137 Cs 662 kev γ NaI active target NaI γ NaI 2 NaI γ NaI(Tl) γ 2 NaI γ γ 10 3 4 γ

1 3 2 γ 5 2.1..................................... 5 2.1.1.................... 5 2.1.2.............................. 7 2.1.3....................... 7 2.2 γ............................ 9 2.2.1................................ 9 2.2.2............................ 9 2.2.3.............................. 11 2.2.4 γ............... 12 3 15 3.1 γ................. 15 3.2 -......................... 17 3.2.1 Dirac.................... 18 3.2.2............................ 22 3.2.3 M.......................... 28 4 38 4.1 NaI(Tl)............................ 38 4.1.1....................... 38 4.1.2............................. 39 4.1.3 NaI(Tl)..................... 40 4.2 NIM/CAMAC.......................... 42 4.2.1 NIM............................ 43 4.2.2 CAMAC......................... 44 4.3 γ..................................... 45 4.3.1............................. 45 1

4.3.2 137 Cs.................................. 47 4.3.3 22 Na.................................. 48 4.3.4 60 Co.................................. 49 5 50 5.1................................ 50 5.2 ADC......................... 52 5.3 NaI(Tl)...................... 55 6 60 6.1.................................... 60 6.2............................... 60 6.2.1 NaI...................... 60 6.2.2......................... 65 6.2.3........................... 67 6.3..................... 69 6.3.1 γ................... 69 6.3.2........................... 78 6.3.3....................... 84 7 97 A 100 B 102 C 105 D 107 2

1 1927 1929 γ γ NaI(Tl) 1. γ γ γ 2. 3. NaI(Tl) 4. γ NaI active target γ 3

2 γ γ 3 γ 4 5 6 NaI 1 1 NaI active target 1 NaI 7 4

2 γ 2.1 2.1.1 2.1 I 0 A n (x ) 2.2 2.1: N t N t = n Ad 5

2.2: 2.2 σ t σ t N t = σ t n Ad d σ t n Ad A = σ t nd (2.1) σ t N t A 1 (2.1) ( ) N y N y = I 0 (σ t nd) (2.2) σ t σ σ N y I 0 nd (2.3) I 0 nd L L = I 0 nd (2.3) ( ) 6

2.1.2 2.3 Ω Ω 2.3: Ω = A 2 l 2 dσ dω N y ( Ω) = dσ ΩL dω 2.1.3 NaI(Tl) γ σ N y 2.4 x N y (2.2) dx di(x) di(x) = σni(x)dx I(x) = I 0 e σnx = I 0 e µx 7

µ µ = σn N y 2.4: N y = σn d 0 d dxi(x) = σni 0 e µx dx 0 = σn 1 e µd I 0 (2.4) µ = (1 e µd )I 0 (2.5) (2.5) σn = µ γ (2.4) (2.5) d dx (2.2) N y = I 0 (1 e µdx ) I 0 µdx = I 0 σndx Ω (2.4) σ dσ Ω dω N y ( Ω) = dσ e µd Ωn1 I 0 dω µ 8

2.2 γ γ 2.2.1 K E e ( 2.5) E e = hν E b E b Z E b kev Z kev 2.5: Z 5 K L M K K 5/4 2.2.2 3 2.6 9

γ hν hν = hν 1 + hν m e (1 cos θ) c 2 m e hν E e 2.6: hν E e = hν 1 + hν m e (1 cos θ) c 2 (2.6) θ = π hν E e (θ = π) = hν (2.7) 1 + 2 hν m e c 2 (2.6) E e (θ = 0) = 0 (2.7) - [ ] 2 ] dσ dω = r2 e 1 [1 + cos 2 θ + α2 (1 cos θ) 2 2 1 + α(1 cos θ) 1 + α(1 cos θ) r e α = hν m e - c 2 σ c - [ 1 + α σ c = 2πre 2 α 2 ( 2(1 + α) 1 + 2α ) log(1 + 2α) log(1 + 2α) + 1 + 3α ] α 2α (1 + 2α) 2 (2.8) Z 10

2.2.3 2.7 - E e E e + E e + E e + = hν 2m e c 2 2m e c 2 = 1024 kev 2.7: 2.8: - Z 2 2.8 - - 11

Z 2.8 vertex M Z σ σ M 2 Z 2 Z 2 2.2.4 γ γ ( 2.9) ( 2.10) µ ρ µ ρ µ ( ) = µ ρ µ ( ) 2.9 2.10 γ 300 kev 300 kev 7 MeV 7 MeV 2.10 γ γ 662 kev 0.1 cm 2 /g ρ lead 11.3 g/cm 3 d =5 cm γ e µd = e 0.1 ρlead d = 0.0035 0.4% 12

2.9: (NaI) ( [1] ) ( )(cm 2 /g) γ (MeV) Photo τ/ρ Compton total σ/ρ Pair κ/ρ Total attenuation µ 0 /ρ Total absorption µ a /ρ (Compton scattering σ s /ρ) (Rayleigh σ r /ρ) γ Compton absorption σ a /ρ 13

2.10: (Pb) ( [1] ) 2.9 14

3 1) 2) - 3.1 γ hν hν E e 3.1) 3.1: hν hν E e 3 hν c = hν c cos θ + γm ev e cos ϕ (3.1) 0 = hν c sin θ γm ev e sin ϕ (3.2) m e c 2 + hν = hν + γm e c 2 (3.3) 15

(3.1) (3.2) ( hν c hν ) 2 c cos θ = (γm e v e ) 2 cos 2 ϕ ) 2 = (γm e v e ) 2 sin 2 ϕ ( hν c sin θ ( ) 2 h [(ν ν cos θ) 2 + (ν sin θ) 2 ] = (γm e v e ) 2 c (3.3) [m e c 2 + h(ν ν )] 2 = 1 m 2 1 β ec 4 e 2 1 βe 2 m 2 = ec 4 [m e c 2 + h(ν ν )] 2 β 2 e = 1 = γ 2 m 2 ec 2 βe 2 = β2 e m 2 1 β ec 2 (3.4) e 2 m 2 ec 4 [m e c 2 + h(ν ν )] 2 β 2 e 1 β 2 e = 1 c 2 (2h(ν ν )m e c 2 + (h(ν ν )) 2 ) (3.5) (3.4) 2h(ν ν )m e c 2 + (h(ν ν )) 2 = (hν) 2 2hνhν cos θ + (hν ) 2 m e c 2 (E E ) = 2hνhν (1 cos θ) hν hν hν = hν m ec (1 cos θ) + 1 2 (3.6) E e E e = hν hν hν = hν hν m e (1 cos θ) + 1 c 2 16

662 kev 3.2 θ θ = 0 0 θ 200 kev 3.2: 662 kev θ θ = 0 0 θ 200 kev 3.2 - [2] [3] 3.2.1 γ 3.2.2 3.2.3 M 17

3.2.1 Dirac Dirac (p µ γ µ m)ψ = (p/ m)ψ = 0 (p/ = p µ γ µ ) (3.7) Dirac ψ ψ ψ γ 0 ψ Dirac u r (p), v r (p); (r = 1, 2) u r (p) = N v r (p) = N ( χ r σ p χ E+m r ) ( σ p E+m χ 3 r χ 3 r ) (3.8) (3.9) N N = E + m χ r σ Dirac ( ) ( ) 1 0 χ 1 = χ 2 = (3.10) 0 1 u r(p)u s (p) = 2Eδ rs = v r(p)v s (p) (3.11) u r(p)v s (p) = 0 = v ru s (p) (3.12) u r (p)ū r (p) = p/ + m (3.13) r=1,2 v r (p) v r (p) = p/ m (3.14) r=1,2 r, s A B γ TrAB = TrBA (3.15) {γ µ, γ ν } = 2g µν (3.16) 18

γ Tr[γ µ γ ν ] = 4g µν (3.17) Tr[γ ρ γ σ γ α γ β ] = 4(g ρσ g αβ + g ρβ g σα g ρα g σβ ) (3.18) Tr[γ µ 1 γ µ 2... γ µ 2n 1] = 0 }{{} (n = 1, 2,... ) (3.19) γ γ µ = γ 0 γ µ γ 0 (3.20) γ ( ) ( ) γ 0 1 0 0 σ = γ = 0 1 σ 0 (3.21) 4 k µ = (ω; k) m 2 = E 2 p 2 m = 0 k µ k µ = ω 2 k 2 = E 2 p 2 = 0 (3.22) ϵ(k, λ) 4 k µ k µ ϵ µ (k, λ) = 0 (λ = 1, 2) (3.23) λ λ = 1, 2 (λ = 0) (λ = 3) ϵ µ (λ)ϵ µ (ρ) = g λρ (3.24) A µ A µ d 3 k [ = ϵ µ (k, λ)a(k, λ)e ikx + ϵ µ (k, λ)a (k, λ)e ikx] (3.25) (2π) 3 2ω λ ϵ µ (k, λ) a(k, λ), a (k, λ) [a(k, λ), a (k, λ )] = 2ω(2π) 3 δ λ,λ δ 3 (k k ) (3.26) 19

Dirac Dirac : d 3 p [ ψ = apr u (2π) 3 r (p)e ipx + b 2E prv r (p)e ipx] (3.27) r d ψ 3 p [ = a (2π) 3 2E pr ū r (p)e ipx + b pr v r (p)e ipx] (3.28) r a pr, a pr b pr, b pr 0 {a pr, a qs} = (2π) 3 2Eδ 3 (p q)δ rs (3.29) {b pr, b qs} = (2π) 3 2Eδ 3 (p q)δ rs (3.30) is F (x 1 x 2 ) 0 T (ψ(x 1 ) ψ(x 2 )) 0 (3.31) 0 ψ(x 1 ) ψ(x 2 ) 0 t 1 > t 2 = 0 ψ(x (3.32) 2 )ψ(x 1 ) 0 t 1 < t 2 T ( ) 20

(3.11) (3.12) (3.13) (3.14) (3.32) is F (x 1 x 2 ) d 3 p = 0 T ( (a (2π) 3 pr u r (p)e ipx 1 + b 2E prv r (p)e ipx 1 ) r d 3 q (a (2π) 3 2E qsū(q)e iqx 2 + b qs v r (q)e iqx 2 ) 0 s = d 3 p d 3 q 0 (2π) 3 2E (2π) 3 2E (a pra qsu r (p)ū s (q)e iqx 2 ipx 1 + b prb qs v r (p) v s (q)e ipx 1 iqx 2 ) 0 θ(t 1 t 2 ) r,s d 3 p d 3 q 0 (2π) 3 2E (2π) 3 2E (a qsa pr u r (p)ū s (q)e iqx 2 ipx 1 + b qs b prv r (p) v s (q)e ipx 1 iqx 2 ) 0 θ(t 2 t 1 ) r,s = d 3 p d 3 q 0 (2π) 3 2E (2π) 3 2E (a pra qsu r (p)ū s (q)e iqx 2 ipx 1 ) 0 θ(t 1 t 2 ) r,s d 3 p d 3 q 0 (2π) 3 2E (2π) 3 2E (b qsb prv r (p) v s (q)e ipx 1 iqx 2 ) 0 θ(t 2 t 1 ) ( a 0 = 0, b 0 = 0) r,s = (2π) 3 2Eδ 3 d 3 p d 3 q (p q)δ rs 0 (2π) 3 2E (2π) 3 2E u r(p)ū s (q)e iqx 2 ipx 1 ) 0 θ(t 1 t 2 ) r,s d 3 p d 3 q 0 (2π) 3 2E (2π) 3 2E (a qsa pr u r (p)ū s (q)e iqx 2 ipx 1 ) 0 θ(t 1 t 2 ) r,s (2π) 3 2Eδ 3 d 3 p (p q)δ rs 0 (2π) 3 2E + r,s 0 d 3 p (2π) 3 2E r,s d 3 q (2π) 3 2E (v r(p) v s (q)e ipx 1 iqx 2 ) 0 θ(t 2 t 1 ) d 3 q (2π) 3 2E (b prb qs v r (p) v s (q)e ipx 1 iqx 2 ) 0 θ(t 2 t 1 ) ( (3.29), (3.30)) d 3 p = (2π) 3 2E ( u r (p)ū r (p)e ipx 2 ipx 1 θ(t 1 t 2 ) v r (p) v r (p)e ipx 1 ipx 2 θ(t 2 t 1 )) r r d 3 p = (2π) 3 2E ((p/ + m)eipx 2 ipx 1 θ(t 1 t 2 ) (p/ m)e ipx 1 ipx 2 θ(t 2 t 1 )) = i [ ] d 4 pe ip(x 1 x 2 ) p/ + m (2π) 4 p 2 m 2 + iϵ Dirac B 21

3.3: p µ 3.2.2 2 M ( dσ = M fi 2 (2π) 4 δ 4 p 1 + p 2 ) p f 2E 1 2E 2 v 12 f f ( d 3 p f (2π) 3 2E f ) (3.33) p 1 p 2 p f E 1 E 2 E f v 12 2 3.3 m 1 = m 3 = 0 E 1 = p 1, E 3 = p 3 (3.34) p 2 = 0 E 2 = m 2 2 + p 2 2 = m 2 (3.35) 2E 1 E 2 v 12 ( p1 2E 1 2E 2 v 12 = 2E 1 E 2 p ) 2 E 1 E ( 2 p1 = 4E 1 m 2 p ) 2 E 1 E 2 p 1 = 4E 1 m 2 ( p E 2 = 0) 1 = 4m 2 p 1. ( p E = γmv γm ( (3.35)) = v, γ ) 22

( 1 (2π) 4 δ 4 p 1 + p 2 ) ( ) d 3 p f p f 2E 1 2E 2 v 12 (2π) 3 2E f f f ( 1 = 4m 2 p 1 (2π)4 δ 4 p 1 + p 2 ) ( ) d 3 p f p f (2π) 3 2E f f f ( ) ( ) 1 d = 4m 2 p 1 (2π)4 δ (E 1 + E 2 E 3 E 4 ) δ 3 3 p 3 d 3 p 4 (p 1 + p 2 p 3 p 4 ) (2π) 3 2E 3 (2π) 3 2E 4 ( ) ( ) 1 d = 4m 2 p 1 (2π)4 δ (E 1 + m 2 E 3 E 4 ) δ 3 3 p 3 d 3 p 4 (p 1 p 3 p 4 ) (2π) 3 2E 3 (2π) 3 2E 4 (3.36) d 3 p 4 ( ) ( ) 1 d 3 p 3 1 4m 2 p 1 (2π)4 δ (E 1 + m 2 E 3 E 4 ) (2π) 3 2E 3 (2π) 3 2E 4 (3.37) p 4 = p 1 p 3 E 4 E 4 = M 2 + p 2 4 = M 2 + (p 1 p 3 ) 2. (3.37) d 3 p 3 = p 3 2 d p 3 dω d p 3 p 3 δ(f(x)) = 1 f (x 0 ) δ(x x 0). (3.38) E 1 + m 2 E 3 E 4 E 1 + m 2 E 3 E 4 = E 1 + m 2 E 3 M 2 + (p 1 p 3 ) 2 = E 1 + m 2 p 3 M 2 + p 1 2 2 p 1 p 3 cos θ + p 3 2 (E 1 + m 2 E 3 E 4 ) p 3 = 1 2 p 1 cos θ + 2 p 3 2E 4 = E 4 + E 3 p 1 cos θ E 4 = E 2 + E 1 p 1 cos θ E 4 = m 2 + p 1 (1 cos θ) E 4. (3.39) p 1 p 3 = p 4 p 2 (p 1 p 3 ) 2 = 2p 1 p 3 = 2(E 1 E 3 p 1 p 3 cos θ) = 2 p 1 p 3 (1 cos θ) (p 4 p 2 ) 2 = p 2 4 + p 2 2 2p 4 p 2 = 2m 2 2 2E 4 m 2 23

(3.39) p 1 (1 cos θ) = m2 2 + E 4 m 2. (3.40) p 3 (E 1 + m 2 E 3 E 4 ) p 3 = m 2 p 3 m 2 + E 4 E 4 p 3 = m 2 p 1 m 2 + m 2 E 4 p 3 = m 2 p 1 E 4 p 3. (3.41) (3.37) (3.38) (3.41) ( ) ( ) 1 p3 2 d p 3 dω 1 dσ = 4m 2 p 1 (2π)4 δ (E 1 + m 2 E 3 E 4 ) (2π) 3 2E 3 (2π) 3 2E 4 ( ) ( ) 1 1 p3 2 dω 1 = 4m 2 p 1 (2π)4 (E 1 +m 2 E 3 E 4 ) (2π) 3 2E 3 (2π) 3 2E 4 p 3 ( ) ( ) 1 E 4 p 3 p3 2 dω 1 = 16(2π) 2 m 2 p 1 m 2 p 1 E 3 E 4 ( ) 2 1 p3 = dω (3.42) 64π 2 m 2 2 p 1 γ + e γ + e (3.43) 3.4 vertex vertex H I (x)h I (y) = j µ (x)a µ (x)j ν (y)a ν (y) (3.44) it fi = S fi δ fi = ( ie)2 d 4 xd 4 y f T (j µ (x)a µ (x)j ν (y)a ν (y)) i. (3.45) 2! 24

3.4: y off-shell x y - on-shell off-shell x 25

x, y 2! it fi = ( i) 2 e 2 d 4 xd 4 y f T (j µ (x)a µ (x)j ν (y)a ν (y)) i (3.46) = ( i) 2 e 2 d 4 xd 4 yt [ k A µ (x) 0 p j µ (x)j ν p 0 A ν (y) k ] (3.47) = ( i) 2 e 2 d 4 xd 4 yϵ µ (k ) p T (j µ (x)j ν (y)) p ϵ ν (k)e ik x iky. (3.48) 0 A ν (y) k = 0 = 0 = 0 d 3 k 1 (2π) 3 2ω d 3 k 1 (2π) 3 2ω d 3 k 1 (2π) 3 2ω = ϵ ν (k, λ)e iky [ ϵ ν (k 1, λ 1 )a(k 1, λ 1 )e ik1y + ϵ ν (k 1, λ 1 )a (k 1, λ 1 )e ] ik1y k, λ 1 [ ϵ ν (k 1, λ 1 )a(k 1, λ 1 )e ] ik1y a (k, λ) 0 ( 0 a = 0) λ 1 [ ϵ ν (k 1, λ 1 )e ] ik1y (2π) 3 2ωδ 3 (k 1 k)δ λ1 λ 0 λ 1 j µ = ϕ(x)γ µ ϕ(x) p T (j µ (x)j ν (y) p = p T ( ψ(x)γ µ ψ(x) ψ(y)γ ν ψ(y)) p (3.49) Dirac (3.29) (3.30) p ψ(x)γ µ ψ(x) ψ(y)γ ν ψ(y) p = p d 3 q 1 (a (2π) 3 q 2E 1 r1ūr 1 (q 1)e iq 1 x + b q 1 r 1 v r1 (q 1)e iq 1 x )γ µ r 1 d 3 q 2 (a (2π) 3 q 2E 2 r 2 u r2 (q 2)e iq 2 x + b q 2 r v r 2 2 (q 2)e iq 2 x ) r 2 d 3 q 1 (a (2π) 3 q 2E 1 s 1 ū s1 (q 1 )e iq1y + b q1 r 1 v s1 (q 1 )e iq1y )γ ν s 1 d 3 q 2 (a (2π) 3 q2 s 2E 2 u s2 (q 2 )e iq2y + b q 2 r 2 v s2 (q 2 )e iq2y ) p. (3.50) s 2 16 p a aa a p, p baa b p 0, 0 26

p a q 1 r 1 a q 2 r 2 a q 1 s 1 a q2 s 2 p = 0 a p ua q 1 r 1 a q 2 r 2 a q 1 s 1 a q2 s 2 a pt 0 = (2π) 3 2Eδ 3 (p q 1)δ ur1 0 a q 2 r 2 a q 1 s 1 a q2 s 2 a pt 0 0 a q 1 r 1 a p ua q 2 r 2 a q 1 s 1 a q2 s 2 a pt 0 = (2π) 3 2Eδ 3 (p q 1)δ ur1 0 a q 2 r 2 a q 1 s 1 a q2 s 2 a pt 0 = ((2π) 3 2E) 2 δ 3 (p q 1)δ ur1 δ 3 (q 2 p)δ s2 t 0 a q 2 r 2 a q 1 s 1 0 = ((2π) 3 2E) 3 δ 3 (p q 1)δ ur1 δ 3 (q 2 p)δ s2 tδ 3 (q 2 q 1 )δ r2 s 1 (3.50) d 3 q 1 ū (2π) 3 u (p )e ip x γ µ u s1 (q 1 )e iq1xū s1 (q 1 )e iq1y γ ν u t (p)e ipy 2E s 1 = ū u (p )e ip x γ µ d 3 q 1 (2π) 3 2E (q / 1 + m)e iq1( x+y) γ ν u t (p)e ipy (3.51) p b q 1 r 1 a q 2 r 2 a q 1 s 1 b q 2 s 2 p = 0 a p ub q 1 r 1 a q 2 r 2 a q 1 s 1 b q 2 s 2 a pt 0 = 0 b q 1 r 1 b q 2 s 2 a p ua q 2 r 2 a q 1 s 1 a pt 0 = (2π) 3 2Eδ 3 (q 1 q 2 )δ r1 s 2 0 a p ua q 2 r 2 a q 1 s 1 a pt 0 = ((2π) 3 2E) 2 δ 3 (q 1 q 2 )δ r1 s 2 δ 3 (q 2 q 1 )δ r2 s 1 0 a p ua pt 0 (2π) 3 2Eδ 3 (q 1 q 2 )δ r1 s 2 0 a p ua q 1 s 1 a q 2 r 2 a pt 0 = ((2π) 3 2E) 3 δ 3 (q 1 q 2 )δ r1 s 2 δ 3 (q 2 q 1 )δ r2 s 1 δ 3 (p p)δ ut 0 0 ((2π) 3 2E) 3 δ 3 (q 1 q 2 )δ r1 s 2 δ 3 (p q 1 )δ us1 δ 3 (q 2 p)δ r2 t 0 0 = const. ((2π) 3 2E) 3 δ 3 (q 1 q 2 )δ r1 s 2 δ 3 (p q 1 )δ us1 δ 3 (q 2 p)δ r2 t 0 0 ((2π) 3 2E) 3 δ 3 (q 1 q 2 )δ r1 s 2 δ 3 (p q 1 )δ us1 δ 3 (q 2 p)δ r2 t ū u (p )e ip y γ ν (q 2 ) d 3 q 2 (2π) 3 2E ( q / 2 + m)e iq2(x y) γ µ u t (p)e ipx (3.52) (3.52) T x y µ ν ū u (p )e ip x γ µ d 3 q 2 (q 2 ) (2π) 3 2E ( q / 2 + m)e iq2(y x) γ ν u t (p)e ipy (3.53) 27

(3.51) (3.53) ū u (p )e ip x γ µ d 3 q 1 (2π) 3 2E (q / 1 + m)e iq1( x+y) γ ν u t (p)e ipy θ(t x t y ) ū u (p )e ip x γ µ d 3 q 2 (q 2 ) (2π) 3 2E ( q / 2 + m)e iq2(y x) γ ν u t (p)e ipy θ(t y t x ) = ū u (p )e ip x γ µ d 3 q 1 (2π) 3 2E {(q / 1 + m)e iq1( x+y) ( q/ 1 + m)e iq1( y+x) }γ ν u t (p)e ipy id = ū u (p )e ip x γ µ 4 q 1 (2π) { q/ 1 + m 4 q1 2 m 2 + iϵ }γν u t (p)e ipy. id it fi = ( i) 2 e 2 d 4 xd 4 yϵ µ (k )ū u (p )e ip x γ µ 4 q 1 (2π) { q/ 1 + m 4 q1 2 m 2 + iϵ }γν u t (p)e ipy ϵ ν (k)e ik x iky. = (2π) 4 δ 4 (k + p k p )( i) 2 e 2 ϵ µ (k )ū u (p )γ µ i(p/ + k/ + m) { (p + k) 2 m 2 + iϵ }γν u t (p)ϵ ν (k). M 1 = e 2 ϵ µ (k )ū u (p )γ µ p/ + k/ + m { (p + k) 2 m 2 + iϵ }γν u t (p)ϵ ν (k). (3.54) M 2 = e 2 ϵ ν (k)ū u (p )γ ν p/ k / + m { (p k ) 2 m 2 + iϵ }γµ u t (p)ϵ µ (k ). 3.2.3 M M M [ M = M 1 + M 2 = e 2 ū s (p (p/ + k/ + m) ) ϵ/ (p + k) 2 m ϵ/ + ϵ/ (p/ ] k/ + m) 2 (p k ) 2 m 2 ϵ/ u r (p) (3.55) ϵ/ = ϵ µ γ µ, k/ = k µ γ µ p = (m; 0) ϵ = (0; ϵ), ϵ = (0; ϵ ) 28

ϵ p = (0; ϵ) (m; 0) = 0 (3.56) ϵ p = (0; ϵ ) (m; 0) = 0 (3.57) ϵ k = (0; ϵ) (ω; k) = ϵ k = 0 (3.58) ϵ k = (0; ϵ ) (ω ; k ) = ϵ k = 0 (3.59) ϵ (p + k ) = ϵ (p + k) = ϵ p + ϵ k = 0 ϵ = ϵ k (3.60) ϵ (p k) = ϵ (p k ) = ϵ p ϵ k = 0 (3.61) ϵ ϵ = ϵ ϵ = 1 ( (λ = 1, 2) (3.24) ). (3.62) p + k = p + k ϵ/p/ = ϵ µ γ µ p ν γ ν = ϵ µ p ν (2g µν γ ν γ µ ) = ϵ p p/ϵ/ = p/ϵ/ (3.63) ϵ / p/ = ϵ µγ µ p ν γ ν = ϵ µp ν (2g µν γ ν γ µ ) = ϵ p p/ϵ / = p/ϵ / (3.64) ϵ/k/ = ϵ µ γ µ k ν γ ν = ϵ µ k ν (2g µν γ ν γ µ ) = ϵ k k/ϵ/ = k/ϵ/ (3.65) ϵ / k / = ϵ µγ µ k νγ ν = ϵ µk ν(2g µν γ ν γ µ ) = ϵ k k / ϵ / = k / ϵ / (3.66) p k = p k (3.22) (3.63) (3.64) (p + k) 2 = (p + k ) 2 m 2 + 2p k + k 2 = m 2 + 2p k + k 2 p k = p k ( (3.22)) (3.67) (p + k ) 2 = (p k) 2 m 2 2p k + k 2 = m 2 2p k + k 2 p k = p k ( (3.22)) (3.68) (p + k) 2 m 2 = p 2 + 2p k + k 2 m 2 = 2p k (3.69) (p k ) 2 m 2 = p 2 2p k + k 2 m 2 = 2p k (3.70) (p/ + m)ϵ/u(p) = ( ϵ/p/ + mϵ/)u(p) = ϵ/(p/ m)u(p) = 0 (3.71) (p/ + m)ϵ / u(p) = ( ϵ/ p/ + mϵ / )u(p) = ϵ / (p/ m)u(p) = 0 (3.72) 29

M [ ] ϵ/ M = e 2 ū r (p k/ϵ/ ) 2p k + ϵ/k/ ϵ / u 2k s (p) (3.73) p (3.42) 2 M 2 = e4 [ ] { [ ] ϵ/ ū r (p k/ϵ/ ) 2 2p k + ϵ/k/ ϵ / ϵ/ u 2k s (p) ū r (p k/ϵ/ ) p 2p k + ϵ/k/ ϵ / u 2k s (p)} (3.74) p r,s {ū r (p )γ µ γ ν γ ρ u s (p)} = u s (p) γ ρ γ ν γ µ ū r (p ) = u s (p) γ 0 γ 0 γ ρ γ 0 γ 0 γ ν γ 0 γ 0 γ µ γ 0 u r (p ) ( (γ 0 ) 2 = 1 ) = ū s (p)(γ 0 γ ρ γ 0 )(γ 0 γ ν γ 0 )(γ 0 γ µ γ 0 )u r (p ) = ū s (p)γ ρ γ ν γ µ u r (p ) ( (3.20)) (3.74) M 2 = e4 [ ϵ/ ū r (p k/ϵ/ ) 2 2p k + ϵ/k/ ϵ / 2k p r,s [ { = e4 ϵ/ 2 Tr (p/ k/ϵ/ + m) 2p k + ϵ/k/ ϵ / 2k p ] [ ϵ/k/ϵ/ u s (p)ū s (p) } (p/ + m) k Tr[(p / + m)ϵ / k/ϵ/(p/ + m)ϵ/k/ϵ / ] = Tr[p / ϵ / k/ϵ/p/ϵ/k/ϵ / ] + m 2 Tr[ϵ / k/ϵ/ϵ/k/ϵ / ] ] u r (p ) 2p k + ϵ / k/ ϵ/ 2k p { ϵ/k/ϵ/ 2p k + ϵ / k/ }] ϵ/ 2k p ( (3.13 )) ( m γ (3.19) 0) (3.75) = Tr[p / ϵ / ϵ/k/p/k/ϵ/ϵ / ] + m 2 Tr[ϵ / ϵ/k/k/ϵ/ϵ / ] ( (3.65)) (3.76) m 2 k/k/ 0 A, B Tr[Ak/k/B] = Tr[Ak µ γ µ k ν γ ν B] = Tr[Ak µ k ν (2g µν γ ν γ µ )B] ( (3.15)) = 2k µ k µ Tr[AB] Tr[Ak/k/B] = Tr[Ak/k/B] ( (3.22) k µ k µ = 0) 30

(3.76) Tr[p / ϵ / ϵ/k/p/k/ϵ/ϵ / ] = 2k ptr[p / ϵ / ϵ/k/ϵ/ϵ / ] + Tr[p / ϵ / ϵ/p/k/k/ϵ/ϵ / ] = 2k ptr[p / ϵ / ϵ/k/ϵ/ϵ / ] ( (3.77)) = 2k ptr[p / ϵ / ϵ/( ϵ/k/)ϵ / ] ( (3.65)) Tr[Ak/k/B] = 0 (3.77) k/p/ = 2k p p/k/ (3.78) = 2k ptr[p / ϵ / k/ϵ / ] ( (3.24) ϵ/ϵ/ = 2ϵ ϵ ϵ/ϵ/ = 2 ϵ/ϵ/ ϵ/ϵ/ = 1) = 2(k p)p ρϵ σk α ϵ β4(g ρσ g αβ + g ρβ g σα g ρα g σβ ) ( (3.18)) = 2(k p)4{(p ϵ )(k ϵ ) + (p ϵ )(ϵ k) (p k)(ϵ ϵ )} = 8(k p){2(p ϵ )(k ϵ ) + (p k)} ( (3.62)) = 8(k p){2(k ϵ ) 2 + (p k )} ( (3.60)). Tr[(p / + m)ϵ / k/ϵ/(p/ + m)ϵ/k/ϵ / ] = 8(k p){2(k ϵ ) 2 + (p k)}. (3.79) (3.75) k 2 k k Tr[ϵ/k / ϵ / (p/ + m)ϵ / k / ϵ/(p / + m)] = Tr[ϵ/k / ϵ / p/ϵ / k / ϵ/p / ] + m 2 Tr[ϵ/k / ϵ / ϵ / k / ϵ/] 1 = Tr[ϵ/k / ϵ / p/ϵ / k / ϵ/p / ] m 2 Tr[ϵ/k / k / ϵ/] = Tr[ϵ/k / ϵ / p/ϵ / k / ϵ/p / ] = 2(ϵ p )Tr[ϵ/k / ϵ / k / ϵ/p / ] Tr[ϵ/k / p/ϵ / ϵ / k / ϵ/p / ] 2(ϵ p )Tr[ϵ/k / ϵ / k / ϵ/p / ] = 2(ϵ p )Tr[ϵ/( ϵ / k / )k/ ϵ/p / ] = 0 31

2 Tr[ϵ/k / p/ϵ / ϵ / k / ϵ/p / ] = Tr[ϵ/k / p/k / ϵ/p / ] = 2(k p)tr[ϵ/k / ϵ/p / ] + Tr[ϵ/p/k / k / ϵ/p / ] = 2(k p)tr[ϵ/k / ϵ/p / ] = 2(k p)4{(ϵ k )(ϵ p ) + (ϵ p )(ϵ k ) (ϵ ϵ)(k p )} = 2(k p)4{2(ϵ p )(ϵ k ) + (k p )} = 2(k p)4{ 2(ϵ k ) 2 + (k p )} = 8(k p){ 2(ϵ k ) 2 + (k p)} ( (3.67)) Tr[ϵ/k / ϵ / (p/ + m)ϵ / k / ϵ/(p / + m)] = 8(k p){ 2(ϵ k ) 2 + (k p)} (3.80) k k Tr [(p/ + m) {ϵ/ k/ϵ/} (p/ + m) {ϵ/ k/ ϵ/}] = Tr [p/ ϵ/ k/ϵ/p/ϵ / k/ ϵ/] + m 2 Tr [ϵ/ k/ϵ/ϵ / k/ ϵ/] ( γ 0) = Tr [p/ ϵ/ ϵ/k/p/k/ ϵ / ϵ/] + m 2 Tr [ϵ/ ϵ/k/k/ ϵ / ϵ/] ( (3.65) (3.66)) = (Tr [p/ϵ/ ϵ/k/p/k/ ϵ / ϵ/] + m 2 Tr [ϵ/ ϵ/k/k/ ϵ / ϵ/]) + Tr [k/ϵ/ ϵ/k/p/k/ ϵ / ϵ/] Tr [k/ ϵ/ ϵ/k/p/k/ ϵ / ϵ/] ( p = p + k k ) (3.81) γ (3.81) Tr [p/ϵ/ ϵ/k/p/k/ ϵ / ϵ/] + m 2 Tr [ϵ/ ϵ/k/k/ ϵ / ϵ/] p/p/ = 1 2 {p/, p/} = 1 2 p µp ν 2g µν = p p = m 2 (3.82) = 2(k p)tr [p/ϵ/ ϵ/k/ ϵ / ϵ/] Tr [p/ϵ/ ϵ/p/k/k/ ϵ / ϵ/] + m 2 Tr [ϵ/ ϵ/k/k/ ϵ / ϵ/] ( (3.78)) = 2(k p)tr [p/ϵ/ ϵ/k/ ϵ / ϵ/] Tr [ϵ/ p/p/ϵ/k/k/ ϵ / ϵ/] + m 2 Tr [ϵ/ ϵ/k/k/ ϵ / ϵ/] ( (3.63) (3.64)) = 2(k p)tr [p/ϵ/ ϵ/k/ ϵ / ϵ/] m 2 Tr [ϵ/ ϵ/k/k/ ϵ / ϵ/] + m 2 Tr [ϵ/ ϵ/k/k/ ϵ / ϵ/] ( (3.82)) = 2(k p)tr [p/ϵ/ ϵ/k/ ϵ / ϵ/] = 2(k p)2(ϵ ϵ)tr [p/k/ ϵ / ϵ/] + 2(k p)tr [p/ϵ/ϵ/ k/ ϵ / ϵ/] (3.83) 32

(3.83) 1 4(k p)(ϵ ϵ)tr [p/k/ ϵ / ϵ/] = 4(k p)(ϵ ϵ)4{(p k )(ϵ ϵ) + (p ϵ)(k ϵ ) (k ϵ)(p ϵ )} 2 = 16(k p)(p k )(ϵ ϵ) 2 ( (3.56) (3.57)) 2(k p)tr [p/ϵ/ϵ / k/ ϵ / ϵ/] = 2(k p)tr [ϵ/p/ϵ / k/ ϵ / ϵ/] (3.83) = 2(k p)tr [ϵ/ϵ/p/ϵ/ k/ ϵ / ] ( (3.15)) = 2(k p)tr [p/ϵ / k/ ϵ / ] ( ϵ/)ϵ/ = 1) = 2(k p)4((p ϵ )(k ϵ ) + (p ϵ )(ϵ k ) (p k )(ϵ ϵ )) = 8(k p)(k p) ( (3.56) (3.57)) Tr [p/ϵ/ ϵ/k/p/k/ ϵ / ϵ/] + m 2 Tr [ϵ/ ϵ/k/k/ ϵ / ϵ/] = 16(k p)(p k )(ϵ ϵ) 2 8(k p)(k p) (3.81) Tr [k/ϵ/ ϵ/k/p/k/ ϵ / ϵ/] = Tr [k/ϵ/ k/ϵ/p/k/ ϵ / ϵ/] ( (3.65)) = 8(k p)(p k ){2(ϵ ϵ) 2 1} (3.84) = 2(k ϵ )Tr [k/ϵ/p/k/ ϵ / ϵ/] + Tr [ϵ/ k/k/ϵ/p/k/ ϵ / ϵ/] = 2(k ϵ )Tr [k/ϵ/p/k/ ϵ / ϵ/] ( (3.15) = 2(k ϵ )Tr [ϵ/k/ϵ/p/k/ ϵ / ] ( (3.65)) = 2(k ϵ )Tr [k/ϵ/ϵ/p/k/ ϵ / ] ( ϵ/)ϵ/ = 1) = 2(k ϵ )Tr [k/p/k/ ϵ / ] = 2(k ϵ )4((k p)(k ϵ ) + (k ϵ )(p k ) (k k )(p ϵ )) = 8(k ϵ ) 2 (p k ) ( (3.57) (3.59)) 33

(3.81) Tr [k/ / ϵ ϵ/k/p/k / ϵ / ϵ/] = Tr [k/ ϵ / ϵ/k/p/ϵ / k / ϵ/] ( (3.66)) = 2(k ϵ)tr [k/ / ϵ ϵ/k/p/ϵ / ] Tr [k/ ϵ / ϵ/k/p/ϵ / ϵ/k / ] = 2(k ϵ)tr [k/ / ϵ ϵ/k/p/ϵ / ] ( Tr [k/ ϵ / ϵ/k/p/ϵ / ϵ/k / ] = Tr [k/ k / ϵ / ϵ/k/p/ϵ / ϵ/] = 0) = 2(k ϵ)tr [ϵ/ k / ϵ / ϵ/k/p/] = 4(k ϵ)(k ϵ )Tr [ϵ/ ϵ/k/p/] 2(k ϵ)tr [k/ ϵ / ϵ / ϵ/k/p/] = 2(k ϵ)tr [k/ ϵ / ϵ / ϵ/k/p/] ( (3.59)) = 2(k ϵ)tr [k/ ϵ/k/p/] = 2(k ϵ)4((k p)(ϵ k) + (k ϵ)(k p) (k k)(ϵ p)) = 8(k ϵ) 2 (k p) (3.81) Tr [(p/ + m) {ϵ/ k/ϵ/} (p/ + m) {ϵ/ k/ ϵ/}] = 8(k p)(p k )(2(ϵ ϵ) 2 1) 8(k ϵ ) 2 (p k ) + 8(k ϵ) 2 (k p) M M 2 = e 4 8(p k) 8(k p){2(k 2 ϵ ) 2 + (p e 4 k)} + 8(p k ) 2 8(k p){ 2(ϵ k ) 2 + (k p)} e 4 + 4(p k)(p k ) (8(k p)(p k )(2(ϵ ϵ) 2 1) 8(k ϵ ) 2 (p k ) + 8(k ϵ) 2 (k p)) = e 4 [ 2(k ϵ ) 2 + (p k) p k = e 4 [ p k p k + k p k p + 4(ϵ ϵ) 2 2 + 2(ϵ k ) 2 + (k p) k p ] (3.85) + 2{2(ϵ ϵ) 2 1) (k ϵ ) 2 p k + (k ϵ) 2 p k } p k = (m; 0) (ω; k) = mω, (3.86) p k = (m; 0) (ω ; k ) = mω (3.87) ] [ mω M 2 = = e 4 mω + mω ] mω + 4(ϵ ϵ) 2 2 [ ω = e 4 ω + ω ] ω + 4(ϵ ϵ) 2 2 34

3.5: k, k ϵ λ ϵ 1 ϵ 2 k θ ϵ 1 ϵ 2 k ϵ 2 ϵ 2 ϵ 1 θ ϵ 1 (3.42) ( ) dσ 1 k dω = e 4 2 [ ω LAB 64π 2 m 2 e k ω + ω ] ω + 4(ϵ ϵ) 2 2 (3.88) ( ) e 4 ω 2 [ ω = 64π 2 m 2 e ω ω + ω ] ω + 4(ϵ ϵ) 2 2. (3.89) dσ dω = 1 1 LAB 2 64π 2 m 2 λ,λ e = 1 64π 2 m 2 e ( ) ω e 4 2 [ ω ω ω + ω ] ω + 4(ϵ λ ϵ λ )2 2 ( ) ω e 4 2 [ω 2 ω ω + ω ω + (ϵ λ ϵ λ )2 2 λ,λ ] (3.90). (3.91) 3.5 ϵ 1 ϵ 2 k θ ϵ 1 ϵ 2 k ϵ 2 ϵ 2 ϵ 1 θ ϵ 1 ϵ 2 ϵ 2 = 1 ϵ 1 ϵ 1 = ϵ 1 ϵ 1 cos θ = cos θ dσ dω = LAB 1 32π 2 m 2 e ( ) ω e 4 2 [ ω ω ω + ω ] ω + (1 + cos2 θ) 2. (3.92) (3.92) SI 35

2 1 m 2 e 1 ħ2 c 2 [MeV 2 cm 2 ] = ħ2 m 2 ec 4 [MeV 2 ] m 2 ec 2 (3.93) e 4 e 4 [C 4 ] ϵ 2 0[C 4 /(MeV 2 cm 2 )]ħ 2 c 2 [MeV 2 cm 2 ] (3.94) m 2 e SI (3.92) e4 32π 2 m 2 e 1 1 e 4 1 ( ) ( ) ħ 2 e 4 32π 2 m 2 e 32π 2 m 2 ec 2 ϵ 2 0ħ 2 c 2 = e 4 32π 2 ϵ 2 0m 2 ec 4 r e = e 2 4πϵ 0 m ec 2 e 4 32π 2 ϵ 2 0m 2 ec = r2 e 4 2 ω ω hν (3.6) ω ω = hν hν 1 = hν m ec (1 cos θ) + 1. 2 1 = α(1 cos θ) + 1 α = (3.92) ω ω + ω ω + (1 + cos2 θ) 2 = (3.92) SI [ dσ dω = r2 e LAB 2 hν m e c 2 (3.95) 1 1 + α(1 cos θ) + (1 + α(1 cos θ)) + (1 + cos2 θ) 2 = (1 + cos 2 θ) + 1 1 α(1 cos θ) + α(1 cos θ) + α2 (1 cos θ) 2 1 + α(1 cos θ) = 1 + cos 2 θ + α2 (1 cos 2 θ) 1 + α(1 cos θ). 1 1 + α(1 cos θ) ] 2 [ ] 1 + cos 2 θ + α2 (1 cos 2 θ). (3.96) 1 + α(1 cos θ) 36

662 kev 3.6 (θ < 90 ) (θ < 90 ) 8 θ θ = 0 θ = 90 θ θ = 180 3.6: 662 kev (θ < 90 ) (θ < 90 ) θ θ 37

4 4.1 NaI(Tl) 4.1.1 γ γ 2.2 4.1: NaI(Tl) Z γ NaI(Tl) NaI(Tl) NaI Tl 4.2 38

4.2: 4.1 4.1.2 4.3: (PMT) PMT 39

4.3 4.1.3 NaI(Tl) NaI(Tl) 88/DM NaI 5.08 cm(2 inch) 2.54 cm(1 inch) 4.4 88/DM NaI(Tl) 4.5 NaI 4.6 NaI NaI PMT 4.4: 88/DM NaI(Tl) NaI PMT( ) NaI PMT 2 inch NaI 40

図 4.5: 88/DM 型の NaI(Tℓ) 検出器の正面図 NaI 結晶と検出器のケースの大きさが見 えるようにその他の部分を省いている NaI 結晶は直径 2 inch 高さ 2 inch の円柱形で ある 図 4.6: 使用した NaI 検出器の画像 NaI 結晶と PMT が一つのアルミケースに入ってい る 左に接続されている黒いソケットは PMT に適切な電圧をかけるための Divider 回路 である 銀色のアルミケースの内部の左側に PMT がある 右側には NaI 結晶がある 41

NaI の密度 ρnai は 3.67 g/cm3 であり モル質量 ANaI は 150 g/mol である そのため 単位体積あたりの原子数 n 個/cm3 は n= ρnai 3.67 3 NA = 6.02 1023 1.47 1022 (個/cm ) ANaI 150 (4.1) である ナトリウム Na の電子数は 11 ヨウ素 I の電子数は 53 であるから 単位体積あ たりの電子数は 3 n (11 + 53) 9.43 1023 (個/cm ) である 4.2 NIM/CAMAC モジュール 本実験の同時計測回路およびその読み取りで使用した NIM と CAMAC のモジュール について説明する 図 4.7 4.8 はモジュールを実際に接続している様子である 図 4.7: 使用した NIM モジュール HVPS は別の場所にある Gate and Delay Generator は 2 台用いている このクレートの下に CAMAC のクレート (図 4.8) がある 42

図 4.8: 使用した CAMAC モジュールおよび Delay このクレートの上に NIM のクレー トがある ADC は 2 つ接続されているが使用するのは上の 1 つだけである 4.2.1 NIM モジュール NIM とは Nuclear Instrument Modules の略で原子核 高エネルギー物理のためのモ ジュールの規格である High Voltage Power Supply 光電子増倍管に電圧をかけるために高電圧電源 (HVPS) を用いた 本実験では 林栄 精器株式会社の RPH-030 型 -3.2 kv 4ch 高圧電源を用いた Gate and Delay Generator CAMAC の ADC に Gate 信号を送るのに用いる NIM 信号の幅を広げたり 信号のタ イミングを遅らせることができる 本実験で使用したのは テクノランドコーポレーショ ン社の N-TM 307 型 2ch Gate and delay である Discriminator 光電子増倍管から出力されたアナログ信号を NIM のデジタル信号に変換するために用 いる Discriminator はアナログ信号が設定したスレッショルドを超えたときにデジタル 信号を出力する装置である 本実験ではテクノランドコーポレーション社の N-TM 405 型 8 ch Discriminator を用いた 43

Coincidence Coincidence VETO VETO N-TM 103 3ch 4-Fold 1-VETO Coincidence Delay Delay Delay N009-300 Hoshin 16ch 300 ns fixed delay TDC 300 ns N-TS 100 100ns delay delay ADC Fan in / Fan out Fan In / Fan Out Phillips Scientific NIM Model 740 quad linear Fan-In/Out 4.2.2 CAMAC CAMAC Computer Automated Measurement And Control NIM Scaler Scaler C-SE 113 ADC CAMAC ADC(Analog to Digital Converter) 4096 ch Gate C-QV 715 44

TDC TDC(Time to Digital Converter) Start Stop C-TS 105 CC-USB CAMAC (Crate controller CC) Wiener CC-USB CC-USB USB 4.3 γ γ 4.3.1 α β γ α 4 2α 241 Am A ZX A 2 Z 2 Y +4 2 α β A ZX A Z+1 Y + e + ν e A ZX A Z 1 Y + e + + ν e (β ) (β + ) β 3 β 4.9 4.10 45

4.9: β n p d W u W e ν e 4.10: β + p n u W + d W + e + ν e β γ X X + γ γ β γ γ t N(t) N(t) dn(t) dt = λn(t) (4.2) λ τ τ = 1 λ (4.2) N(t) = N 0 exp( λt) 46

N 0 t = 0 t 1/2 t 1/2 = log 2 λ dn dt dn ( dt = dn ) dt e λt = t=0 = τ log 2 t=0 = λn 0 ( dn dt ) t=0 e t log 2 t 1/2 4.3.2 137 Cs 137 Cs β 137 Ba 662 kev γ 137 Cs 4.11 137 Cs t 1/2 30.07 137 Cs 4.11: 137 Cs [4] 1987 2 1 11.46 µci(±3.7%) 2016 1 20 4.240 10 5 (Bq) exp ( 28.99 ) 30.07 log 2 = 2.173 10 5 (Bq) 4.12 137 Cs 3 4 mm 1 mm 47

図 4.12: 137 Cs 線源の画像 線源は 23 mm 10 mm の長方形のケースに入っている 放 射性物質は 1 mm 程度の幅をもつ 4.3.3 22 22 Na Na は崩壊して 22 Ne になり 1275 kev の γ 線を放出する 22 Na 原子の崩壊図を図 4.13 に示す 22 Na 線源によって観測される γ 線は γ 崩壊による 1275 kev の γ 線の他に 511 kev の γ 線もある 22 Na 原子核は β + 崩壊して陽電子を放出するが この陽電子が物質 中の電子と対消滅して 511 kev の γ 線を 2 つ放出するためである e + e+ 2γ このとき 陽電子は物質中でエネルギーを失ってから対消滅するため γ 線のエネルギー は電子と陽電子の静止質量エネルギーを 2 つにわけた 511 kev となるのである 22 Na の 半減期 t1/2 は 2.602 年である 本実験で使用した 22 Na 線源の 2014 年 2 月 12 日時点で 9.90 104 Bq であった そのため 2016 年 1 月 20 日時点では ( ) 1.926 4 9.90 10 (Bq) exp log 2 = 5.93 104 (Bq) 2.602 である 放射能は JRIA(日本アイソトープ協会) 校正値であり 誤差は ±2 5% であるが 今回は ±5 % と見積もった 48

4.13: 22 Na [4] 4.3.4 60 Co 60 Co 60 Ni 1333 kev 1173 kev γ 60 Co 4.14 60 Co t 1/2 5.271 4.14: 60 Co [4] 60 Co 2014 2 12 8.97 10 4 Bq 2016 1 20 ( 8.97 10 4 (Bq) exp 1.926 ) 5.271 log 2 = 6.96 10 4 (Bq) JRIA( ) ±2 5% ±5 % 49

5 5.1 5.1 5.2 5.1 5.2 Discriminator1 2 Coincidence Gate and Delay Generator 5.1: NIM CAMAC ADC TDC Scaler CC-USB 5.2 Discriminator 1 2 Coincidence Gate and Delay Generator Discriminator 1 17.9 mv Discriminator 2 19.6 mv γ Discriminator width 40 nsec Coincidence 3 nsec 50

5.2: CAMAC TDC Scaler CC-USB CAMAC ADC 5.1 Discriminator 1 2 Coincidence Gate and Delay Generator CAMAC Scaler ADC TDC ADC Gate Coincidence Gate and Delay Generator 5.3 Gate NaI 1 NaI 2 Gate and Delay Generator Coincidence Veto Gate Gate and Delay Generator Gate and Delay Generator Veto 200 µsec CAMAC 51

5.3: ADC Gate PMT ADC Gate NaI 1 NaI 2 Gate 5.2 ADC CAMAC ADC 5.1 Coincidence Discriminator 1 Discriminator 2 300 sec NaI 1 5.4 5.8 NaI 2 5.3 6.2 Root 5.3 ADC Channel 1000 ch 40 K γ D ADC Channel 0 ch pedestal Pedestal ADC Gate 52

5.4: NaI 1 137 Cs 662 kev 5.5: NaI 1 22 Na 511 kev 5.6: NaI 1 22 Na 1275 kev 53

5.7: NaI 1 60 Co 1173 kev 5.8: NaI 1 60 Co 1333 kev Energy (kev) = p 0 + p 1 (ADC Channel) Root p 0 p 1 σ p0 σ p1 E 2 E = σ 2 p 0 + (ADC Channel) 2 σ 2 p 1 cov(p 0, p 1 ) NaI 1 5.9 Energy (kev) = (0.07613 ± 6.469) + (1.419 ± 0.01338) (ADC-1 Channel) (5.1) NaI 2 5.10 Energy (kev) = (12.58 ± 1.963) + (1.448 ± 0.004138) (ADC-2 Channel) (5.2) reduced χ 2 NaI 1 12 NaI 2 4 54

5.9: NaI 1 5.10: NaI 2 5.3 NaI(Tl) 5.11 NaI 2 γ NaI γ I s NaI γ 55

5.11: NaI 2 N det Ω ϵ abs N det = ϵ abs I s Ω ϵ int ϵ abs = Ω 4π ϵ int ϵ ϵ int Root 5.12 5.16 1 ) A (x µ)2 exp ( + p 2πσ 2σ 2 0 + p 1 x x µ, σ, A A A 4 ch 1 bin 1/4 22 Na 511 kev 2 γ 1/2 5.1 5.12: NaI 2 137 Cs 56

5.13: NaI 2 22 Na 5.14: NaI 2 22 Na 5.15: NaI 2 60 Co 5.16: NaI 2 60 Co ϵ Ω γ E γ ϵ Ω = p 0 (E γ ) p 1 (p 0, p 1 ) Root NaI 2 ϵ Ω 5.17 ϵ Ω = 0.002162 E 0.9034 γ 57

5.1: γ (MeV) ϵ Ω 0.511 4.292 10 4 0.00379 0.000192 0.662 6.776 10 4 0.00327 0.000125 1.173 1.226 10 4 0.00184 0.000119 1.275 1.042 10 4 0.00184 0.000111 1.333 1.048 10 4 0.00158 0.0000918 p 0 p 1 σ p0 = 5.537 10 5 σ p1 = 0.05909 cov(p 0, p1) = 1.411 10 6 σ Is σ Ndet 2 ϵ Ω = (ϵ Ω) 2 ( σ 2 Ndet N 2 det + σ2 I s I 2 s ) (5.3) σ p0 σ p1 ϵ Ω ϵ Ω ( ) 2 (ϵ Ω) 2 ϵ Ω = σp 2 p 0 + 0 ( (ϵ Ω) p 1 ) 2 ( (ϵ Ω) σp 2 1 + 2 p 1 ) ( (ϵ Ω) p 0 ) cov(p 0, p 1 ) = σ 2 p 0 E 2p 1 γ + σ 2 p 1 (p 0 E p 1 γ log E γ ) 2 + 2cov(p 0, p 1 )p 0 E 2p 1 γ log E γ (5.4) 58

5.17: NaI 2 ϵ Ω Ω NaI 35 cm ϵ (5.3) σ Is σ Ndet ϵ Ω 2 ϵ Ω (5.4) γ ϵ Ω 59

6 6.1 NaI 1 active target γ NaI 1 NaI 2 NaI 1 NaI 2 6.1 6.2 6.3 NaI 6.4 137 Cs γ 1 cm NaI 1 NaI 1 θ 30 90 15 6.2 NaI 1 6.2.1 NaI 6.1 Coincidence NaI 2 NaI 1 137 Cs ( ) 300 sec 6.5 ADC-1 channel 6.6 ADC-1 channel 6.6 γ 465 ch γ 662 kev 662 kev γ γ 5.1 60

6.1: 137 Cs γ NaI 1 γ NaI 1 θ NaI 2 l 1 NaI 137 Cs 6.2: 5 cm γ γ NaI 61

6.3: ( ) γ 1 cm 6.4: NaI NaI NaI 1 D 2 NaI 1 NaI NaI D 3 62

6.5: 137 Cs NaI 1 5.4 ADC-Channel 6.6: 137 Cs NaI 1 63

465 ch 659.759 ± 8.97538 (kev) 662 kev 20-340 ch γ γ 3.2 0-477 kev ( ) 330 ch 479.078 ± 7.83222 (kev) 100-140 ch γ 180 662 kev 184 kev 120 ch 178.278 ± 6.6528 (kev) 340-450 ch γ γ 6.7 1.198 10 5 4 ch 1 bin 4 2.995 10 4 counts 99.83 counts/sec 64

6.7: 137 Cs NaI 1 6.5 5.4 ADC-Channel 6.2.2 6.8 D NaI γ γ NaI γ D D D = D l 1 l 1 3.25 (cm) = 1 (cm) 15 15 3.25 = 1.2766 1.28 (cm) 6.9 NaI 1 θ ( 6.9 ) γ γ 65

6.8: D = 1 cm γ D 6.9: NaI θ γ θ d θ γ γ 66

NaI d L(θ) Ω Ω = D (l 1 θ) l 2 1 = D θ l 1 γ γ I s I s Ω 4π = I s D θ 4πl 1 (2.4) L(θ) = n 1 e µd Ω I s µ 4π d θ d = 2 R 2 l1 2 sin 2 θ L(θ) γ θ L n Is 4π = θmax θ min L(θ) n Is 4π = θmax θ min 1 e µd µ D θ l 1 I s n µ 2.9 NaI 662 kev γ µ = 0.075/3.67 = 0.275 cm 1 L n Is 4π L n Is 4π = 0.0677549 0.0678 (6.1) 6.2.3 N y σ N y = Lσ = L n I s 4π I s nσ 4π 67

137 Cs I s = 2.173 10 5 Bq (6.1) γ σn σn = = 99, 83 (counts/sec) ( ) L Is 4π n Is 4π 99.83 (counts/sec) 0.0678 2.173 105 4π 0.08515 (cm 1 ) NaI n (4.1) σ σ = 0.09496(cm 1 ) 1.47 10 22 (cm 3 ) = 5.793 10 24 5.79 10 24 (cm 2 ) = 5.79 (barn) σn ρ = 0.09496 (cm 1 ) 3.67 = 0.02320 0.0232 (cm 2 /g) 2.9 γ 662 kev τ ρ = 0.008 (cm2 /g) σ ρ = 0.075 (cm2 /g) 2 γ 2.9 γ 68

6.3 6.2 NaI 2 Coincidence NaI 1 active target NaI 1 2 θ 30 90 15 6.3.1 γ 6.10 6.14 θ ADC 6.10: θ = 30 ADC ADC-1 Channel ADC-2 Channel NaI 1 NaI 2 2 θ = 45 6.15 6.15 NaI 1 NaI 2 662 kev NaI 1 γ NaI 2 ( 6.16) γ 662 kev 69

6.11: θ = 45 ADC 6.12: θ = 60 ADC 70

6.13: θ = 75 ADC 6.14: θ = 90 ADC 71

6.15: θ = 45 ADC γ NaI 1 NaI 2 NaI 1 NaI 2 γ NaI 1 NaI 2 6.16: 6.15 NaI 1 γ NaI 2 NaI 1 NaI 1 NaI 2 662 kev 72

6.17: 6.15 NaI 1 NaI 2 2 γ NaI NaI 1 NaI 2 662 kev ( ) θ γ NaI 1 NaI 2 6.15 NaI 1 NaI 2 γ NaI 1 NaI 2 2 ( 6.17) γ NaI 1 NaI 2 6.15 θ 1. 6.18 ADC-1 Channel+ADC-2 Channel 6.20 2. NaI 662 kev 6.15 3. 6.19 662 kev ADC-1 Channel - ADC-2 Channel 6.21 73

6.18: θ = 45 ADC-1+ADC-2 Channel 6.19: θ = 45 ADC-1+ADC-2 Channel ADC-1 ADC-2 Channel 4. 6.19 6.15 ADC-Channel 6.1 ADC-1 Channel ADC-2 Channel 74

6.20: ADC-1+ADC-2 Channel ADC 1 bin ADC-1+ADC-2 Channel x θ = 45 6.1: θ ADC Channel θ ( ) ADC-1 + ADC-2 channel ADC-1 ADC-2 channel 30 390 450 390 270 45 390 450 270 160 60 395 450 165 50 75 395 450 55 40 90 395 450 10 105 75

6.21: ADC-1 ADC-2 Channel ADC ADC-1+ADC-2 Channel ADC-1 ADC-2 Channel 1 bin ADC-1 ADC-2 Channel x θ = 45 76

6.22: NaI γ E mean E mean = i E in i i bin E i n i bin θ ADC- 1 ADC-2 Channel 6.22 Emean σ ni p 0 + p 1 Channel i E mean = i E in i = 2 E mean = σ 2 p 0 + = σ 2 p 0 + i n i i n i i (p 0 + p 1 Channel i ) i n i i = p 0 + p Channel i n i 1 i n i ( i Channel ) 2 i n i σp 2 1 + ni i ( i Channel i n i i n i p 1 i Channel i n i i n i n i ) 2 ( σp 2 1 + p 2 i Channel2 i n i 1 ( i n ( i) 2 2 ( n i ) 2 i Channel ) i n i ) 2 ( i n i) 3 77

6.22 NaI 1 3.1 NaI 2 γ NaI 1 NaI 1 NaI 2 NaI 2 NaI 1 20-30 kev 6.3.2 TDC NaI 1 NaI 2 Coincidence Discriminator width ±37 nsec TDC 6.23 6.27 nsec ±37 nsec Coincidence( ) 200 µsec TDC 6.3.1 TDC 6.28 6.32 6.28 6.32 6.23 6.27 TDC 6.33 6.33 θ 30 TDC-0 Channel TDC-1 Channel 90 TDC-0 Channel TDC-1 Channel NaI 1 NaI 2 NaI 1 NaI 2 78

θ 30 6.39 θ 90 6.38 Coincidence NaI 1 NaI 2 θ = 30 θ = 90 6.3.1 NaI 1 NaI 2 3.2 3.2 θ = 30 θ = 90 θ = 30 Discriminator θ = 30 NaI 2 NaI 1 79

6.23: θ = 30 tdc-1 tdc-2 channel 6.24: θ = 45 tdc-1 tdc-2 channel 6.25: θ = 60 tdc-1 tdc-2 channel 6.26: θ = 75 tdc-1 tdc-2 channel 6.27: θ = 90 tdc-1 tdc-2 channel 80

6.28: θ = 30 tdc-1 tdc-2 channel 6.29: θ = 45 tdc-1 tdc-2 channel 6.30: θ = 60 tdc-1 tdc-2 channel 6.31: θ = 75 tdc-1 tdc-2 channel 6.32: θ = 90 tdc-1 tdc-2 channel 81

6.33: θ = 30 tdc-1 tdc-2 channel 6.34: θ = 45 tdc-1 tdc-2 channel 6.35: θ = 60 tdc-1 tdc-2 channel 6.36: θ = 75 tdc-1 tdc-2 channel 6.37: θ = 90 tdc-1 tdc-2 channel 82

6.38: θ = 90 Coincidence NaI 1 NaI 2 1 20 ns 1 10 mv 1 500 mv 6.39: θ = 30 Coincidence NaI 1 NaI 2 1 20 ns 1 10 mv 1 500 mv 83

6.3.3 NaI 1 6.2.2 NaI 2 N det N det = L dσ dω Ω ϵ (6.2) Ω NaI 1 NaI 2 ϵ NaI 2 γ NaI (6.2) f(θ) N det = L dσ dω Ω ϵ f(θ) (6.3) 6.40 x γ x γ y γ x 6.41 6.40 γ γ x γ γ y l l = y ( D 2 D 2 + D 3 ) sin θ x γ I scat y I scat y D x γ γ I scat D D 2 D 2 e µl = I scat D D 2 D 2 exp ( µ y ( D D )) 2 2 + D 3 sin θ = I scat sin θ (1 e µd sin θ )e µ( D µd 2 D 2+D 3 ) 84

6.40: x γ θ NaI 2 6.2.2 γ y l γ NaI 6.41: x γ θ 6.40 γ f(θ) 85

f(θ) f(θ) = sin θ µd (1 e µd sin θ )e µ( D 2 D 2+D 3 ) µ γ E γ θ µ γ 1 MeV µ = µ photo + µ comp µ comp (2.8) µ comp = Zσ c N A A ρ N A A NaI Z NaI (Z = Z Na + Z I ) ρ NaI τ [5] [ ( 3 mc τ = 2 φ 0α 4 Z 5 2 hν [ ( 4 γ(γ 2) + 3 γ + 1 )] ( mc 2 1 hν ) 4 (γ 2 1) 3 2 1 2γ γ 2 1 log ( γ + ))] γ 2 1 γ γ 2 1 ν1 exp( 4ξcot 1 ξ) 2π ν 1 exp( 2πξ) hν γ E γ mc 2 Z Z I ϕ 0 = 8π 3 ( e2 mc 2 )2 α = 1 137 hν + mc2 γ = mc 2 hν 1 = (Z 0.03) 2 mc 2 α2 2 ν1 ξ = ν ν 1 µ photo µ photo = τ N A A ρ 86

γ NaI 1 NaI 2 2 6.1 ADC Channel θ 6.2 (6.3) 6.2 6.42 6.2: θ ADC Channel θ ( ) n (counts) 30 921 45 764 60 611 75 524 90 491 6.42: γ θ 30 45 60 75 90 (cm 2 /str) 87

6.4: θ θ ( ) θ min ( ) θ max ( ) 30 21.117 40.024 45 35.361 55.557 60 49.793 70.798 75 64.456 85.745 90 79.384 105.25 I s σ Is ϵ Ω σ ϵ Ω n σ n σ dσ/dω σ 2 dσ/dω = ( ) { 2 (σis dσ dω I s ) 2 + } ( ) 2 ( σϵ Ω σn ) 2 + ϵ Ω n (6.4) I s σ Is 4.3.2 3.7% 5.3 (5.4) n n (%) 6.3 6.3: θ ϵ Ω θ ( ) ϵ Ω (%) n (%) 30 5.048 0.1086 45 5.913 0.1309 60 6.892 0.1637 75 7.866 0.1908 90 8.762 0.2037 θ θ 6.43 θ max θ min θ γ θ 6.4 NaI 2 2 (6.4) 6.4 6.42 6.44 88

6.43: θ θ max θ min θ γ 6.44: I s σ Is ϵ Ω σ ϵ Ω n σ n 89

6.4 θ θ 6.45: γ 2 γ NaI 2 NaI 2 6.46: γ γ 6.45 6.46 3 γ 6.45 γ 2 γ NaI 2 NaI 2 γ NaI 2 6.54 γ NaI 2 γ γ NaI 1 NaI 2 ( ) γ NaI 1 NaI 2 NaI 1 3 NaI 2 2 γ 6.45 NaI NaI 90

6.5: θ θ ( ) 30 31.64 3.16 61317 45 46.47 3.15 61389 60 61.40 3.19 61246 75 76.35 3.20 61121 90 91.26 3.15 61564 θ ROOT TRandom3 class [6] 6.45 6.45 6.5 γ 1 6.52 γ NaI 1 NaI 2 3 4 15 NaI 1 NaI 2 γ γ 6.53 γ 6.54 γ l 1 γ NaI 1 l 3 γ NaI 1 l 4 NaI 1 γ g(θ) g(θ) = 1 e µ 662 l 3 e µ hν l4 {ϵ Ω(hν )} l 1 2 µ 662 662 kev γ NaI µ hν γ NaI ϵ Ω(hν ) γ γ g(θ) 6.55 6.59 2 2 g(θ) 6.55 6.59 2 θ 91

6.47: θ = 30 6.48: θ = 45 6.49: θ = 60 6.50: θ = 75 6.51: θ = 90 92

6.52: NaI 1 γ γ NaI γ θ 1 θ θ 6.53: γ 93

6.54: γ 6.55: θ = 30 g(θ) ( ) θ x g(θ) y 2 ( ) NaI 1 θ g(θ) e µ hν l 4 µ hν l 4 1 6.47 6.51 6.6 94

6.56: θ = 45 g(θ) ( ) θ x g(θ) y 2 ( ) 6.57: θ = 60 g(θ) ( ) θ x g(θ) y 2 ( ) 6.58: θ = 75 g(θ) ( ) θ x g(θ) y 2 ( ) 95

6.59: θ = 90 g(θ) ( ) θ x g(θ) y 2 ( ) 6.6: g(θ) θ θ ( ) 30 31.54 3.18 61179 45 46.12 3.22 61698 60 60.87 3.12 61045 75 75.65 3.16 61406 90 90.44 3.09 61396 6.5 90 6.5 91.26 6.6 90.44 1 - NaI 2 γ θ ±3 6.2 96

7-2 M M SI γ 137 Cs 662 kev γ 2 NaI(Tl) NaI 1 active target NaI γ NaI 2 2 NaI γ 10 3 4 2 γ γ 1 97

CAMAC CC-USB NaI 98

[1] Robley Dunglison Evans, The atomic nucleus, McGraw-Hill, New York, United States, 1955. [2] Michael Edward Peskin, An introduction to quantum field theory, Perseus, Reading, Mass., United States, 1995. [3],,, 1998. [4] Richard B. Firestone et al., Table of Isotopes, Wiley, New York, 8th edition, 1999. [5] Kai Siegbahn, Alpha-, beta- and gamma-ray spectroscopy, North-Holland, Amsterdam, Netherlands, 1965. [6] ROOT homepage: TRandom3 class reference, https://root.cern.ch/doc/master/ classtrandom3.html, 2016/2/13. [7] B. Povh, K. Rith, C. Scholtz, F. Zesche,, Particles and nuclei : an introduction to the physical concepts,,, 2012. [8] Glenn F. Knoll,,,, 4, 2013. [9] William. R. Leo, Techniques for Nuclear and Particle Physics Experiments, Springer- Verlag Berlin Heiderberg GmbH, second revised edition, 1993. [10] I, 2015. 99

A i E mean = E in i i n i E mean = i n ie i ( i n i) 2 (A.1) n i A.1: E i E i n i Channel E i N = i n i (A.2) 100

X µ σ 2 ( ) e ixt = ) e ixt f(x)dx = exp (iµt σ2 2 t2 f(x) f(x) = 1 ( ) (X µ) 2 exp. 2πσ 2σ 2 (A.3) E mean ( e ie mean t i = exp i E ) in i N t ( = exp i E ) in i N t i = ( ( )) Ei t exp in i N i ( n i ) (A.4) n i n i n i = n i σ 2 = n i ( e in i t = exp in i t n ) it 2 (A.4) (A.5) t E it N ( i ( ( )) Ei t exp in i = N i exp ( ) Ei t in i N ( ( i = exp i n ie i N (A.5) n i 2 ) t t2 2 ( ) ) 2 Ei t N ( )) i E2 i n i N 2 (A.3) E mean i µ(e mean ) = n ie i σ 2 i (E N mean ) = n ie i N 101

B i d 4 pe ip(x 1 x 2 ) p/ + m (2π) 4 p 2 m 2 + iϵ d 3 p { = (p/ + m)e ip(x 1 x 2 ) θ(t (2π) 4 1 t 2 ) (p/ m)e ip(x 2 x 1 ) θ(t 2 t 1 ) } (B.1) 2E p/+m p 0 p 2 m 2 +iϵ (p 0 m 2 + p 2 + iϵ)(p 0 + m 2 + p 2 iϵ) = (p 0 ) 2 ( m 2 + 2 iϵ) 2 = (p 0 ) 2 (m 2 + p 2 ) + 2iϵ m 2 + p 2 + O(ϵ 2 ) 2ϵ m 2 + p 2 ϵ (p 0 m 2 + p 2 + iϵ)(p 0 + m 2 + p 2 iϵ) p 2 m 2 + iϵ m 2 + p 2 + iϵ m 2 + p 2 + iϵ E E = m 2 + p 2 E + iϵ E + iϵ 2 B.1 2 E = m 2 + p 2 i dp 0 d 3 p/ + m p (2π) 4 C 1 (p 0 m 2 + p 2 + iϵ)(p 0 + m 2 + p 2 iϵ) e ip 0(t 1 t 2 ) e ip (x 1 x 2 ) = i (2π) 2πi d 3 p p/ + m p 0 =E e ie(t 1 t 2 ) e ip (x 1 x 2 ) 4 2E = 1 d 3 p(p/ + m)e ip(x 1 x 2 ) (2π) 3 2E 102

B.1: p 0 C 1 C 2 C R1 i dp 0 d 3 p/ + m p (2π) 4 C R1 (p 0 ) 2 p 2 m 2 + iϵ e ip 0(t 1 t 2 ) e ip (x 1 x 2 ) 0 ire iθ dθ R (t 1 t 2 ) θ= π R 2 e ireiθ 0 = dθe R sin θ(t 1 t 2 ) π = dθe R sin θ(t 1 t 2 ) 1 R θ= π 0 (R ) θ=0 π 0 e r sin θ dθ < π r R(t 1 t 2 ) > 0 t 1 t 2 > 0 C R1 0 = C 1 C R1 = i d 4 pe ip(x 1 x 2 ) p/ + m (2π) 4 p 2 m 2 + iϵ θ(t 1 t 2 ) = C 1 d 3 p (2π) 4 2E (p/ + m)e ip(x 1 x 2 ) θ(t 1 t 2 ) (B.2) 103

p 0 = E + iϵ i dp 0 d 3 p/ + m p (2π) 4 C 2 (p 0 m 2 + p 2 + iϵ)(p 0 + m 2 + p 2 iϵ) e ip 0(t 1 t 2 ) e ip (x 1 x 2 ) = i (2π) 2πi d 3 p (p/ + m) p 0 = E e ie(t 1 t 2 ) e ip (x 1 x 2 ) 4 2E = i (2π) 2πi d 3 ( p) ( Eγ 0 i pi γ i + m) e ie(t 1 t 2 ) e ip (x 1 x 2 ) (B.3) 4 2E 1 = d 3 p( p/ + m)e ip(x 2 x 1 ) (B.4) (2π) 3 2E (B.3) p p C R2 i dp 0 d 3 p/ + m p (2π) 4 C R 2 (p 0 ) 2 (m 2 + p 2 ) + iϵ e ip 0(t 1 t 2 ) e ip (x 1 x 2 ) π ire iθ dθ R (t 1 t 2 ) θ=0 R 2 e ireiθ π = dθe R sin θ(t 1 t 2 ) 1 R θ=0 0 (R ) R(t 1 t 2 ) < 0 t 1 t 2 < 0 C R2 R 0 = C 2 C R2 C 2 (B.5) (B.4) (B.5) i (2π) 4 d 4 pe ip(x 1 x 2 ) p/ + m p 2 m 2 + iϵ θ( t 1 + t 2 ) = d 3 p (2π) 4 2E (p/ m)e ip(x 2 x 1 ) θ(t 2 t 1 ) (B.6) (B.2) (B.6) (B.1) 104

C [3] [2] C.1 vertex C.2 M C.3 2 C.3 M 1 M 2 ( ) M 1 = M 2 = d 4 xd 4 yϵ ν(k, λ )e ik xū(p )e ip x ieγ ν i(p/ + k/ + m) (p + k) 2 m 2 + iϵ ieγµ u(p)e ipy ϵ µ (k, λ)e iky d 4 xd 4 yϵ ν (k, λ)e ikx ū(p )e ip x ieγ ν i(p/ k / + m) (p k ) 2 m 2 + iϵ ieγµ u(p)e ipy ϵ µ(k, λ )e ik y d 4 xd 4 y C.1: vertex vertex 105

C.2: vertex p u(p) v(p) x vertex 4 C.3: 106

D [4] D.1-D.3 D.4 40 K 40 K γ 1461 kev D.1: 137 Cs D.2: 60 Co 107

D.3: 22 Na D.4: 40 K 108