Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206,

Similar documents
研究シリーズ第40号

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x

AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t

03.Œk’ì

Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestim

1 Tokyo Daily Rainfall (mm) Days (mm)

082_rev2_utf8.pdf

seminar0220a.dvi

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

T rank A max{rank Q[R Q, J] t-rank T [R T, C \ J] J C} 2 ([1, p.138, Theorem 4.2.5]) A = ( ) Q rank A = min{ρ(j) γ(j) J J C} C, (5) ρ(j) = rank Q[R Q,

DVIOUT-ar

3. ( 1 ) Linear Congruential Generator:LCG 6) (Mersenne Twister:MT ), L 1 ( 2 ) 4 4 G (i,j) < G > < G 2 > < G > 2 g (ij) i= L j= N

情報理論 第5回 情報量とエントロピー

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

yamadaiR(cEFA).pdf

130 Oct Radial Basis Function RBF Efficient Market Hypothesis Fama ) 4) 1 Fig. 1 Utility function. 2 Fig. 2 Value function. (1) (2)

BayesfiI‡É“ÅfiK‡È−w‘K‡Ì‡½‡ß‡ÌChow-Liu…A…‰…S…−…Y…•

1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3.

4.9 Hausman Test Time Fixed Effects Model vs Time Random Effects Model Two-way Fixed Effects Model

わが国企業による資金調達方法の選択問題

5.2 White

最小2乗法

塗装深み感の要因解析

untitled

: (EQS) /EQUATIONS V1 = 30*V F1 + E1; V2 = 25*V *F1 + E2; V3 = 16*V *F1 + E3; V4 = 10*V F2 + E4; V5 = 19*V99

σ t σ t σt nikkei HP nikkei4csv H R nikkei4<-readcsv("h:=y=ynikkei4csv",header=t) (1) nikkei header=t nikkei4csv 4 4 nikkei nikkei4<-dataframe(n

all.dvi

4/15 No.

23_02.dvi

TOP URL 1

日本統計学会誌, 第45巻, 第2号, 329頁-352頁

kubostat2017c p (c) Poisson regression, a generalized linear model (GLM) : :

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices

Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue Date Type Technical Report Text Version publisher URL

(MIRU2008) HOG Histograms of Oriented Gradients (HOG)

ACLI-EBC-CLHIA Interim Proposal _J_ June Final.PDF

自由集会時系列part2web.key

ohpmain.dvi

I- Fama-French 3, Idiosyncratic (I- ) I- ( ) 1 I- I- I- 1 I- I- Jensen Fama-French 3 SMB-FL, HML-FL I- Fama-French 3 I- Fama-MacBeth Fama-MacBeth I- S

24 Depth scaling of binocular stereopsis by observer s own movements

TOP URL 1

kubostat2017b p.1 agenda I 2017 (b) probability distribution and maximum likelihood estimation :

1 CAPM: I-,,, I- ( ) 1 I- I- I- ( CAPM) I- CAPM I- 1 I- Jensen Fama-French 3 I- Fama-French 3 I- Fama-MacBeth I- SMB-FL, HML-FL Fama-MacBeth 1 Fama-Fr

28

5 Armitage x 1,, x n y i = 10x i + 3 y i = log x i {x i } {y i } 1.2 n i i x ij i j y ij, z ij i j 2 1 y = a x + b ( cm) x ij (i j )

鉄鋼協会プレゼン

Microsoft PowerPoint - ’Ý„v„¤‰ƒ›ï.ppt

151021slide.dvi

揃 Lag [hour] Lag [day] 35

DAA09

コロナ社 Q&A Question and Answer Q&A

(pdf) (cdf) Matlab χ ( ) F t

Use R

JFE.dvi

Gmech08.dvi

h23w1.dvi

Dirichlet process mixture Dirichlet process mixture 2 /40 MIRU2008 :

1 Stata SEM LightStone 3 2 SEM. 2., 2,. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press.

LAGUNA LAGUNA 10 p Water quality of Lake Kamo, Sado Island, northeast Japan, Katsuaki Kanzo 1, Ni

2 Recovery Theorem Spears [2013]Audrino et al. [2015]Backwell [2015] Spears [2013] Ross [2015] Audrino et al. [2015] Recovery Theorem Tikhonov (Tikhon

Part 1 GARCH () ( ) /24, p.2/93

Table 1 Experimental conditions Fig. 1 Belt sanded surface model Table 2 Factor loadings of final varimax criterion 5 6

Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) N 1 µ = lim xk( t1) N k = 1 N autocorrelation function N 1 R( t1, t1

Vol. 36, Special Issue, S 3 S 18 (2015) PK Phase I Introduction to Pharmacokinetic Analysis Focus on Phase I Study 1 2 Kazuro Ikawa 1 and Jun Tanaka 2

all.dvi

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

1990年代以降の日本の経済変動

02-量子力学の復習

¥¤¥ó¥¿¡¼¥Í¥Ã¥È·×¬¤È¥Ç¡¼¥¿²òÀÏ Âè2²ó

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

確率論と統計学の資料

日経225オプションデータを使ったGARCHオプション価格付けモデルの検証

SO(2)

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.


19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

講義のーと : データ解析のための統計モデリング. 第2回

1.7 D D 2 100m 10 9 ev f(x) xf(x) = c(s)x (s 1) (x + 1) (s 4.5) (1) s age parameter x f(x) ev 10 9 ev 2

A Nutritional Study of Anemia in Pregnancy Hematologic Characteristics in Pregnancy (Part 1) Keizo Shiraki, Fumiko Hisaoka Department of Nutrition, Sc

k2 ( :35 ) ( k2) (GLM) web web 1 :

Statistics for finance Part II

untitled

chap10.dvi

& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable),

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

fiúŁÄ”s‘ê‡ÌŁª”U…−…X…N…v…„…~…A…•‡Ì ”s‘ê™´›ß…−…^†[…fiŠ‚ª›Âfl’«

講義のーと : データ解析のための統計モデリング. 第3回

1 kawaguchi p.1/81

AHPを用いた大相撲の新しい番付編成

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th

スケーリング理論とはなにか? - --尺度を変えて見えること--

2012専門分科会_new_4.pptx

..,,,, , ( ) 3.,., 3.,., 500, 233.,, 3,,.,, i

第1章 微分方程式と近似解法

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

01.Œk’ì/“²fi¡*

Microsoft Word - 計量研修テキスト_第5版).doc

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

Rによる計量分析:データ解析と可視化 - 第3回 Rの基礎とデータ操作・管理

Transcription:

H28. (TMU) 206 8 29 / 34

2 3 4 5 6 Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206, http://link.springer.com/article/0.007/s409-06-0008-x (TMU) 206 8 29 2 / 34

:? : : spurious correlation (TMU) 206 8 29 3 / 34

Static : Correlation matrix Adjacency matrix 0 Correlation network 0.2 0. 0 0.2 0. Data Preprocess 0.2 0.2 0 = 0. 0. 0 Asset price e.g. log returns 0 Data filtering for network building Network analysis Dynamic : Conditional (dynamic) correlation Data Correlation matrix Correlation matrix 2 Correlation matrix 3 Correlation matrix 4 Time series Unconditional (static) correlation Correlation matrix (TMU) 206 8 29 4 / 34

2 3 4 5 6 (TMU) 206 8 29 5 / 34

: ρ X,Y = Cov (X, Y ) Var (X) Var (Y ) ρ X,Y?. White noise x -20-5 -0-5 0 x2-25 -20-5 -0-5 0 2. Large shock 0 50 00 50 200 250 300 0 50 00 50 200 250 300 Index N (0, ) cor(x, x2) = 0 N (0, 0) cor(x, x2) = 0.8 Index (TMU) 206 8 29 6 / 34

GARCH : i.i.d.; variance= Fat-tailed return = mean + Volatility Standardized residual Data Location Scaling factor (Deterministic) Probabilistic variable Distorted correlation Reliable correlation (TMU) 206 8 29 7 / 34

ARMA GARCH (M)GARCH: r t = µ t + ε t = µ t + H /2 t z t () µ t = E (r t F t ), E (z t ) = 0, Var (z t ) = I n where H t is a conditional variance covariance matrix (volatility), I n is an identity matrix of order n, and F t is the information set at time t. Mean model: conditional means modeled by ARMA(P, Q), separately P Q µ t = µ + a i r t i + b j ε t j (2) i= j= Volatility model: conditional volatilities as a vector form of GARCH(p,q) q p h t = ω + A i ε t i ε t i + B i h t i (3) i= j= where denotes the Hadamard operator (the entrywise product). (TMU) 206 8 29 8 / 34

: Data filtering 0.2 0. 0 0 0.2 0. stock GARCH filtering 0.2 0. 0.2 0 0. 0 0 Return data stock2 stock3 stock4 GARCH filtering GARCH filtering.. Correlation matrix 0.2 0. 0.2 0. 0.2 0.2 0. 0.2 0. 0.2 0. 0. Adjacency matrix Static network 0 0 0 0 0.2 0. 0 0.2 0. 0.2 0 0 0.2 0. 0.2 0 0. 0.2 0 0 0. 0 0. 0 0 0 0 Correlation matrices Adjacency matrices Dynamic network Moving window (- - ->) ( >) (TMU) 206 8 29 9 / 34

2 3 4 5 6 (TMU) 206 8 29 0 / 34

() Moving window ( ) Unfiltered log-returns R t : R t t window (e.g., 30 ). Time Non-overlapping window Time Overlapping window Type sample Type2 sample 0.2 0. 0.2 0. 0.2 0.2 0. 0.2 0. 0.2 0. 0. Correlation matrices Spurious correlation problem (lagged effect) Window. Moving window (TMU) 206 8 29 / 34

(2) DCC GARCH: GARCH stock stock2 GARCH filtering volatility volatility Dynamic Conditional Correlation residual residual Joint distribution modeling Correlation dynamics modeling Multiple correlation matrices t-copula f ( ) r t µ t, h t, R t, η = c S t (u t,..., u N t R t, η) N i= hi t f i t (z i t θ i ) (4) where u i t = F i (r i t µ i t, h i t, θ i ), θ i is a parameter set including the ARMA GARCH parameters and distributional parameters of i.i.d. residual z i, c S t ( ) is the Student t-copula density function, and η is the shape parameter of the Student t-copula. (TMU) 206 8 29 2 / 34

(2) DCC GARCH: R t : Q R t = diag (Q t ) 2 Q t diag (Q t ) 2 (5) m ) n ( Q t = Q + a i (z t i z t i Q + b j Qt i Q ) (6) i= j= Q t R t proxy z t standardized residuals (shocks). (TMU) 206 8 29 3 / 34

2 3 4 5 6 (TMU) 206 8 29 4 / 34

2 : 50 2 : ( ) ) : 2008 205 6 ; (2008 ) (20 ). : (DCC) moving window ( 200 ) Comparative analysis Stock returns. Transportation 50 2. Banks 50 Correlation. Dynamic 2. Moving window Observation. Intensity 2. Structure (TMU) 206 8 29 5 / 34

DCC-GARCH : DCC GARCH R t DCC Estimation Result Sector m, n a b b2 b+b2 η Transportation, 2 0.006 0.46 0.4493 0.8654 30.460 equipment (0.0007) (0.0808) (0.0805) (.2898) Banks, 2 0.0094 0.3940 0.446 0.8402 2.5952 (0.0009) (0.0686) (0.0695) (.0033) Note: DCC order (m, n) and parameters a, b, and b 2 are defined in (6). η is the shape parameter of the Student t-copula in (4). (TMU) 206 8 29 6 / 34

( ): Correlation matrix Eigenvalue decomposition Largest eigenvalue (λmax scalar) Intensity Largest eigenvector (qmax vector) Direction observe systematic changes in correlation observe divergence from usual relationship q max t q max (benchmark). normalized cosine distance) cos(θ) = x y x y = xi y i, γ(x, y) = cos(θ) (7) x 2 i y 2 i ν max t = γ(q max t, q max ) std(γ max ) (TMU) 206 8 29 7 / 34 (8)

: Eigenvalues of Dynamic Correlation Matrix Eigenvalue 99 percentile Largest 2nd largest Tracy-Widom (min - max) (min - max) Transportation equipment Dynamic 24.28-27.7 0.97 -.40 Moving Average 9.97-3.39.32-2.67 Banks Dynamic 3.56-35.20.25 -.73 Moving Average 25.89-39.60 0.84-2.70.38.38 Note: Eigenvaues of R t are calculated on every trading day during the observation period. The min and max represent the minimum and maximum of the vector of corresponding eigenvalues, respectively. (TMU) 206 8 29 8 / 34

: 28 27 Moving window (right) 3 29 27 26 25 25 23 Dynamic correlation (left) 24 2008/0 2009/0 200/0 20/0 202/0 203/0 204/0 205/0 2 9 DCC : (2008, 20). DCC moving window. Moving window lagged effects.. (TMU) 206 8 29 9 / 34

: 36 35 Moving window (right) 39 37 34 35 33 33 3 32 Dynamic correlation (left) 29 27 3 2008/0 2009/0 200/0 20/0 202/0 203/0 204/0 205/0 25 DCC :. Moving window lagged effect.. (TMU) 206 8 29 20 / 34

: 4 2 0 8 6 Dynamic correlation (left) Moving window (right) 6 5 4 3 4 2 2 0 2008/0 2009/0 200/0 20/0 202/0 203/0 204/0 205/0 0 DCC :. DCC. Moving window lagged effects. (TMU) 206 8 29 2 / 34

: 22 20 8 6 Dynamic correlation (left) 5 4 4 2 0 8 6 4 2 Moving window (right) 3 2 0 2008/0 2009/0 200/0 20/0 202/0 203/0 204/0 205/0 0 DCC : 2008. Moving window lagged effects (TMU) 206 8 29 22 / 34

2 3 4 5 6 (TMU) 206 8 29 23 / 34

: D(A).. i j>i D(A) = A ij mean (k) mean (k) = (9) n (n ) /2 n n k i = j i A ij (0) k i (TMU) 206 8 29 24 / 34

: C(A). 0. C(A) = n ( max (k) n 2 n = n n 2 ( max (k) n mean (k) n ) D(A) ) max (k) n D(A) () H(A).. H(A) = var (k) mean (k) = n i k2 i ( i k i) 2 (2) (TMU) 206 8 29 25 / 34

: 0.55 0.53 B A 0.5 0.49 0.47 0.45 2008/ 2009/ 200/ 20/ 202/ 203/ 204/ 205/ A B. (TMU) 206 8 29 26 / 34

: 0.3 A 0.2 0. B 0.0 2008/ 2009/ 200/ 20/ 202/ 203/ 204/ 205/. (TMU) 206 8 29 27 / 34

: 0.4 0.3 0.2 0. A B 0.0 2008/ 2009/ 200/ 20/ 202/ 203/ 204/ 205/ A B. (TMU) 206 8 29 28 / 34

: 0.70 B 0.68 A 0.66 0.64 0.62 C 0.60 2008/ 2009/ 200/ 20/ 202/ 203/ 204/ 205/ A B.. (TMU) 206 8 29 29 / 34

: 0.08 C A 0.07 0.06 B 0.05 2008/ 2009/ 200/ 20/ 202/ 203/ 204/ 205/. (TMU) 206 8 29 30 / 34

: 0. C 0.0 0.09 0.08 A B 0.07 2008/ 2009/ 200/ 20/ 202/ 203/ 204/ 205/ A B. (TMU) 206 8 29 3 / 34

2 3 4 5 6 (TMU) 206 8 29 32 / 34

: DCC GARCH.. moving window. 2.. :.. (TMU) 206 8 29 33 / 34

. (TMU) 206 8 29 34 / 34