diode_revise

Similar documents
Microsoft PowerPoint - H30パワエレ-3回.pptx

スライド 1

PowerPoint Presentation

半導体工学の試験範囲

Taro-F25理論 印刷原稿

Microsoft PowerPoint - semi_ppt07.ppt

Microsoft PowerPoint - semi_ppt07.ppt [互換モード]

Microsoft PowerPoint - 集積デバイス工学7.ppt

<4D F736F F F696E74202D2094BC93B191CC82CC D B322E >

PowerPoint Presentation

PowerPoint Presentation

Microsoft PowerPoint _量子力学短大.pptx

Microsoft PowerPoint - 集積デバイス工学5.ppt


第6章 072 太陽電池はダイオードの一種 太陽電池のための半導体デバイス入門 上級編 ダイオードは二極菅という真空管だった 図1 ダイオードの起源は二極菅という真空管 プレート アノード ダイオードは もともと図1に示す 二極菅 と呼ばれる真空管のことを指しました この二極菅の特許も かのエジソン

第6章 072 太陽電池はダイオードの一種 太陽電池のための半導体デバイス入門 上級編 ダイオードは二極菅という真空管だった 図1 ダイオードの起源は二極菅という真空管 プレート アノード ダイオードは もともと図1に示す 二極菅 と呼ばれる真空管のことを指しました この二極菅の特許も かのエジソン

Microsoft PowerPoint pptx

<4D F736F F D208CF595A890AB F C1985F8BB389C88F913791BE977A E646F63>

Microsoft PowerPoint EM2_15.ppt

物性物理学 I( 平山 ) 補足資料 No.6 ( 量子ポイントコンタクト ) 右図のように 2つ物質が非常に小さな接点を介して接触している状況を考えましょう 物質中の電子の平均自由行程に比べて 接点のサイズが非常に小さな場合 この接点を量子ポイントコンタクトと呼ぶことがあります この系で左右の2つ


<4D F736F F D208CF595A890AB F C1985F8BB389C88F CF58C9F8F6F8AED2E646F63>

相対性理論入門 1 Lorentz 変換 光がどのような座標系に対しても同一の速さ c で進むことから導かれる座標の一次変換である. (x, y, z, t ) の座標系が (x, y, z, t) の座標系に対して x 軸方向に w の速度で進んでいる場合, 座標系が一次変換で関係づけられるとする

<4D F736F F D2097CA8E718CF889CA F E F E2E646F63>

Microsoft PowerPoint - zairiki_3

物理演習問題

Microsoft Word - Chap17

PowerPoint Presentation

<4D F736F F D2097CD8A7793FC96E582BD82ED82DD8A E6318FCD2E646F63>

第1章 様々な運動

高校電磁気学 ~ 電磁誘導編 ~ 問題演習

Microsoft PowerPoint - ›žŠpfidŠÍŁÏ−·“H−w5›ñŒÚ.ppt

電子回路基礎

PowerPoint プレゼンテーション

電子物性工学基礎

PowerPoint Presentation

電気基礎

コロイド化学と界面化学

電子回路I_4.ppt

Microsoft PowerPoint EM2_15.ppt

Microsoft Word - 実験2_p1-12キルヒホッフ(第17-2版)P1-12.doc

第 5 章復調回路 古橋武 5.1 組み立て 5.2 理論 ダイオードの特性と復調波形 バイアス回路と復調波形 復調回路 (II) 5.3 倍電圧検波回路 倍電圧検波回路 (I) バイアス回路付き倍電圧検波回路 本稿の Web ページ ht

Xamテスト作成用テンプレート

スライド 1

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ

Microsoft PowerPoint 修論発表_細田.ppt

等温可逆膨張最大仕事 : 外界と力学的平衡を保って膨張するとき 系は最大の仕事をする完全気体を i から まで膨張させるときの仕事は dw d dw nr d, w nr ln i nr 1 dw d nr d i i nr (ln lni ) nr ln これは右図 ( テキスト p.45, 図

Microsoft Word - 2_0421

4端子MOSトランジスタ

Microsoft PowerPoint - 2.devi2008.ppt

ÿþŸb8bn0irt

( 全体 ) 年 1 月 8 日,2017/1/8 戸田昭彦 ( 参考 1G) 温度計の種類 1 次温度計 : 熱力学温度そのものの測定が可能な温度計 どれも熱エネルギー k B T を

(3) E-I 特性の傾きが出力コンダクタンス である 添え字 は utput( 出力 ) を意味する (4) E-BE 特性の傾きが電圧帰還率 r である 添え字 r は rrs( 逆 ) を表す 定数の値は, トランジスタの種類によって異なるばかりでなく, 同一のトランジスタでも,I, E, 周

ÿþŸb8bn0irt

パソコンシミュレータの現状

Microsoft PowerPoint - アナログ電子回路3回目.pptx

Microsoft PowerPoint - 第6回半導体工学

AlGaN/GaN HFETにおける 仮想ゲート型電流コラプスのSPICE回路モデル

固体物理2018-1NKN.key

木村の物理小ネタ 単振動と単振動の力学的エネルギー 1. 弾性力と単振動 弾性力も単振動も力は F = -Kx の形で表されるが, x = 0 の位置は, 弾性力の場合, 弾性体の自然状態の位置 単振動の場合, 振動する物体に働く力のつり合

線積分.indd

弱反転領域の電荷

高周波動作 (小信号モデル)

Microsoft Word - 第3章pn接合_

ÿþŸb8bn0irt

<4D F736F F D B4389F D985F F4B89DB91E88250>

PowerPoint プレゼンテーション

Acrobat Distiller, Job 2

Microsoft Word - NumericalComputation.docx

<4D F736F F F696E74202D E8EA58FEA82C982E682E997CD82C68EA590AB91CC>

Microsoft Word - 第9章発光デバイス_

トランジスタ回路の解析 ( 直流電源 + 交流電源 ) 交流回路 ( 小 ) 信号 直流回路 ( バイアス計算 ) 動作点 ( 増幅度の計算 ) 直流等価回路 ダイオードモデル (pnp/npn) 交流 ( 小信号 ) 等価回路 T 形等価回路 トランジスタには直流等価回路と交流等価回路がある

本文/報告1

<4D F736F F D2091AA92E895FB964082C982C282A282C45F >

PowerPoint Presentation

Microsoft PowerPoint - H22パワエレ第3回.ppt

予定 (川口担当分)

フィードバック ~ 様々な電子回路の性質 ~ 実験 (1) 目的実験 (1) では 非反転増幅器の増幅率や位相差が 回路を構成する抵抗値や入力信号の周波数によってどのように変わるのかを調べる 実験方法 図 1 のような自由振動回路を組み オペアンプの + 入力端子を接地したときの出力電圧 が 0 と

RMS(Root Mean Square value 実効値 ) 実効値は AC の電圧と電流両方の値を規定する 最も一般的で便利な値です AC 波形の実効値はその波形から得られる パワーのレベルを示すものであり AC 信号の最も重要な属性となります 実効値の計算は AC の電流波形と それによって

Kumamoto University Center for Multimedia and Information Technologies Lab. 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI 宮崎県美郷

<4D F736F F D208D5C91A297CD8A7793FC96E591E631308FCD2E646F63>

3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x0 = f x= x0 t f c x f =0 [1] c f 0 x= x 0 x 0 f x= x0 x 2 x 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考

Problem P5

sample リチウムイオン電池の 電気化学測定の基礎と測定 解析事例 右京良雄著 本書の購入は 下記 URL よりお願い致します 情報機構 sample

13 2 9

B. モル濃度 速度定数と化学反応の速さ 1.1 段階反応 ( 単純反応 ): + I HI を例に H ヨウ化水素 HI が生成する速さ は,H と I のモル濃度をそれぞれ [ ], [ I ] [ H ] [ I ] に比例することが, 実験により, わかっている したがって, 比例定数を k

人間科学部研究年報平成 24 年 (1) (2) (3) (4) 式 (1) は, クーロン (Coulomb) の法則とも呼ばれる.ρは電荷密度を表し,ε 0 は真空の誘電率と呼ばれる定数である. 式 (2) は, 磁荷が存在しないことを表す式である. 式 (3) はファラデー (Faraday)

Microsoft PowerPoint - 熱力学Ⅱ2FreeEnergy2012HP.ppt [互換モード]

Microsoft Word - thesis.doc

木村の理論化学小ネタ 理想気体と実在気体 A. 標準状態における気体 1mol の体積 標準状態における気体 1mol の体積は気体の種類に関係なく 22.4L のはずである しかし, 実際には, その体積が 22.4L より明らかに小さい

Techniques for Nuclear and Particle Physics Experiments Energy Loss by Radiation : Bremsstrahlung 制動放射によるエネルギー損失は σ r 2 e = (e 2 mc 2 ) 2 で表される為

1/30 平成 29 年 3 月 24 日 ( 金 ) 午前 11 時 25 分第三章フェルミ量子場 : スピノール場 ( 次元あり ) 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (2.18) より ˆ dp 1 1 =

() 実験 Ⅱ. 太陽の寿命を計算する 秒あたりに太陽が放出している全エネルギー量を計測データをもとに求める 太陽の放出エネルギーの起源は, 水素の原子核 4 個が核融合しヘリウムになるときのエネルギーと仮定し, 質量とエネルギーの等価性から 回の核融合で放出される全放射エネルギーを求める 3.から

微分方程式による現象記述と解きかた

スライド 1

Microsoft PowerPoint - 4.1I-V特性.pptx

<4D F736F F D20824F B CC92E8979D814696CA90CF95AA82C691CC90CF95AA2E646F63>

Microsoft PowerPoint - H21生物計算化学2.ppt

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (

Q

Transcription:

2.3 pn 接合の整流作用 c 大豆生田利章 2015 1 2.3 pn 接合の整流作用 2.2 節では外部から電圧を加えないときの pn 接合について述べた. ここでは, 外部か らバイアス電圧を加えるとどのようにして電流が流れるかを電子の移動を中心に説明す る. 2.2 節では熱エネルギーの存在を考慮していなかったが, 実際には半導体のキャリアは 周囲から熱エネルギーを受け取る その結果 半導体のキャリヤのエネルギーは一定でな くなり エネルギーの大小が存在するようになる. エネルギーが大きいキャリアは数が少 なく, エネルギーの小さいキャリアは数が多くなる 以下で説明するように このキャリ アの持つエネルギーの違いが pn 接合の電圧電流特性に影響を与える 図 2.7 にゼロバイアス状態, すなわち外部からバイアス電圧を加えないときの pn 接 合のエネルギー帯図を示す 図 2.7 ではエネルギーによるキャリヤ数の変化も示してあ る 10. 図 2.7 に示すように pn 接合の拡散電位により生じるエネルギー障壁 qφ D を超え る電子が n 形半導体から p 形半導体へ移動する. 一方で p 形半導体中にも少数キャリア として電子が存在し p 形半導体から n 形半導体へ移動する これらの逆方向に移動する 電子の数が等しいため, ゼロバイアス状態では電流は流れない 図 2.7: ゼロバイアス状態の pn 接合のエネルギー帯図 順バイアス電圧 V を加えたときの pn 接合のエネルギー帯図を図 2.8 に示す 11 順バイアス電圧により p 形半導体のエネルギーが減少し,n 形半導体のエネルギーが増加する この結果,n 形半導体と p 形半導体の障壁の高さは q(φ D V ) に減少する. このため,n 形半導体から p 形半導体へ移動できる電子の量が増加し, 全体として n 形半導体中から p 形半導体へ電子が移動する 正孔に対して同様に,p 形半導体中から n 形半導体へ電子が移動する 10 キャリア数の変化の仕方は厳密ではない. 11 空乏層をキャリヤが移動しているときのフェルミエネルギーは厳密には定義できないので, 空乏層中の フェルミエネルギーの描写は行なっていない.

2 c 大豆生田利章 2015 図 2.8: 順バイアス電圧印加時の pn 接合のエネルギー帯図 図 2.9 は逆バイアス電圧 V を加えたときのエネルギー帯図であり,p 形半導体のエネルギーが増加し,n 形半導体のエネルギーは減少する. この結果,n 形半導体と p 形半導体の障壁の高さは q(φ D + V ) に増加するため キャリアの移動が減少する これにより 逆バイアス電圧印加時はほとんど電流が流れず pn 接合が整流特性を示すことになる 図 2.9: 逆バイアス電圧印加時の pn 接合のエネルギー帯図 [ 補足 ]B 以上の説明で述べたように,pn 接合ダイオードにおいてバイアス電圧を変えると電流が変化するのはバイアス電圧により p 形半導体と n 形半導体の間の障壁の高さが変化することで キャリアの移動量が変化するためである. これに対して, 金属や単独の n 形半導体あるいは p 形半導体などにおける電圧と電流の関係は, 式 (1.24) に示したように電圧により生じる電界により電子の速度が変化することで生じる. C 次に 順バイアス印加時にどのようにして電流が流れるかを説明する 順バイアスを加えた pn 接合では電子が n 形半導体から移動してくることにより p 形半導体中の少数キャ

2.3 pn 接合の整流作用 c 大豆生田利章 2015 3 リアである電子が増加し, 正孔が p 形半導体から移動してくることにより n 形半導体中の少数キャリアである正孔が増加する. ここで pn 接合の少数キャリアの状態を示したものが図 2.10 である n 形半導体から p 形半導体へ移動した電子は p 形半導体の多数キャリアである正孔と再結合することにより減少していく これにより p 形半導体中の電子密度は空乏層付近では高くなり 空乏層から離れると低くなる 再結合による電子の減少分と n 形半導体から移動してくる電子の増加分がつりあったところで 安定した状態になる n 形半導体中の正孔の状態も同様である 図 2.10: pn 接合の少数キャリアの状態 図 2.10 のように p 形半導体中において生じた電子密度の差により電子の拡散が発生することになる 同様に n 形半導体中では正孔の拡散が発生する この拡散によるキャリアの移動により pn 接合に電流が流れることになる このようなキャリヤの拡散が原因となり発生する電流を拡散電流とよぶ. アノード電極では再結合で消滅した p 形半導体中の正孔が外部の電源から補充される 12 同様にカソード電極では再結合で消滅した n 形半導体中の電子が外部の電源から補充される このキャリアの補充が外部から観測される電流になる 拡散電流に対して, 電界によるキャリヤの移動により発生する電流をドリフト電流と呼び, 単独の n 形半導体または p 形半導体だけを流れる電流はドリフト電流が主流になる. 23ページの補足で述べたように pn 接合では空乏層に電界が集中するが, 空乏層にはキャリヤはほとんどないのでドリフト電流は流れず,pn 接合を流れる電流は拡散電流が主流になる. [ 補足 ]B ダイオードに加わる電圧が大きくなると,p 形半導体と n 形半導体の間の障壁が小さくなり, ダ イオードを構成している半導体自身の抵抗の影響によりダイオードを流れる電流が決まるようになる. 図 2.11 は半導体の抵抗も考慮してダイオードの電圧電流特性を計算したものである. 実破線が理想的な電圧電流特性, 実線が抵抗を考慮したな電圧電流特性を示している. 実点線は抵抗を考慮した電圧電流特性を折れ線で近似した 12 正確にはアノード電極から外部に電子が引き抜かれることにより正孔が発生する

4 c 大豆生田利章 2015 ものである. C 図 2.11: 半導体の抵抗を考慮したダイオードの電圧電流特性 2.4 ダイオードの電圧電流特性 本節では第 2.1 で説明した pn 接合の電圧電流特性を表す式を求める 2.4.1 ダイオードを流れる電流の電圧依存性 まず, バイアス電圧 V を加えたときに, 電子の移動により pn 接合を流れる電流 I n (V ) を考える.I n (V ) には n 形半導体から p 形半導体へ移動する電子によるもの In n p (V ) と p 形半導体から n 形半導体へ移動する電子によるもの In p n (V ) がある.In p n (V ) は p 形半導体中の少数キャリヤである電子により生じ,In n p (V ) は n 形半導体中の電子のう ち pn 接合面に存在する障壁を超えるエネルギーを持つ電子により生じる. 電子が障壁を 超えるためのエネルギーは熱エネルギーにより生じる このとき, エネルギーが U より 大きいキャリヤの数は exp( U/ ) に比例することが知られている 13. つまり, エネ ルギーの大きいものほど指数関数的に数が少なくなる. 図 2.12 (a) に示したように. 拡散電位により生じるエネルギー障壁 qφ D よりも大き なエネルギーをもつ電子が存在するため, ゼロバイアス時でも電子の移動は 0 にはなら ないが, ゼロバイアス時にはダイオード外部には電流は流れないことから,In p n (0) と In n p (0) は等しくなる. そこで, I n0 = In p n (0) = In n p (0) (2.4) 13 理由は統計力学を学ぶと分かる.

2.4 ダイオードの電圧電流特性 c 大豆生田利章 2015 5 と定数 I n0 を定める 14. 図 2.12: pn 接合における電子の移動量 順バイアス電圧 V を加えると, 図 2.12 (b) に示したように,n 形半導体から p 形半 導体へ移動できる電子の量が増加する n 形半導体中の伝導電子でゼロバイアス時に拡 散電位 qφ D による障壁を超えるエネルギーを持つ電子の数は exp( qφ D / ) に比例し, バイアス電圧 V を加えたときに障壁 q(φ D V ) を超えるエネルギーをもつ電子の数は exp( q(φ D V ))/ ) に比例するので,n 形半導体から p 形半導体へ移動できる電子の 量が増加する割合は exp [ q(φ D V )/ ] exp [ qφ D / ] で与えられる. これより, ( ) In n p exp [ q(φ D V )/ ] (V ) = I n0 = I n0 exp exp ( qφ D / ) となる.p 形半導体から n 形半導体に電子が移動するときは障壁がないので,In p n I n0 のままである. (2.5) (2.6) 逆バイアス電圧を加えたときは 図 2.12 (c) に示したようになり 順バイアス電圧を加 えたときと同様にして, ( In n p exp [ q(φ D + V )/ ] ( V ) = I n0 = I n0 exp ) exp ( qφ D / ) となり, I p n n は I n0 のままである. は (2.7) 以上より, 電子の移動により pn 接合を流れる電流 I n (V ) は, 電流の向きとバイアス電 圧の符号に注意して, I n (V ) = I n p n (V ) I p n n ( ) [ ( ) ] (V ) = I n0 exp I n0 = I n0 exp 1 (2.8) となる. 正孔の移動により pn 接合を流れる電流 I p (V ) は I n (V ) と同様の考察により, ( ) [ ( ) ] I p (V ) = Ip p n (V ) + Ip n p (V ) = I p0 exp I p0 = I p0 exp 1 (2.9) 14 I n0 は?? 節で求める.

6 c 大豆生田利章 2015 と求まる. これより, 全電流 I は I = I n (V ) + I p (V ) = (I n0 + I p0 ) となり, 式 (??) に示した以下の電圧電流特性を得る. [ ( ) ] I = I 0 exp 1 [ ( ) ] [ ( ) ] exp 1 = I 0 exp 1 (2.10) (2.11) 実際のダイオードでは空乏層中で電子と正孔の再結合が起こるので, 再結合により発生 する電流である再結合電流を考慮しなければならない. おおざっぱな考え方として, 再結 合が空乏層のちょうど真ん中で起こるとし, キャリヤは全体の半分しか移動しないのでバ イアス電圧が半分になったのと等価であると考える. このように考えると再結合電流 I r は ( ) I r = I r0 exp 2 (2.12) となる 15. 実際のダイオードに対しては理想係数または n 値とよばれる係数 n を用い て 16, [ ( ) ] I = I 0 exp 1 n (2.13) とした電圧電流特性と, 実際に測定した電圧電流特性が一致するように n を決定する.n は 1 から 2 の間の値を取り,n が 1 のときは拡散電流だけの場合,n が 2 のときは再結合 電流だけの場合となる. シリコン pn 接合ダイオードでは n 1.03 となる. 2.4.2 ダイオードの逆方向飽和電流逆方向飽和電流 I 0 は少数キャリア つまり p 形半導体中の電子および n 形半導体中の正孔の拡散を調べることにより求めることができる 図 2.13 に pn 接合ダイオードに順バイアスを加えたときの電子密度の位置による変化を示す.n n は n 形半導体中の電子密度,n p は p 形半導体中の電子密度,n n0 はゼロバイアス時の n 形半導体中の電子密度,n p0 はゼロバイアス時の p 形半導体中の電子密度を表す.n 形半導体中の電子密度 n n はほとんど変化しない 17.p 形半導体中の空乏層端ではバイアスを加えることで n 形半導体中から来た電子の分だけ電子密度 n p が n p0 から n p0 exp(/ ) に増加している 18. このバイアス電圧の無いときよりも増加したキャ 15 途中でキャリヤが消滅するので逆方向からやってくるキャリヤは考えなくてよい. 16 電子密度の n と混同しないようにする. 17 厳密には電気的中性条件を保つため,p 形半導体から来た正孔の分だけ電子が増加するが, この増加量は 割合としては小さい. 18 式 (2.5) 参照.

2.4 ダイオードの電圧電流特性 c 大豆生田利章 2015 7 リヤを過剰キャリヤと呼ぶ. 過剰キャリヤの分だけ増加した電子は p 形半導体中を拡散していく. 拡散の途中で電子は多数キャリヤの正孔と再結合をして減少していくが, 電子の減少分は n 形半導体から補われる.n 形半導体から来る電子の増加と再結合による電子の減少が釣り合って, 電子密度の分布は図 2.13 のようになる.p 形半導体中の正孔も再結合により減少するが, 正孔の減少分は電極を通して外部の電源から補われ, これにより電源から流れてくる電流が発生する. 図 2.13: pn 接合ダイオードの電子密度分布 電子密度の増加分 n p n p0 は空乏層端からの位置 x に対して指数関数的に変化す る 19. よって,p 形半導体中の電子密度 n p は以下の式で表される 20. [ ( ) ] ( ) x n p n p0 = n p0 exp 1 exp L n (2.14) ここで,L n は電子の拡散長と呼ばれる定数であり, 再結合で消滅するまでに電子が p 形 半導体中を移動する距離の平均である. 式 (2.14) は L n だけ距離が離れると電子密度の 増加分 n p n p0 が 1/e, すなわち約 0.37 に減少することを示している. 一般に位置 x での電子密度が n であるとき, 移動方向に垂直な断面を拡散により通過 する電子の移動量は電子密度の微分に比例し, 単位面積 単位時間当たり D n dn dx (2.15) で表される 21. ここで,D n は拡散定数と呼ばれる定数であり, 単位は [m 2 /s]( 平方メー トル毎秒 ) となる.p 形半導体中の電子の拡散電流密度 J n は電子の電荷が q である ので, ( ) dn p dn p J n = q D n = qd n dx dx (2.16) 19 196ページの式 (9.74) を参照. 20 p 形半導体中では x は負であることに注意する. 21 拡散は密度の大きいほうから小さいほうへ向かうので負号が付く.

8 c 大豆生田利章 2015 となる. 式 (2.16) に式 (2.14) を代入すると J n = qd n n p0 [exp ( / ) 1] L n ( ) x exp L n (2.17) が得られる. この結果は J n は位置 x で変化するということを示しているが,p 形半導体 中の正孔の移動による電流も考慮すると, 全電流密度は場所によらず一定になる. 特に x = 0 での J n の値は J n = qd [ ( ) ] nn p0 exp 1 L n となる. 式 (2.18) を式 (2.8) と比較することで, 以下のように,I n0 が決定される. ただし,S を pn 接合の断面積とした. (2.18) I n0 = qd nn p0 L n S (2.19) [ 補足 ]B p 形半導体中において再結合で消滅していく電子の平均移動距離は L n で, 平均寿命は L n 2 /D n で与えられる 22.C なお, 正孔に関しても同様の説明が成立する.n 型半導体中の空乏層端を原点とする と,n 形半導体中の正孔密度 p n は以下の式で表され, [ ( ) ] ) p n p n0 = p n0 exp 1 exp ( xlp n 形半導体中の正孔の拡散電流密度 J p は以下の式で表される. (2.20) J p = qd p dp n dx (2.21) この結果, となる. I p0 = qd pp n0 L p S (2.22) 以上で述べたことをすべて考慮した pn 接合ダイオードの電圧電流特性を以下に示す. [ Dn n p0 I = qs + D ] [ ( ) ] pp n0 exp 1 (2.23) L n L p [ 補足 ]B p 形半導体中のアクセプタ密度を N A,n 形半導体中のドナー密度を N D とすると, 逆方向飽和 電流 I 0 は» Dnnp0 I 0 = qs + Dpp» n0 2 Dn = qsn i + L n L p L n N A Dp L p N D (2.24) 22 導出過程は付録 I に載せる.

2.4 ダイオードの電圧電流特性 c 大豆生田利章 2015 9 と表わされる. 真性キャリヤ密度 n i の温度 T による変化は禁制帯幅を E g として, n 2 i exp E «g (2.25) と指数関数的であるので 23, 逆方向飽和電流の温度変化に関しては真性キャリヤ密度の影響が一番大きくなり, I 0 exp E «g (2.26) と考えてよい. C 23?? ページの式 (??) を参照.