1: Sheldon L. Glashow (Ouroboros) [1] 1 v(r) u(r, r ) ( e 2 / r r ) H 2 [2] H = ( dr ψ σ + (r) 1 2 ) σ 2m r 2 + v(r) µ ψ σ (r) + 1 dr dr ψ σ + (r)ψ +

Similar documents
1 2 LDA Local Density Approximation 2 LDA 1 LDA LDA N N N H = N [ 2 j + V ion (r j ) ] + 1 e 2 2 r j r k j j k (3) V ion V ion (r) = I Z I e 2 r

( ) ) AGD 2) 7) 1

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

d (i) (ii) 1 Georges[2] Maier [3] [1] ω = 0 1

chap7_v7.dvi

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

TQFT_yokota

講 座 熱電研究のための第一原理計算入門 第1回 密度汎関数法による第一原理バンド計算 桂 1 はじめに ゆかり 東京大学 2 密度汎関数理論 第一原理 first-principles バンド計算とは 結晶構造 Schrödinger 方程式は 量子力学を司る基本方程式で 以外の経験的パラメータや

和佐田P indd

液晶の物理1:連続体理論(弾性,粘性)

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

1: (Emmy Noether; ) (Feynman) [3] [4] {C i } A {C i } (A A )C i = 0 [5] 2

多体問題


1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

橡超弦理論はブラックホールの謎を解けるか?

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

L. S. Abstract. Date: last revised on 9 Feb translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, L. Onsager and S.

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

LLG-R8.Nisus.pdf

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2


July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

(a) (b) (c) (d) 1: (a) (b) (c) (d) (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

proc.dvi

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

Aharonov-Bohm(AB) S 0 1/ 2 1/ 2 S t = 1/ 2 1/2 1/2 1/, (12.1) 2 1/2 1/2 *1 AB ( ) 0 e iθ AB S AB = e iθ, AB 0 θ 2π ϕ = e ϕ (ϕ ) ϕ

1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru

薄膜結晶成長の基礎4.dvi

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

eto-vol1.dvi


第5章 偏微分方程式の境界値問題

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)


t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

X線分析の進歩 39 別刷

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

1. ( ) L L L Navier-Stokes η L/η η r L( ) r [1] r u r ( ) r Sq u (r) u q r r ζ(q) (1) ζ(q) u r (1) ( ) Kolmogorov, Obukov [2, 1] ɛ r r u r r 1 3


磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

Venkatram and Wyngaard, Lectures on Air Pollution Modeling, m km 6.2 Stull, An Introduction to Boundary Layer Meteorology,

スケーリング理論とはなにか? - --尺度を変えて見えること--

main.dvi

[2, 3, 4, 5] * C s (a m k (symmetry operation E m[ 1(a ] σ m σ (symmetry element E σ {E, σ} C s 32 ( ( =, 2 =, (3 0 1 v = x 1 1 +

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

1 2 2 (Dielecrics) Maxwell ( ) D H

Undulator.dvi

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼ Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ

DVIOUT-fujin

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

[ ] = L [δ (D ) (x )] = L D [g ] = L D [E ] = L Table : ħh = m = D D, V (x ) = g δ (D ) (x ) E g D E (Table )D = Schrödinger (.3)D = (regularization)

抄録/抄録1    (1)V

0406_total.pdf

修士論文 物性研究 電子版 Vol, 2, No. 3, (2013 年 8 月号 ) * Bose-Einstein.

ms.dvi

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T

(2) N elec = D p,q p,q χ q χ p dr = p,q D p,q S q,p Mulliken PA D Mull p = p = group A D p,p 1 + D p,q S q,p p q p [ r A D Mull p ] group χ p G Mull A

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

3 3.1 R r r + R R r Rr [ ] ˆn(r) = ˆn(r + R) (3.1) R R = r ˆn(r) = ˆn(0) r 0 R = r C nn (r, r ) = C nn (r + R, r + R) = C nn (r r, 0) (3.2) ( 2.2 ) C

TOP URL 1

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

pp * Yw; Mq 1. 1L 20 cc [1] Sonoluminescence: Light emission from acoustic cavitation bubble. Pak-Kon Choi (Departm

(extended state) L (2 L 1, O(1), d O(V), V = L d V V e 2 /h 1980 Klitzing


1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

Twist knot orbifold Chern-Simons

本文/目次(裏白)

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

meiji_resume_1.PDF


5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

ver.1 / c /(13)

SPring-8_seminar_

Mott散乱によるParity対称性の破れを検証

nm (T = K, p = kP a (1atm( )), 1bar = 10 5 P a = atm) 1 ( ) m / m

Bose-Einstein Hawking Hawking Hawking Hawking nk Hawking Bose-Einstein Hawking 1 Bekenstein[1] Hawking 1974 [2,

薄膜結晶成長の基礎2.dvi

TOP URL 1

Gmech08.dvi

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

ssp2_fixed.dvi

QMII_10.dvi

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

ohpr.dvi

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

Transcription:

1 1.1 21 11 22 10 33 cm 10 29 cm 60 6 8 10 12 cm 1cm 1 1.2 2 1 1

1: Sheldon L. Glashow (Ouroboros) [1] 1 v(r) u(r, r ) ( e 2 / r r ) H 2 [2] H = ( dr ψ σ + (r) 1 2 ) σ 2m r 2 + v(r) µ ψ σ (r) + 1 dr dr ψ σ + (r)ψ + σ (r )u(r, r )ψ 2 σ (r )ψ σ (r) (1) σσ ψ σ (r) m σ µ Φ 0 E 0 ( Φ 0 H Φ 0 / Φ 0 Φ 0 + µn) n(r) ( Φ 0 σ ψ+ σ (r)ψ σ (r) Φ 0 / Φ 0 Φ 0 ) N ( n(r) dr) N 10 CI: Configuration Interaction) [3] N 100 (DMC: Diffusion Monte Carlo) [4] CI DMC N 2 H Φ 0 1 v(r) ṽ(r) 1 H 0 H 0 ( dr ψ σ + (r) 1 2 ) σ 2m r 2 + ṽ(r) µ ψ σ (r) (2) H 0 0 H H = H 0 + H 1 H 0 n = ϵ n n H 0 { n } H 1 2

H 1 (t) = e ih0t H 1 e ih0t Φ 0 Φ 0 = 0 + n n H [ 1 0 0 ] + =T t exp i dte 0+t H 1 (t) 0 (3) ϵ n 0 0 ϵ n [5] T t T T t [H 1 (t 1 ) H 1 (t i ) H 1 (t n )] t i H 1 (t i ) n (3) Φ 0 H 1 0 Φ 0 = F 0 F 2 [6] [7] (CBF: Correlated-Basis Function) [8] FHNC(Fermi Hypernetted Chain) [9] [10] CC (Coupled- Cluster) [11] EPX(Effective-Potential Expansion) [12] Φ 0 (3) EPX CC E 0 = 0 H Φ 0 / 0 Φ 0 1.3 v(r) E 0 n(r) CC EPX CBF FHNC n(r) 1 BBGKY (Bogoliubov-Born-Green-Kirkwood-Yvon) [13] n(r) 2 n 2 (r 1, r 2 ) n 2 (r 1, r 2 ) 3 n 3 (r 1, r 2, r 3 ) n(r) n(r) DFT: Density Functional Theory)[14] DFT n 2 (r 1, r 2 ) n 3 (r 1, r 2, r 3 ) E 0 n(r) (2) ṽ(r) n(r) 0 σ ψ+ σ (r)ψ σ (r) 0 1 n(r) BBGKY n(r) DFT ṽ(r) ṽ(r) ṽ(r) 3

BBGKY DFT ṽ(r) E xc [n(r)] ṽ(r) E xc [n(r)] DFT E xc [n(r)] (LDA: Local Density Approximation) (GGA: Generalized Gradient Approximation) E xc [n(r)] DFT DFT E 0 n(r) n 2 (r 1, r 2 ) DFT DFT n(r) n 2 (r 1, r 2 ) 1 2 DFT n 2 (r 1, r 2 ) DFT 1.4 1 [15] 1 [16] Φ 0 = F 0 4

Φ n F F H 0 n Φ n = F n HF(Hartree- Fock) [17] 1.5 1 1 G R σσ (r, r ; t) t = 0 r σ r σ t (> 0) r σ r σ G R σσ (r, r ; t) iθ(t) {ψ σ (r, t), ψ + σ (r )} (4) θ(t) ψ σ (r, t) e iht ψ σ (r)e iht e βω tr(e βh ) T β 1/T Ω Ω T ln[tr(e βh )] ARPES: Angle-Resolved Photo- Emission Spectroscopy [18] G R σσ (r, r ; t) G R σσ (r, r ; ω) 1 A σσ (r, r ; ω) G R σσ (r, r ; ω) = = dt e iωt 0+t G R σσ (r, r ; t) de A σσ (r, r ; E) ω + i0 + E A σσ (r, r ; ω) = 1 π Im GR σσ (r, r ; ω) (6) (5) t t + e 0+t ω ω + i0 + ω de A σσ (r, r ; E) = δ σ,σ δ(r r ) (7) (Sum rule) (5) 1.6 1 N G R σσ (r, r ; t) N ) 5

G R σσ (r, r ; t) ψ σ (r, τ) e Hτ ψ σ (r)e Hτ G σσ (r, r ; τ) T τ ψ σ (r, τ)ψ + σ (r ) (8) G σσ (r, r ; τ) T τ τ T (8) G σσ (r, r ; τ + β) = G σσ (r, r ; τ) τ G σσ (r, r ; τ) β G σσ (r, r ; τ) = T ω p e iω pτ G σσ (r, r ; iω p ) (9) ω p p p = 0, ±1, ±2, ω p = πt (2p+1) β G σσ (r, r ; iω p )= dτ e iωpτ G σσ (r, r ; τ)= de A σσ (r, r ; E) 0 iω p E (10) G σσ (r, r ; iω p ) (5) ω iω p ω + i0 + G R σσ (r, r ; ω) G σσ (r, r ; iω p ) G(iω p ) = 1/(iω p H) G σσ (r, r ; iω p ) = rσ 1 iω p H r σ (11) G(iω p ) G { rσ } 1.7 G(iω p ) H u(r, r ) H 0 (2) ṽ(r) v(r) u(r, r ) H 1 H 0 G 0 (iω p ) G 0 (iω p ) = 1/(iω p H 0 ) (iω p H 0 )G 0 (iω p ) = 1 ( iω p + 1 2 ) 2m r 2 v(r) + µ G σσ,0(r, r ; iω p ) = δ(r r )δ σσ (12) 1 v(r) G 0 (iω p ) G(iω p ) G 0 (iω p ) 1 iω p H = 1 1 1 + H 1 iω p H 0 iω p H 0 iω p H G(iω p ) = G 0 (iω p ) + G 0 (iω p ) Σ(iω p ) G(iω p ) Σ(iω p ) (13) Σ σσ (r, r ; iω p ) = rσ H 1 r σ (14) (14) 2 H 1 1 6

ψ σ + (r)ψ + σ (r )ψ σ (r )ψ σ (r) ψ σ + (r)ψ σ (r) ψ + σ (r )ψ σ (r ) ψ σ + (r)ψ σ (r ) ψ + σ (r )ψ σ (r) ψ + ψ G(τ = 0 + ) Σ σσ (r, r ; iω p ) δ(r r )δ σσ Σ H (r) + δ σσ Σ F (r, r ) (15) 1 Σ H (r) Σ H (r) dr u(r, r ) T G σσ (r, r ; iω p )e iωp0+ σ ω p = dr u(r, r )n(r ) (16) 1 Σ F (r, r ) Σ F (r, r ) u(r, r )T G σσ (r, r ; iω p )e iω p0 + (17) ω p Σ(iω p ) Σ H Σ(iω p ) [ Σ(iω p ) Σ H ] Σ F 1 ω p G G = G 0 + G 0 (Σ H + Σ) G (18) Σ (18) G 1.8 (15) HF (14) G(τ) (8) τ H H 0 U(τ) e H 0τ e Hτ ψ σ (r, τ) = U(τ) 1 e H 0τ ψ σ (r)e H 0τ U(τ) ψ σ (r, τ) e H 0τ ψ σ (r)e H 0τ H 1 (τ) = e H 0τ H 1 e H 0τ U(τ) S S(τ, τ ) U(τ)U(τ ) 1 S(τ, τ ) = 1 S(τ, τ ) τ = e H 0τ (H 0 H)e Hτ U(τ ) 1 = H 1 (τ)s(τ, τ ) (19) S [ S(τ, τ ) = T τ exp τ dτ 1 H 1 (τ 1 ) ] τ (20) Ω e βω = tr(e βh ) = e βω 0 S(β, 0) 0 (21) Ω 0 e βω 0 = tr(e βh 0 ) 0 e βω 0 tr(e βh0 ) 7

S(β, 0) (8) G σσ (r, r ; τ) = T τ [S(β, 0)ψ σ (r, τ)ψ + σ (r )] 0 S(β, 0) 0 (22) (21) (22) (22) G σσ (r, r ; τ) ψ σ (r, τ) ψ + σ (r ) c G σσ (r, r ; τ) = T τ [S(β, 0)ψ σ (r, τ)ψ + σ (r )] 0c (23) G σσ (r, r ; iω p ) 1.9 (23) (20) S(β, 0) H 1 G 0 G (0) G 0 1 G (1) G (1) = G 0 Σ H [G 0 ] G 0 + G 0 Σ F [G 0 ] G 0 (24) Σ H [G 0 ] Σ F [G 0 ] (16) (17) Σ H Σ F G G 0 2 (1) 2 G (2) 2 (2) Σ 2a [G 0 ] Σ 2b [G 0 ] G (2) = G 0 Σ 2a [G 0 ] G 0 + G 0 Σ 2b [G 0 ] G 0 +G 0 Σ H [G 0 Σ H [G 0 ] G 0 ] G 0 + G 0 Σ H [G 0 Σ F [G 0 ] G 0 ] G 0 +G 0 Σ F [G 0 Σ H [G 0 ] G 0 ] G 0 + G 0 Σ F [G 0 Σ F [G 0 ] G 0 ] G 0 +G 0 Σ H [G 0 ] G 0 Σ H [G 0 ] G 0 + G 0 Σ H [G 0 ] G 0 Σ F [G 0 ] G 0 +G 0 Σ F [G 0 ] G 0 Σ H [G 0 ] G 0 + G 0 Σ F [G 0 ] G 0 Σ F [G 0 ] G 0 (25) (24) Σ 1 [G 0 ] Σ H [G 0 ] + Σ F [G 0 ] (25) G 0 Σ 1 [G (1) ] G 0 + G 0 Σ 1 [G 0 ] G (1) (26) 2 2 2 Σ 2 [G 0 ] 1 Σ H [G 0 ] Σ F [G 0 ] n n Σ n [G 0 ] G Σ n [G 0 ] G 0 G Σ n [G] G = G (n) = G 0 + G 0 n=0 n=1 Σ n [G] G (27) 8

Σ Σ Σ Σ H F 2a 2b u G u G 0 0 G 0 G 0 G 0 G u u G 0 u 0 G 0 u 2: (1) (2) Σ H [G] Σ F [G] Σ H Σ F (27) (18) Σ Σ = Σ F [G] + Σ n [G] (28) n=2 Σ 1.10 LW: Luttinger-Ward Φ[G 0 ] [19] Φ[G 0 ] n Φ n [G 0 ] δφ n [G 0 ] δg 0 Σ n [G 0 ] (29) 1 ( ) Φ[G 0 ] = Φ n [G 0 ] = 2n tr G 0 Σ n [G 0 ] n=1 n=1 (30) tr( ) T ω p Φ[G 0 ] 3 3 Φ[G 0] = + + + + + + + + + +... 3: Φ[G 0 ] Φ[G 0 ] G 0 Φ[G 0 ] G 0 1 Σ H [G 0 ] 2 Σ F [G 0 ] Σ 2a [G 0 ] Σ 2b [G 0 ] n 9

2n G 0 (30) 1/2n Φ n [G 0 ] Σ n [G 0 ] Φ[G 0 ] G 0 G Φ[G] Σ Σ H + Σ = Σ n [G] = n=1 n=1 δφ n [G] δg = δφ[g] δg (31) Φ[G] Φ[G] Ω LW Ω [ ] Ω = tr e iωp0+ ln( G(iω p ) 1 ) + G(iω p )(Σ H + Σ(iω p )) + Φ[G] (32) (18) Σ H + Σ = G 1 0 G 1 G (32) G Ω[G] G δω[g] δg = G δ ( ) G 1 + Σ H + Σ Σ H Σ + δφ δg δg (33) (18) (31) δω[g]/δg = 0 G Ω[G] LW u(r, r ) [20] Φ[G] (31) Σ[G] Σ[G] (18) [21] 1.11 LW Φ[G] Σ [22] 5 G Σ Π W Γ 5 Γ e e ( eγ) LW Σ 4 1 (18) 2 3 4 Σ Π W 5 Γ Ĩ Σ/ G 5 G Σ Π W Γ 10

G0 (1) G : = + (2) Σ : Σ (4) W : = + Π Γ = (3) Π : Π = Γ Γ (5) Γ : δσ = + δg u + Γ Σ 4: 5 Ĩ 1.12 GW G 0 u LW u G 0 G G u W G W u W W 4 5 Γ = 1 Σ = GW Σ GW HF u W HF Φ[G] 3 2 3 5 GW Σ GW [23] G G 0 Π Σ GW G 0 W 0 GW G 0 W 0 11

1.13 GWΓ Σ Γ WI: Ward Identity Γ = 1 Σ 0 GW WI ~ Σ = GWΓ ~ W ~ u W= ~ 1+(u+ I ) Π WI Π WI WI Σ G= 1 G -1 Σ Γ Π = GGΓ WI WI 0 G Γ WI = -1-1 G -G -1-1 G 0 -G 0 5: WI Σ Γ [24] GWΓ 5 GWΓ G 0 W 0 Σ Γ G 0 W 0 GW GWΓ G 0 W 0 1 GWΓ GW TL: Tomonaga-Luttinger [25] TL GWΓ 1.14 12 9 1999 15 2009 750 12 12

[1] UTPhysics 1 2006 77-79 [2] h = k B = 1 [3] P.-O. Löwdin, Adv. Chem. Phys. 2, 207 (1959) 2007 [4] B. L. Hammond, W. A Lester, Jr. and P.J. Reynolds, Monte Carlo Methods in Ab Initio Quantum Chemistry (World Scientific, 1994); W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal, Rev. Mod. Phys. 73, 33 (2001). [5] 1999 85-89 [6] R. Jastrow, Phys. Rev. 98, 1479 (1955). [7] M. C. Gutzwiller, Phys. Rev. Lett. 10, 159 (1963). [8] E. Feenberg: Theory of Quantum Fluids (Academic, NY, 1969). [9] S. Fantoni and S. Rosati, Nuovo Cimento 25, 593 (1975). [10] S. F. Boys and N. C. Handy, Proc. Roy. Soc. A 309, 195; 209; 310, 43; 46; 311, 309 (1969). [11] F. Coester and H. Kümmel, Nucl. Phys. 17, 477 (1960). [12] Y. Takada, Phys. Rev. A 28, 2417 (1983); Phys. Rev. B 35, 6923 (1987). [13] G. Sandri, Ann. Phys. (NY) 24, 332 (1963); E. Gozzi and M. Reuter, Phys. Rev. E 47, 726 (1993). [14] P. Hohenberg and W. Kohn, Phys. Rev. 136, 864 (1964); W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965); W. Kohn, Rev. Mod. Phys. 71, 1253 (1999). [15] L. D. Landau, Sov. Phys. JETP 3, 920 (1956); 5, 101 (1957); 8, 70 (1959). [16] D. Pines: Elementary excitations in solids (Benjamin, 1963). [17] Y. Takada, Phys. Rev. B 43, 5979 (1991). [18] II 3 1996); 1998); D. W. Lynch and C. G. Olsen, Photoemission Studies of High-Temperatue Superconductors (Cambridge University Press, 1999); S. Hufner: Photoelectron Spectroscopy (Springer, Berlin, 2003); W. Schülke: Electron Dynamics by Inelastic X-Ray Scattering (Oxford University Press, 2007). [19] J. M. Luttinger and J. C. Ward, Phys. Rev. 118, 1417 (1960). [20] P. Nozières and J. M. Luttinger, Phys. Rev. 127, 1423 (1962); J. M. Luttinger and P. Nozières, Phys. Rev. 127, 1431 (1962). [21] G. Baym and L. P. Kadanoff, Phys. Rev. 124, 287 (1961); G. Baym, Phys. Rev. 127, 1391 (1961). [22] L. Hedin, Phys. Rev. 139, A796 (1965). [23] GW F. Aryasetiawan and O. Gunnarsson, Rep. Prog. Phys. 61, 237 (1998); W. G. Aulbur, L. Jönsson, and J. W. Wilkins, in Solid State Physics, edited by H. Ehrenreich and F. Spaepen (Academic, New York, 2000), Vol. 54, p.1. [24] Y. Takada, Phys. Rev. Lett. 87, 226402 (2001); Y. Takada and H. Yasuhara, Phys. Rev. Lett. 89, 216402 (2002); S. Ishii, H. Maebashi, and Y. Takada, unpublished. [25] I. E. Dzyaloshinskii and A. I. Larkin, Soviet Phys. JETP 38, 202 (1974); W. Metzner, C. Castellani, C. D. Castro, Adv. Phys. 47, 317 (1998). 13