放射線化学, 92, 39 (2011)

Similar documents
23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

untitled

総研大恒星進化概要.dvi

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

PDF

Drift Chamber


2.1: n = N/V ( ) k F = ( 3π 2 N ) 1/3 = ( 3π 2 n ) 1/3 V (2.5) [ ] a = h2 2m k2 F h2 2ma (1 27 ) (1 8 ) erg, (2.6) /k B 1 11 / K

本文/目次(裏白)

LLG-R8.Nisus.pdf

白山羊さんの宿題.PDF

Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

陽電子科学 第4号 (2015) 3-8

Mott散乱によるParity対称性の破れを検証

第86回日本感染症学会総会学術集会後抄録(I)

プログラム

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg (

( ) ,

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge


(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

_0212_68<5A66><4EBA><79D1>_<6821><4E86><FF08><30C8><30F3><30DC><306A><3057><FF09>.pdf

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)


ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

高知工科大学電子 光システム工学科

gr09.dvi

untitled

K 1 mk(

日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号

(Blackbody Radiation) (Stefan-Boltzmann s Law) (Wien s Displacement Law)

thesis.dvi

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

25 3 4

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.

抄録/抄録1    (1)V

1 2 1 a(=,incident particle A(target nucleus) b (projectile B( product nucleus, residual nucleus, ) ; a + A B + b a A B b 1: A(a,b)B A=B,a=b 2 1. ( 10

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

Evolutes and involutes of fronts Masatomo Takahashi Muroran Institute of Technology

QMI_10.dvi

研修コーナー

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

パーキンソン病治療ガイドライン2002

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

news

構造と連続体の力学基礎

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

From Evans Application Notes

スライド 1

液晶の物理1:連続体理論(弾性,粘性)

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

Microsoft Excelを用いた分子軌道の描画の実習

pdf

放射線化学, 97, 29 (2014)


untitled

Muon Muon Muon lif

Formation process of regular satellites on the circumplanetary disk Hidetaka Okada Department of Earth Sciences, Undergraduate school of Scie

8 300 mm 2.50 m/s L/s ( ) 1.13 kg/m MPa 240 C 5.00mm 120 kpa ( ) kg/s c p = 1.02kJ/kgK, R = 287J/kgK kPa, 17.0 C 118 C 870m 3 R = 287J

I

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

Mathews Grant J. (University of Notre Dame) Boyd Richard N. (Lawrence Livermore National Laboratory) 2009/5/21

Note.tex 2008/09/19( )

X線分析の進歩36 別刷

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

4‐E ) キュリー温度を利用した消磁:熱消磁

平成12年度

devicemondai

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

C: PC H19 A5 2.BUN Ohm s law

B


数学の基礎訓練I

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

I ( ) 2019

成長機構

1 1 (proton, p) (neutron, n) (uud), (udd) u ( ) d ( ) u d ( ) 1: 2: /2 1 0 ( ) ( 2) 0 (γ) 0 (g) ( fm) W Z 0 0 β( )

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

ha ha km2 15cm 5 8ha 30km2 8ha 30km2 4 14

H22応用物理化学演習1_濃度.ppt

main.dvi

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

H22環境地球化学4_化学平衡III_ ppt

1 223 KamLAND 2014 ( 26 ) KamLAND 144 Ce CeLAND 8 Li IsoDAR CeLAND IsoDAR ν e ν µ ν τ ν 1 ν 2 ν MNS m 2 21

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

橡実験IIINMR.PDF

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

atomic line spectrum emission line absorption line atom proton neutron nuclei electron Z atomic number A mass number neutral atom ion energy

Transcription:

V. M. S. V. 1 Contents of the lecture note by Prof. V. M. Byakov and Dr. S. V. Stepanov (Institute of Theoretical and Experimental Physics, Russia) are described in a series of articles. The first article concerns basic concepts, classification and sources of ionizing radiations. Translation into the Japanese language is based on the arrangement between the Japanese Society of Radiation Chemistry and National Research Nuclear University MEPhI, Russian Federation. Keywords: radiation chemistry, radiolysis, early process V. M. S. V. 1 5 99% Foundations of Radiation Chemistry Early Processes of Radiolysis by V. M. Byakov and S. V. Stepanov, Part 1 Yoshinori Kobayashi (National Institute of Advanced Industrial Science and Technology), Toshitaka Oka (Japan Atomic Energy Agency), 305 8565 1 1 1, TEL: 029-861-4886, FAX: 029-861-4622, E-mail: y-kobayashi@aist.go.jp 18 19 100 1895 X 1896 *1 1887 *1 radio activity radio radius activus α β γ X

, *2 α β γ 1944 M. Burton A. K. 1985 1987 *2 1897 J. J. 1.6 10 19 C 4.8 10 10 esu 9.1 10 31 kg 1/2 1.001 0.927 10 23 J/T=0.927 10 20 erg/g 20 1260 α 92 (2011) 40

V. M. S. V. 1 1 O 2 NO *3 H Li Na 2 OH 1 H + O H + H O H 1 OH e + (CH 3 ) 2 CO (CH 3 ) 2 CO (1) D SI Gy *4 1Gy 1kg 1J 1rad *5 1rad= 100 erg/g = 0.01 Gy ev/g ev/cm 3 1Gy= 6.24 10 15 ev/g = 6.24 10 15 ρ ev/cm 3 ρ g/cm 3 *3 cathode anode cation anion *4 Louis Harold Gray *5 radiation absorbed dose 41

, i G i de dn i de 100 ev *6 G i = f (D) G 0 i G i (D) D D 0 G i = dn i de = 1 ρ d(n i /V) d(e/ρv) = 1 ρ dc i dd ρ c i i 10 /100 ev (2) 1. G(-H 2 O) 2. *6 100 ev 1J 1J 2 G /100 ev = 9.68 G μmol/j 3. 100 ev 10 6 10 8 G i dc i /dt c i i /cm 3 G i = dn i /de n i E 100 ev ρ g/cm 3 D ev/g Ḋ ev/(g s) *7 dc i dt = G i Ḋ ρ 100 dc i = G i Ḋ dt ρ 100 1 N A (3) c i dm 3 mol/dm 3 M ρ dm 3 kg kg ev N A = 6 10 23 2 γ 10 ev α β γ 1903 *7 dose rate 92 (2011) 42

V. M. S. V. 1 30 5 8 MeV α 0.1 2 MeV β 40 K 1MeV β 40 K 10 5 1 2.1 2.1.1 α α α 4 2He 2e 4 α 5 8 MeV α 8MeV 1g α 100 cal/h 4 1g 1 α G. 1928 α α α α α α α 2.1.2 β β 0.1 2MeV β β + K 1 α β β β E E + de β E β β 2 β E max β β α α β E max 0.3 3 MeV 3 H β β 18 kev 5.7 kev β E max β β W. 1931 E max 2/3 β 1/3 β 43

, 22 Na 227 Ra 542 kev 1.2 MeV 227 Raβ 0 0.5 1 β MeV 2 22 Na β + 227 Ra β β n p + e + ν e p n + e + + ν e β α β 1934 2.1.3 γ α β γ γ γ γ γ K X 2.1.4 Z 90 Th Pa U m 1 : m 2 2:3 K. A. G. N. 1940 235 92 U 160 MeV 2.1.5 α α α 0.001 2.1.6 α N(t) dt N(t) dn dn N(t) dt dn = λ N(t) dt (4) 92 (2011) 44

V. M. S. V. 1 λ (4) dn/dt = λn N(t) N(t) = N 0 e λt = N 0 e t/τ (5) N 0 t=0 τ=1/λ exp 2 N(t) = N 0 2 t/t 1/2 (6) T 1/2 T 1/2 (5) (6) T 1/2 = ln 2 λ = τ ln 2 0.693τ (7) / g t -1 10 1 0.1 238 U 235 U 0.01-6 -4-2 0 / 10 3 g/t 3 / 2.1.7 235 U 238 U 235 N 0 / 238 N 0 50 238 U 235 U 0.00725 235 U τ 238 = 6.5 10 9 τ 235 = 10 9 1 3 4 3 50 235 U 238 U 1 3 4 10 1 1 0.95 erg 1 1 0.27 erg 1 1 6erg/(t s) = 1.4 10 7 cal/(t s) *8 A = 7.7 10 13 cal/(cm 3 s) 5.5 g/cm 3 Q = 4 3 πr3 A 8 10 14 cal/s (8) R = 6400 km ( ) dt Q = 4πR 2 κ (9) dr κ 0.004 cal/(deg cm s) r=r *8 K. U. Astrofizicheskie Velichini Moskva IL 1960 45

, ( ) dt = AR 0.04 deg/cm (10) dr r=r 3κ 3 10 4 deg/cm 100 R 2 /(6D T ) 3 10 11 D T = 0.006 cm 2 /s h h << R ( ) dt R 4πR 2 κ = A 4πr 2 dr 4πR 2 ha (11) dr R h r=r ( ) dt dr r=r Ah κ (12) 0.0003 deg/cm h 10 km t 10 U g/t α β γ MGy τ 238 = 6.5 10 D α D β D γ α β γ D total D α = 17.38 U (e t/6.5 1) 2.8 Ut D β = 2.28 U (e t/6.5 1) 0.368 Ut D γ = 1.48 U (e t/6.5 1) 0.239 Ut D total = 21.14 U (e t/6.5 1) 3.4 Ut MGy α α β γ 82.2 10.8 7% 232 Th α D α MGy = (2.8 U + 0.8 Th) t U Th g/t t 10 2.1.8 20 1972 0.72% 235 U 0.64% 235 U 0.71 10 9 238 U 4.5 10 9 235 U 30 235 U 2 10 9 0.6 10 6 *9 300 m 3 0.1 MW 400 600 C 2.1.9 1912 *9 235 U 3% 92 (2011) 46

V. M. S. V. 1 90% α 7% 1.2% 1.5%0.3% 10 5 Z > 30 2 /(cm 2 s) 1 1 1 ev/cm 3 3 10 8 1 10 8 ev 10 20 ev 10 10 ev 10 9 ev F(E) F(E)dE E 2.7 de 4 70% 30% 0.1 1% 30 1 4 1 J, 1/(cm 2 s) 0.1 0.01 0.001 0 200 400 600 800 1000 x, g/cm 2 μ ± 4 1 1cm 2 x 1cm 2 x = 1kg/1 cm 2 = 1000 g/1cm 2 2.1.10 5 14 N 14 C n + 14 N 14 C + 1 H 4MeV 5% n + 14 N 12 C + 3 H 14 C 2.2 cm 2 s 1 0.2 cm 2 s 1 14 CO 2 3 HOH 14 C 3 H 5730 12.33 25 47

, 3 He ++ 7 Be + + 14 N + 14 N 14 C + + 14 N 5 14 C 14 N 14 N 14 C 12 C 14 C 3 H 14 C 14 C 14 C 5500 6 2.2 2.2.1 10 15 /(cm 2 s) 100 ev 10 MeV 2MeV 2000 0-2000 -4000-4000 -2000 0 2000 6 14 C M. Astrofizika Visokikh Energii M. Mir 1984 β β 1953 1956 β γ 60 Co 60 Co γ 2.2.2 1931 0.5 5MeV 92 (2011) 48

V. M. S. V. 1 E. 1931 40 kv kv 1MV 100 MeV Moscow Institute of Steel and Alloys 1987 Spin dynamics of the polarized short-lived betaactive nuclei. Beta-NMR spectroscopy ITEP Ph. D. 2005 Positrons in molecular media: theoretical grounds of positron annihilation spectroscopy ITEP National Research Nuclear University MEPhI Vsevolod Mikhailovich Byakov 1954 Lomonosov Moscow State University ESR Institute of Theoretical and Experimental Physics, ITEP 1973 ITEP D. Mendeleev University of Chemical Technology of Russia Sergey Vsevolodovich Stepanov 1983 7 1976 1981 1997 1998 2003 2009 49