Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

Similar documents
, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

prime number theorem

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

2 2 L 5 2. L L L L k.....

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

Z: Q: R: C: sin 6 5 ζ a, b

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

x 3 a (mod p) ( ). a, b, m Z a b m a b (mod m) a b m 2.2 (Z/mZ). a = {x x a (mod m)} a Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} a + b = a +

TOP URL 1

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

Note.tex 2008/09/19( )

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 +

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

Part () () Γ Part ,

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%


untitled

( ) ( ) 1729 (, 2016:17) = = (1) 1 1

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

meiji_resume_1.PDF

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt

1 Tokyo Daily Rainfall (mm) Days (mm)

Chap11.dvi

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

i

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

1 yousuke.itoh/lecture-notes.html [0, π) f(x) = x π 2. [0, π) f(x) = x 2π 3. [0, π) f(x) = x 2π 1.2. Euler α

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

chap1.dvi

keisoku01.dvi

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

newmain.dvi

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

Z: Q: R: C: 3. Green Cauchy

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct

2011de.dvi

Z: Q: R: C:

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

, ( ) 2 (312), 3 (402) Cardano

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

- II

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

平成 29 年度 ( 第 39 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 29 ~8 年月 73 月日開催 31 日 Riemann Riemann ( ). π(x) := #{p : p x} x log x (x ) Hadamard de

III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1

08-Note2-web

y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t) =(x(t),y(t),z(t)) ( dp dx dt = dt, dy dt, dz ) dt f () > f x


f(x) x = A = h f( + h) f() h A (differentil coefficient) f(x) f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) * t (velo

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

Morse ( ) 2014

O f(x) x = A = lim h f( + h) f() h A (differentil coefficient) f f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) * t (v

I

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a,

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S

6.1 (P (P (P (P (P (P (, P (, P.

201711grade1ouyou.pdf

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

DVIOUT

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 R n (x (k) = (x (k) 1,, x(k) n )) k 1 lim k,l x(k) x (l) = 0 (x (k) ) 1.1. (i) R n U U, r > 0, r () U (ii) R n F F F (iii) R n S S S = { R n ; r > 0

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

II (No.2) 2 4,.. (1) (cm) (2) (cm) , (

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

数学の基礎訓練I


°ÌÁê¿ô³ØII

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

Transcription:

3 3 22 Z[i] Z[i] π 4, (x) π 4,3 (x) x (x ) 2 log x π m,a (x) x ϕ(m) log x. ( ). π(x) x (a, m) = π m,a (x) x modm a π m,a (x) ϕ(m) π(x) ϕ(m) x log x ϕ(m) m f(x) g(x) (x α) lim f(x)/g(x) = x α mod m (a, m) > π m,a (x) (a, m) =

2 2. 2. (Cauchy ). {a n } ϵ > 0 n 0 p > n 0, q > n 0 a p a q < ϵ 2.2 (). {a n } s n = a + a 2 +... a n lim s n = s n a n = a + a 2 + + a n + s lim s n = ± Cauchy 2. ϵ > 0 R n,m = s m s n = a n+ + a n+2 + + a m R n,m < ϵ 2.3 (). a n a n a n R n,m = a n+ + a n+2 +... a m a n+ + a n+2 +... a m n a n

2.4 ( ). x f (x), f 2 (x),..., f n (x),... x f(x) ϵ > 0 n 0 n > n 0, x [a, b] f(x) f n (x) < ϵ x {f n (x)} [a, b] f(x) a n = a n (x) x n s n (x) = a v (x) v= s n (x) s(x) s(x) s n (x) = v=n+ a v (x) = R n (x) R n (x) 0 2.5. a n (x) c n, c n c n a n (x) 2.6. f(x) f(x) = O(g(x)) f(x) g(x) g(x) 0 ( x, ) f(x) = o(g(x)) f(x) ( ) g(x) f(x) g(x) 2 2.. 2.7 ( ). U C a U ϵ > 0 z a < ϵ z U 2

a a a a 2.8. f U f U C / 2.9 ( ). U U f a f(z) = a 0 + a (z a) + a 2 (z a) 2 +... Taylor Taylor 2.0 ( ). f, g f = g f = g 2.. {z C r < z a < R} f f(z) = a n (z a) n Laurent 2.2 (). a a Laurent a n 0 n a a n 0 n m m 0 f a a m > 0 a m U U

2.3 ( ). z = z 0 f(z) f z = z 0 Laurent z z 0 a f z = z 0 Res z=z0 f(z) = a z = z 0 Res z=z0 f(z) = lim z z 0 {(z z 0 )f(z)} 2.4. f, g f ± g, fg, f f, g g 0 f/g 2.5. 3 f, f 2,... U f f f (z) = lim n f n(z) 2.6 ( ). 2 D, D 2 f (z) D D D 2 f (z) D 2 f 2 (z) f 2 (z) f (z) D 2 2.0 D 2. f (z) = n=0 z n z < z z < f (z) = ( z < ) z f 2 (z) = (z ) z C {} 2 z < f = f 2 f 2 f z = C 3

2.2 2.7 (Abel ). G + : G G G G a, b, c (G) (G4) G Abel G a + b = b + a G2 a + (b + c) = (a + b) + c G3 G e G a a + e = e + a = a G4 G b b + ( b) = ( b) + b = e G ( b) G Abel 2.8 ( ). G G card(g) 2.9 ( ). G G C χ G a, b χ(ab) = χ(a)χ(b) G Ĝ 2.20. χ χ(a) = a card(g) = e() 2.2. χ(a ) = χ(a) = χ(a) 2.22 (). χ, χ 2 Ĝ (χ χ 2 )(a) = χ (a)χ 2 (a) Ĝ Abel G 2.23. H G H G 2.24. card(g) = card(ĝ) 2.25. n = card(g), χ Ĝ { n (χ = ) χ(a) = 0 (χ ) a G

2.26. n = card(g), a G { n (a = ) χ(a) = 0 (a ) χ Ĝ G (Z/mZ) (a, m) > a χ(a) = 0 χ Z C modm χ(n) modm 4 2.3 [2] p s, z n m a 3 [] 3.. ζ(s), Φ(s), θ(x) ζ(s) = n s, Φ(s) = p log p p s, θ(x) = log p (s C, x R) p x 3.2 (Euler ). ζ(s) = p ( p s ) (Re(s) > ) 4

. 3.3 ( ). ζ(s) Re(s) > 0 s. ϕ n (s) = s = n+ n t s dt = n+ n t s dt (n s t s )dt ϕ(s) = ϕ n (s) Re(s) > 0 ϕ n (s) Re(s) > 0 k ϕ n (s) Re(s) > 0 ϕ n (s) n+ n n s t s = n s t s dt sup n s t s n t n+ t n t = s s dt ts+ s dt t s+ n t n s n x+ dt t x+ (x = Re(s)) ϕ n (s) s S Re(s) > 0 nx+ s S s Re(s) M, m S ϕ n (s) M k n m+ 2.5 ϕ n (s) ϕ(s) Re(s) > 0 3.4. θ(x) = O(x). n N 2 2n = ( + ) 2n ( ) 2n n n<p 2n p = e θ(2n) θ(n)

( ) n < p 2n p 2n p = (2n)!/(n!) 2 n 2n log 2 θ(2n) θ(n) θ(x) x log x θ(2x) θ(x) = θ( 2x ) θ( x ) θ(2 x + ) θ( x ) θ(2 x ) + log(2 x + ) θ( x ) 2 x log 2 + log(2x + ) 2x log 2 + log(2x + ) C > 2 log 2 x 0 = x 0 (C) x > x 0 θ(2x) θ(x) Cx x/2 r+ < x 0 x/2 r r x, x/2, x/4,..., x/2 r θ(x) < 2Cx+θ(x 0 ) θ(x) = O(x) 3.5 (ζ ). ζ(s) 0(Re(s) ) Φ(s) s. σ > Euler log ζ(σ + it) = ( ) log ζ(s) + log ζ(s) 2 = ( log( p s ) + log( p s ) ) 2 p = (p s + 2 2 p 2s + 3 p 3s + + p s + p 2 s + ) 2 p = p = p (Re(p s ) + 2 Re(p 2s ) + ) k= cos(kt log p) kpkσ Euler Re(s) > ζ(+it) = 0

log ζ(σ) 3 ζ(σ + it) 4 ζ(σ + 2it) = k,p (3 + 4 cos(kt log p) + cos(2kt log p)) kpkσ ζ(σ) 3 ζ(σ + it) 4 ζ(σ + 2it) σ ζ(σ) 3 = O( (σ ) 3 ) ζ(σ + it) 4 = O((σ ) 4 ) ζ(σ + 2it) = O() = 2 k,p kp kσ ( + cos(kt log p))2 0 ζ(σ) 3 ζ(σ + it) 4 ζ(σ + 2it) 0 (σ ) Φ(s) Euler ζ ζ (s) = p log p p s = Φ(s) + p log p p s (p s ) Re(s) > /2 Φ(s) s = ζ(s) Re(s) ζ(s) s = ζ(s) /(s ) = ϕ(s) ϕ(s) Re(s) ζ ζ (s) = ϕ (s) (s ) 2 ϕ(s) + (s ) s (s ) s = 3.6.. Re(s) > θ(x) x x 2 dx Φ(s) = p log p dθ(x) θ(x) p s = x s = s dx = s xs+ 0 e st θ(e t )dt

Stieltjes 5 θ(x) Φ(s) Stieltjes θ(x) s x s+ dx = k= = pk+ p k θ(p k )( p s k= k = = k= k= s x s+ θ(p k)dx ( p k k ) p s ) k+ (θ(p k ) θ(p k )) p s k log p k p s k = Φ(s) ( p 0 = ) 3.7. f(t) t 0 a, b R 0 b a f(t)dt g(z) = f(t)e zt dt(re(z) > 0) Re(z) 0 0 f(t)dt g(0) [] f(t) = θ(e t )e t, g(z) = Φ(z + )/(z + ) /z f(t) 3.4 g(z) = (Φ(z + ) /z )/(z + ) 3.5 Re(z) 0 g(z) = 3.8. θ(x) x 0 0 f(t)e zt dt f(t)dt = θ(x) x x 2 dx. θ(x) 3.6 5

θ(x) > λx x λ > λx x dt θ(t) t t 2 dt > λx x λx t t 2 dt = λ log λ > 0 θ(x) 3.6 λx θ(t) t x t 2 dt 0(x ) θ(x) < λx x λ < x λx θ(t) t t 2 dt < x λx λx t t 2 dt = (λ log λ) < 0 θ(x)/x (x ) θ(x) = p x log p x p x log x = π(x) log x ϵ > 0 θ(x) log p x ϵ p x x ϵ p x ( θ(x) x ϵ ) x( ϵ) + O log x x ( ϵ) log x = ( ϵ) log x(π(x) + O(x ϵ ) π(x) log x x θ(x) x x, ϵ 0 4 4.. L(s, χ) = χ(n) n s, Φ m,a(s) = χ(a) χ(p) log p p s p,χ

θ m,a (x) = ϕ(m) p x p a (mod m) log p 4.2 (Euler ). L(s, χ) = p ( χ(p) p s ) (Re(s) > ) 4.3. χ L(s, χ) Re(s) > 0 s = ϕ(m)/m. χ Re(s) > 0 f k (s) = m χ(n) (km + n) s L(s, χ) = f 0(s) + f k (s) f k (s) = m χ(n)( (km + n) s m (km) s ) (χ χ(n) = 0) = m χ(n) ( km+n s km x s+ dx) m χ(n) n s (km) s+ m s k σ+ k= ( Re(s) = σ ) s = m k σ+ f k (s) Re(s) > 0 k= χ L(s, χ) Euler L(s, χ) = (n,m)= n s = ζ(s) ( p s ) p m ζ(s) s = ( p ) = ϕ(m) m p m 4.4. θ m,a (x) = O(x)

. 3.4 4.5 ( ). Re(s) L(s, χ) 0, Φ m,a (s) s. Euler L(s, χ) Re(s) > L(+ it, χ) = 0 ζ(s) log L(s, χ) = ( (χ(p) ) ) k k Re p s = kp kσ cos(k( c p + t log p)) k,p k,p c p χ p = e icp χ ζ(s) χ log L(σ, ) 3 L(σ + it, χ) 4 L(σ + 2it, χ 2 ) = k,p kp kσ (3 + 4 cos(k( c p + t log p)) + cos(k( 2c p + 2t log p)) = 2 k,p L(σ, ) 3 L(σ + it, χ) 4 L(σ + 2it, χ 2 ) kp kσ ( + cos(k( c p + t log p)) 2 0 σ L(σ, ) 3 L(σ + it, χ) 4 L(σ + 2it, χ 2 ) 0 σ L(σ + it, χ) 4 = O((σ ) 4 ) L(σ, ) = O((σ ) 3 ), L(σ + 2it, χ 2 ) = O() χ 2 L(, χ) = 0 t = 0 L(σ + 2it, χ 2 ) = O(/(σ )) L(σ, ) 3 L(σ + it, χ) 4 L(σ + 2it, χ 2 ) 0 L(, χ) 0 6 4.6. χ L(, χ) 0 Dirichlet 6 χ 2 χ χ

[3, 4, 5] L(s, χ) Re(s) L(s, χ) Euler L (s, χ) = L p χ(p) log p p s χ(p) = p χ(p) log p p s + χ(p)2 log p p s (p s χ(p)) Re(s) > /2 χ(p) log p p s L(s, χ) p Φ m,a (s) = χ(a) χ(p) log p p s Φ m,a (s) p,χ s = L (s, ) L L ζ (s, ) = L ζ (s) + + p s log p p s p m s = Φ(s) 4.7.. Φ m,a (s) = p,χ = θ m,a (x) x x 2 dx = s 0 χ(a) χ(p) log p p s dθ m,a (x) = s x s e st θ m,a (e t )dt = ϕ(m) θ m,a (x) x s+ dx p a (mod m) log p p s 3.6 Φ m,a (s) mod m a L(s, χ) Φ m,a 4.8. θ m,a (x) x

5 Z[i] Z[i] x π Z[i] (x) Z[i] π Z[i] (x) = 2π 4, (x) + π 4,3 ( x) + x log x 6 modm p A p s log s k R (s ) k A modm x A π(x) k(x ) A k

m= m π(x/m ) = Li(x) ρ Li(x ρ dt ) + x t(t 2 ) log t log 2 dt Li(x) = 2 log t x ρ ζ(s) log x ζ(s) Re(s) < π m,a (x) L(s, χ) ζ(s) π(x) Li(x) ζ(s) Re(s) = /2 s.genki0605@gmail.com HP(http://f59.aaa.livedoor.jp/~nadamath/ ) 5 4 [] D.Zagier Newman s Short Proof of the Prime Number Theorem (the American Mathematical Monthly,Vol.04,No.8,705-708) [2] G.H.Hardy,E.M.Wright I,II, 200 [3] T.M.Apostol Introduction to Analytic Number Theory (Springer,976) [4] Jean-Pierre Serre A Course in Arithmetic (Springer,973)

[5],, I -Fermat,2005 [6] 983 [7] 974 [8] R.v.Churchill,J.W.Brown,989