316 on One Hundred Years of Boundary Layer Research, Proceedings of the IUTAM Symposium held at DLR-Göttingen, Germany, 2004, (eds. G. E. A. Meier and

Similar documents
Shunsuke Kobayashi 1 [6] [11] [7] u t = D 2 u 1 x 2 + f(u, v) + s L u(t, x)dx, L x (0.L), t > 0, Neumann 0 v t = D 2 v 2 + g(u, v), x (0, L), t > 0. x

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

チャネル乱流における流体線の伸長

ohp_06nov_tohoku.dvi

([15], [19]) *1 ( ) 2, 3 ([2, 14, 1]) ẋ = v + m 0 (h a (cl + x) h a (cl x)), v = v [ δ m 1 (v 2 + w 2 ) ] + m 2 (h a (cl + x) h a (cl x)), ẏ

02[ ]小林(責).indd

xia2.dvi

1 : ( ) ( ) ( ) ( ) ( ) etc (SCA)

Fig. 1 Experimental apparatus.


NUMERICAL CALCULATION OF TURBULENT OPEN-CHANNEL FLOWS BY USING A MODIFIED /g-e TURBULENCE MODEL By Iehisa NEZU and Hiroji NAKAGA WA Numerical calculat

ver.1 / c /(13)

多孔質弾性体と流体の連成解析 (非線形現象の数理解析と実験解析)

1 capillary-gravity wave 1) 2) 3, 4, 5) (RTI) RMI t 6, 7, 8, 9) RMI RTI RMI RTI, RMI 10, 11) 12, 13, 14, 15) RMI 11) RTI RTI y = η(x, t) η t

時間遅れをもつ常微分方程式の基礎理論入門 (マクロ経済動学の非線形数理)

20 $P_{S}=v_{0}\tau_{0}/r_{0}$ (3) $v_{0}$ $r_{0}$ $l(r)$ $l(r)=p_{s}r$ $[3 $ $1+P_{s}$ $P_{s}\ll 1$ $P_{s}\gg 1$ ( ) $P_{s}$ ( ) 2 (2) (2) $t=0$ $P(t

二次元コルモゴロフ流における局在乱流 (乱流を介在した流体現象の数理)

1. ( ) L L L Navier-Stokes η L/η η r L( ) r [1] r u r ( ) r Sq u (r) u q r r ζ(q) (1) ζ(q) u r (1) ( ) Kolmogorov, Obukov [2, 1] ɛ r r u r r 1 3

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

133 1.,,, [1] [2],,,,, $[3],[4]$,,,,,,,,, [5] [6],,,,,, [7], interface,,,, Navier-Stokes, $Petr\dot{o}$v-Galerkin [8], $(,)$ $()$,,


sakigake1.dvi

カルマン渦列の発生の物理と数理 (オイラー方程式の数理 : カルマン渦列と非定常渦運動100年)

untitled

工学的な設計のための流れと熱の数値シミュレーション


TM

日本数学会・2011年度年会(早稲田大学)・企画特別講演

空間多次元 Navier-Stokes 方程式に対する無反射境界条件

三石貴志.indd

Microsoft Word - 中間報告書12-NA10.doc

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

H10Masuki

IDRstab(s, L) GBiCGSTAB(s, L) 2. AC-GBiCGSTAB(s, L) Ax = b (1) A R n n x R n b R n 2.1 IDR s L r k+1 r k+1 = b Ax k+1 IDR(s) r k+1 = (I ω k A)(r k dr

Anderson ( ) Anderson / 14

7 OpenFOAM 6) OpenFOAM (Fujitsu PRIMERGY BX9, TFLOPS) Fluent 8) ( ) 9, 1) 11 13) OpenFOAM - realizable k-ε 1) Launder-Gibson 15) OpenFOAM 1.6 CFD ( )

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

200708_LesHouches_02.ppt

Effect of Radiation on a Spray Jet Flame Ryoichi KUROSE and Satoru KOMORI Engineering Research Laboratory, Central Research Institute of Electric Powe

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25

60 1: (a) Navier-Stokes (21) kl) Fourier 2 $\tilde{u}(k_{1})$ $\tilde{u}(k_{4})$ $\tilde{u}(-k_{1}-k_{4})$ 2 (b) (a) 2 $C_{ijk}$ 2 $\tilde{u}(k_{1})$

$arrow$ $\yen$ T (Yasutala Nagano) $arrow$ $\yen$ ?,,?,., (1),, (, ).,, $\langle$2),, (3),.., (4),,,., CFD ( ),,., CFD,.,,,

teionkogaku43_527

CPU Levels in the memory hierarchy Level 1 Level 2... Increasing distance from the CPU in access time Level n Size of the memory at each level 1: 2.2

(Mamoru Tanahashi) Department of Mechanical and Aerospaoe Engineering Tokyo Institute of Technology ,,., ,, $\sim$,,

Fig. 1 KAMOME50-2 Table 1 Principal dimensions Fig.2 Configuration of the hydrofoils (Endurance and sprint foil) Fig. 3 Schematic view of the vortex l

1

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x


(a) (b) (c) (d) 1: (a) (b) (c) (d) (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4

特集_03-07.Q3C

IPSJ SIG Technical Report Vol.2014-CG-155 No /6/28 1,a) 1,2,3 1 3,4 CG An Interpolation Method of Different Flow Fields using Polar Inter

九州大学学術情報リポジトリ Kyushu University Institutional Repository 楕円回転流の弱非線形安定性のためのオイラー ラグランジュ混合法 福本, 康秀九州大学大学院数理学研究院 Fukumoto, Yasuhide Faculty of Mathematics

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

é éτ Γ ζ ä

! " # Engineering First

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha

IPSJ SIG Technical Report Vol.2014-HPC-143 No /3/3 Identity Parareal 1,2,a) 3 Parareal-in-Time (identity) Identity Parareal, Parareal-in-Time,

s: Stokes 0: total quantity 1,2: quantity evaluated at the same velocity Literature 1) Bird, R. B., et al.: "Transport Phenomena", p.62(1960),j ohn Wi

: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs

,

Developement of Plastic Collocation Method Extension of Plastic Node Method by Yukio Ueda, Member Masahiko Fujikubo, Member Masahiro Miura, Member Sum


(2005) (2005) 1 2 ( 1 ) 20km 2 4km 20km 40km 400km 10 1km 2km Ruscher and Deardroff (1982) Dempsey and Rotunno (1988) Smolarkiewcz et al. (1988) Smola

g µν g µν G µν = 8πG c 4 T µν (1) G µν T µν G c µ ν 0 3 (1) T µν T µν (1) G µν g µν 2 (1) g µν 1 1 描

pp * Yw; Mq 1. 1L 20 cc [1] Sonoluminescence: Light emission from acoustic cavitation bubble. Pak-Kon Choi (Departm

²ÄÀÑʬΥ»¶ÈóÀþ·¿¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤ÎÁ²¶á²òÀÏ Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation

わるダイナミクスの理解が深まれば幸いである 文献等については全く網 羅的ではなく, 本予稿を作成するに用いた教科書的なもの [1, 2, 3, 4, 5, 6]) のみを中心に記載したので重要なものが多々抜けていると思われる どう かご容赦願いたい 2 周期構造-泡筏- はん で押したようなという言

九州大学学術情報リポジトリ Kyushu University Institutional Repository ソリトンの二次元相互作用について 及川, 正行九州大学応用力学研究所 辻, 英一九州大学応用力学研究所 Oikawa, Masayuki Research Institute for A

Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applie

,, Mellor 1973),, Mellor and Yamada 1974) Mellor 1973), Mellor and Yamada 1974) 4 2 3, 2 4,

Caloric Behavior of Chemical Oscillation Reactions Shuko Fujieda (Received December 16, 1996) Chemical oscillation behavior of Belousov- Zhabotinskii

Relaxation scheme of Besse t t n = n t, u n = u(t n ) (n = 0, 1,,...)., t u(t) = F (u(t)) (1). (1), u n+1 u n t = F (u n ) u n+1 = u n + tf (u n )., t

カルマン渦列の消滅と再生成 (乱流研究 次の10年 : 乱流の動的構造の理解へ向けて)

知識ベースCFD

320_…X…e†Q“õ‹øfiÁ’F

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

IPSJ SIG Technical Report Vol.2011-HPC-131 No /10/6 1 1 Parareal-in-Time Applicability of Time-domain Parallelism to Iterative Linear Calculus T

Web Two-phase Flow Analyses Using Interface Volume Tracking Tomoaki Kunugi Kyoto University 1) 2) 3)

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L


(a) (b) (c) 4. (a) (b) (c) p.2/27

,,, 2 ( ), $[2, 4]$, $[21, 25]$, $V$,, 31, 2, $V$, $V$ $V$, 2, (b) $-$,,, (1) : (2) : (3) : $r$ $R$ $r/r$, (4) : 3

Title 混合体モデルに基づく圧縮性流体と移動する固体の熱連成計算手法 Author(s) 鳥生, 大祐 ; 牛島, 省 Citation 土木学会論文集 A2( 応用力学 ) = Journal of Japan Civil Engineers, Ser. A2 (2017), 73 Issue

f(x) = e x2 25 d f(x) 0 x d2 dx f(x) 0 x dx2 f(x) (1 + ax 2 ) 2 lim x 0 x 4 a 3 2 a g(x) = 1 + ax 2 f(x) g(x) 1/2 f(x)dx n n A f(x) = Ax (x R

The Phase Behavior of Monooleoylglycerol-Water Systems Mivoshi Oil & Fat Co.. Ltd. Faculty of Science and Technology, Science University of Tokyo Inst

X X 1. 1 X 2 X 195 3, 4 Ungár modified Williamson-Hall/Warren-Averbach 5-7 modified modified Rietveld Convolutional Multiple Whole Profile CMWP 8 CMWP

, 3, STUDY ON IMPORTANCE OF OPTIMIZED GRID STRUCTURE IN GENERAL COORDINATE SYSTEM 1 2 Hiroyasu YASUDA and Tsuyoshi HOSHINO

$\hat{\grave{\grave{\lambda}}}$ $\grave{\neg}\backslash \backslash ^{}4$ $\approx \mathrm{t}\triangleleft\wedge$ $10^{4}$ $10^{\backslash }$ $4^{\math

季報2010C_P _4-3.indd

takei.dvi

研究成果報告書

数理研渦波09.dvi

ER Eröds-Rényi ER p ER 1 2.3BA Balabasi 9 1 f (k) k 3 1 BA KN KN 8,10 KN 2 2 p 1 Rich-club 11 ( f (k) = 1 +

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α,

非線形長波モデルと流体粒子法による津波シミュレータの開発 I_ m ρ v p h g a b a 2h b r ab a b Fang W r ab h 5 Wendland 1995 q= r ab /h a d W r ab h

untitled

04-“²†XŒØ‘�“_-6.01


Transcription:

316 on One Hundred Years of Boundary Layer Research, Proceedings of the IUTAM Symposium held at DLR-Göttingen, Germany, 2004, (eds. G. E. A. Meier and K. R. Sreenivasan), Solid Mech. Appl., 129, Springer, 2006, pp. 415 424. [10] J. M. Hamilton, J. Kim and F. Waleffe, Regeneration mechanisms of near-wall turbulence structures, J. Fluid Mech., 287 (1995), 317 348. [11] J. Kim, P. Moin and R. Moser, Turbulence statistics in fully developed channel flow at low Reynolds number, J. Fluid Mech., 177 (1987), 133 166. [12] P. R. Spalart, R. D. Moser and M. M. Rogers, Spectral methods for the Navier Stokes equations with one infinite and two periodic directions, J. Comput. Phys., 96 (1991), 297 324. [13] C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral method in fluid dynamics, Springer, New York, 1988. [14] G. B. McFadden, B. T. Murray and R. F. Boisvert, Elimination of spurious eigenvalues in the Chebyshev tau spectral method, J. Comput. Phys., 91 (1990), 228 239. [15],,, 1997. [16] Y. Saad, Iterative methods for sparse linear systems, SIAM, Philadelphia, 2003. [17] J. E. Dennis, Jr. and R. B. Schnabel, Numerical methods for unconstrained optimization and nonlinear equations, SIAM, Philadelphia, 1996. [18] K. Pyragas, Continuous control of chaos by self-controlling feedback, Phys. Lett. A, 170 (1992), 421 428. [19],,,, 1996. [20] J. Jiménez, G. Kawahara, M. P. Simens, M. Nagata and M. Shiba, Characterization of near-wall turbulence in terms of equilibrium and bursting solutions, Phys. Fluids, 17 (2005), 015105, 16 pp. [21] S. K. Robinson, Coherent Motions in the Turbulent Boundary Layer, Annu. Rev. Fluid Mech., 23 (1991), 601 639. (2008 7 14 ) ( ) AUTO 1 1.1 92

AUTO 317 ( ) CT, MRI MRI MRI AUTO E. J. Doedel [1] AUTO 1.2 AUTO AUTO E. J. Doedel [1] AUTO C FORTRAN C AUTO2000 FORTRAN AUTO07p AUTO07p AUTO C FORTRAN AUTO AUTO AUTO KNOPPIX/Math 2008 [19] AUTO07p AUTO AUTO AUTO 93

318 (AUTO ) AUTO 200 ([ 7 ]) AUTO AUTO Automatic (AUTO Automatic AUTO )AUTO ([18]) 2 AUTO AUTO AUTO 2.1 AUTO AUTO () 94

AUTO 319 AUTO 1 u t = (u + 1)(u 2 α), α < 1. (1) α u = 1 0 <α<1 u = ±α α <0 u = 1 u 0 lim t u(t) = 1 u(t) 1 α 0 (α = 0.001) u(0) = 0.5 (1) u(t) 1 u(t) 1 (1) lim t u(t) = 1 1 S t = 150 u = 1 lim t u(t) = 1 AE 0 2/3 AE 0 ( 95

320 ) α = 0.001 u =0AUTO AUTO 2 ()AUTO α =0 α =0 u =0 AE 0 0 2 (1) AUTO U 0 S AE ( 1 ) AE ( α <0 ) 2.2 1 AUTO [ 5 ], [ 6 ], [15] [17] 96

AUTO 321 [2] [3] ( 2 ) u t = D u u xx + u 2 v (F + k)u, (2) v t = D v v xx u 2 v + F (1 v). 31 u(x, t) L (a) D u =10 5, D v =2 10 5, F =0.04, k =0.06075, L =1.6(b) D u =10 5, D v =2 10 5, F =0.025, k =0.0542, L =0.5 97

322 3 ( 4) (2) AUTO ( 5) AUTO AUTO AUTO LAPACK [ 4 ] [17] 4 [ 8 ], [ 9 ] AUTO AUTO AUTO 1) ([10] [14]) AUTO 98

AUTO 323 41 u(x, t) D u =10 5, D v =2 10 5, L =0.5 (k, F) 3 99

324 5 F =0.04, L =0.3 AUTO AUTO k =0.0608 (a), (b) k 2 (a) k =0.06079, (b) k =0.06075 (a) (b) 100

AUTO 325 3 AUTO AUTO first author AUTO first author AUTO 1) AUTO AUTO [ 1 ] E. J. Doedel, A. R. Champneys, T. F. Fairgrieve, Y. A. Kuznetsov, B. Sandstede and X. Wang, AUTO97: Continuation and bifurcation software for ordinary differential equations (with HomCont), (1997)http://indy.cs. concordia.ca/auto/ AUTO ; http://take.ttlab.cs.hkg. ac.jp/ ttks/auto/auto-j.html [ 2 ] J. E. Pearson, Complex patterns in a simple system, Science, 261 (1993), 189 192. [ 3 ] P. Gray and S. K. Scott, Autocatalytic reactions in the isothermal, continuous stirred tank reactor: oscillations and instabilities in the system A +2B 3B, B C, Chem. Eng. Sci., 39 (1984), 1087 1097. [ 4 ] Linear Algebra Package ; http:// www.netlib.org/lapack/ [ 5 ] Y. Nishiura and D. Ueyama, A skeleton structure of self-replicating dynamics, Physica D, 130 (1999), 73 104. [ 6 ] Y. Nishiura and D. Ueyama, Spatio-temporal chaos for the Gray Scott model, Physica D, 150 (2001), 137 162. [ 7 ] Y. Nishiura, D. Ueyama and T. Yanagita, Chaotic pulses for discrete reaction diffusion systems, SIAM J. Appl. Dyn. Syst., 4 (2005), 733 754. [ 8 ] S. Ei, The motion of weakly interacting pulses in reaction-diffusion systems, J. Dynam. Differential Equations, 14 (2002), 85 137. [ 9 ] S. Ei, Y. Nishiura and K. Ueda, 2 n -splitting or edge-splitting? A manner of splitting in dissipative systems, Japan J. Indust. Appl. Math., 18 101

326 (2001), 181 205. [10] Y. Nishiura, T. Teramoto and K. Ueda, Scattering and separators in dissipative systems, Phys. Rev. E, 67 (2003), 056210, 7 pp. [11] M. Iima and Y. Nishiura, Collision of localized traveling-wave convection cells in binary fluid, GAKUTO Internat. Ser. Math. Sci. Appl., 22 (2005), 289 303. [12],, In:,, 1454 (2005), 21 35. [13] X. Yuan, T. Teramoto and Y. Nishiura, Heterogeneity-induced defect bifurcation and pulse dynamics for a three-component reactiondiffusion system, Phys. Rev. E, 75 (2007), 036220, 12 pp. [14] Y. Nishiura, Y. Oyama and K. Ueda, Dynamics of traveling pulses in heterogeneous media of jump type, Hokkaido Math. J., 36 (2007), 207 242. [15], (1),, 5,, 1999. [16],,, 5,, 2003. [17],,, 4,, 2006. [18],,, 18. [19] KNOPPIX/Math Project ; http:// www.knoppix-math.org/ (2008 11 22 ) ( ) A. Kushner, V. Lychagin and V. Rubtsov: Contact Geometry and Non-linear Differential Equations, Encyclopedia Math. Appl., 101, Cambridge Univ. Press, 2007 xxii + 496 2 2 Monge Ampère Lie Lie 19 [Ma] [Mo] Cartan (e.g. [BGG]) 2 Monge Ampère 2 1 1 1 Lie 102