Similar documents
[] x < T f(x), x < T f(x), < x < f(x) f(x) f(x) f(x + nt ) = f(x) x < T, n =, 1,, 1, (1.3) f(x) T x 2 f(x) T 2T x 3 f(x), f() = f(t ), f(x), f() f(t )

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

1 1.1 Excel Excel Excel log 1, log 2, log 3,, log 10 e = ln 10 log cm 1mm 1 10 =0.1mm = f(x) f(x) = n

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

SOWC04....

- II

,.,, L p L p loc,, 3., L p L p loc, Lp L p loc.,.,,.,.,.,, L p, 1 p, L p,. d 1, R d d. E R d. (E, M E, µ)., L p = L p (E). 1 p, E f(x), f(x) p d

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

untitled

01_教職員.indd


no35.dvi

FX自己アフリエイトマニュアル

FX ) 2

2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0

(, ) (, ) S = 2 = [, ] ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) ( ) (

³ÎΨÏÀ

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1

ε

2007年08月号 022416/0812 会告

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

II 2 II

body.dvi

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

日本内科学会雑誌第102巻第4号

i

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

基礎数学I

2010 IA ε-n I 1, 2, 3, 4, 5, 6, 7, 8, ε-n 1 ε-n ε-n? {a n } n=1 1 {a n } n=1 a a {a n } n=1 ε ε N N n a n a < ε

Chap11.dvi

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

平成20年5月 協会創立50年の歩み 海の安全と環境保全を目指して 友國八郎 海上保安庁 長官 岩崎貞二 日本船主協会 会長 前川弘幸 JF全国漁業協同組合連合会 代表理事会長 服部郁弘 日本船長協会 会長 森本靖之 日本船舶機関士協会 会長 大内博文 航海訓練所 練習船船長 竹本孝弘 第二管区海上保安本部長 梅田宜弘

aphp37-11_プロ1/ky869543540410005590

本文/扉1

プログラム


Program


Œ{Ł¶/1ŒÊ −ªfiª„¾ [ 1…y†[…W ]

日本内科学会雑誌第96巻第11号

数学概論I

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta


x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14

04.dvi

1

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1.

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

II (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1

入試の軌跡

main.dvi

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

1 R n (x (k) = (x (k) 1,, x(k) n )) k 1 lim k,l x(k) x (l) = 0 (x (k) ) 1.1. (i) R n U U, r > 0, r () U (ii) R n F F F (iii) R n S S S = { R n ; r > 0


09 II 09/11/ y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1 Warming Up 1 u = log a M a u = M log a 1 a 0 a 1 a r+s 0 a r

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3)

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,


A

Morse ( ) 2014

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト

v er.1/ c /(21)

ii


70の法則

function2.pdf

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =


[ ] x f(x) F = f(x) F(x) f(x) f(x) f(x)dx A p.2/29


DVIOUT

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

C 2 2.1? 3x 2 + 2x + 5 = 0 (1) 1

II Time-stamp: <05/09/30 17:14:06 waki> ii

1 1 u m (t) u m () exp [ (cπm + (πm κ)t (5). u m (), U(x, ) f(x) m,, (4) U(x, t) Re u k () u m () [ u k () exp(πkx), u k () exp(πkx). f(x) exp[ πmxdx

Transcription:

( )

( )

( )

i (i = 1, 2,, n) x( ) log(a i x + 1) a i > 0 t i (> 0) T

i x i z n z = log(a i x i + 1) i=1

i t i ( ) x i t i (i = 1, 2, n) T n x i T i=1

z = n log(a i x i + 1) i=1 x i t i (i = 1, 2,, n) n x i T i=1

5 (1, 2, 3, 4, 5) 5 x y 1 1 12 2 4 14 3 15 10 4 11 2 5 5 5

(x, y) i (i = 1, 2, 3, 4, 5) (x i, y i ) i (x xi ) 2 + (y y i ) 2

(x, y) i (i = 1, 2, 3, 4, 5) (x i, y i ) z 5 z = (x xi ) 2 + (y y i ) 2 i=1 z x, y

f(x) g i (x) = 0 (i = 1, 2,, m) h j (x) 0 (j = 1, 2,, l) x n [x 1, x 2,, x n ] T

f(x)x 2 2

x f(x ) f(x) x f x x f(x ) f(x) x f

1 f(x) f(x) (1 ) ( ) f (x) = df(x) dx = lim x 0 f(x + x) f(x) x 2 f (x) = d2 f(x) f (x + x) f (x) = lim dx 2 x 0 x

f (x) x f(x) ( ) x f (x) x f(x) f (x) x f(x) x f(x) x f (x) = 0 f (x) = 0

f (x) = 0 x f(x) f (x) f(x) ( ) f (x) f(x) ( ) f (x) 0

f(x) = 1 4 x4 + 2 3 x3 1 2 x2 2x + 1

f(x) = 1 4 x4 + 2 3 x3 1 2 x2 2x + 1 f (x) = x 3 + 2x 2 x 2 = (x + 2)(x + 1)(x 1) x = 2, 1, 1 f (x) = 0 f (x) = 3x 2 + 4x 1 x = 2 ± 7 f (x) = 0 3

f(x) = 1 4 x4 + 2 3 x3 1 2 x2 2x + 1 2 7 2+ 7 x < 2 2 3 1 3 1 > 1 f (x) 0 + + + 0 0 + f (x) + + + 0 0 + + + f(x) 5 3 25 12 7 12

f(x) = 1 4 x4 + 2 3 x3 1 2 x2 2x + 1 2 7 2+ 7 x < 2 2 3 1 3 1 > 1 f (x) 0 + + + 0 0 + f (x) + + + 0 0 + + + f(x) 5 3 25 12 7 12

f(x) = 1 4 x4 + 2 3 x3 1 2 x2 2x + 1 2 7 2+ 7 x < 2 2 3 1 3 1 > 1 f (x) 0 + + + 0 0 + f (x) + + + 0 0 + + + f(x) 5 3 25 12 7 12

n f(x) (x = [x 1, x 2,, x n ] T ) f(x) f(x = lim 1,, x i + x i, x i+1,, x n ) f(x 1,, x i, x i+1,, x n ) x i x i 0 x i f(x 1,, x i + x i, x i+1,, x n ) f(x 1,, x i, x i+1,, x n ) x i x i

f(x) x i, f xi (x)n f(x) = f(x) x 1 f(x) x 2. f(x) x n

2 2 f(x) x i x j, f xi x j (x)n n 2 f(x) 2 f(x) x 2 1 x 1 x 2 2 f(x) x 1 x n 2 2 f(x) 2 f(x) f(x) = x 2 x 1 2 f(x) x 2 2 x 2 x n. 2 f(x) x n x 2 2 f(x) x n x 1 2 f(x) x 2 n

n n M nx x T Mx 0 M x m 0 mx 2 0

n n M nx x T Mx > 0 M 0x m > 0 mx 2 > 0

x f(x) = 0 x 1 f(x) = 0 x f(x)

x f(x) = 0 2 f(x) x 2

x f(x) = 0 2 f(x) x 2

f (x) f(x) x 0 f (x 0 ) > 0 x f (x 0 ) < 0 x f(x)

f(x) f(x) x f(x)

k x (k) x (k+1) x (k) α (k) f(x (k) ) α (k) f(x (k) α (k) f(x (k) )) ( )

(0) x x (0) k 0 (1) f(x (k) ) = 0 x (k) (2) (2) f(x (k) α (k) f(x (k) )) ( ) α (k) x (k+1) = x (k) α (k) f(x (k) ) x (k) k k + 1 (1)

ε f(x (k) ) < ε x

1 f(x) x (k) f(x) =f(x (k) ) + f (x (k) )(x x (k) ) + 1 2! f (x (k) ) ( x x (k)) 2 + 1 3! f (x (k) ) ( x x (k)) 3 + 1 2

f(x) = x 4 + (x + 2) 2 g(x) = f(0.5) + f (0.5)(x 0.5) + 1 2 f (0.5)(x 0.5) 2

f(x) x (k) 2 g(x) g(x) = f(x (k) ) + f (x (k) )(x x (k) ) f (x (k) ) > 0 1 + 1 2 f (x (k) )(x x (k) ) 2 g (x) = 0 x g(x)

x g (x) = f (x (k) ) + f (x (k) )(x x (k) ) = 0 x = x (k) f (x (k) )/f (x (k) ) x f(x) f(x)

f(x)x (k) f(x) g(x) = f(x (k) ) + f(x (k) ) T (x x (k) ) + 1 2 (x x(k) ) T 2 f(x (k) )(x x (k) ) +

f(x) x (k) 2 g(x) g(x) = f(x (k) ) + f(x (k) ) T (x x (k) ) + 1 2 (x x(k) ) T 2 f(x (k) )(x x (k) ) 2 f(x (k) ) 1 g(x) = 0 x g(x)

x g(x) = f(x (k) ) + 2 f(x (k) )(x x (k) ) = 0 x = x (k) 2 f(x (k) ) 1 f(x (k) ) x f(x) f(x)

(0) x x (0) k 0 (1) f(x (k) ) = 0 x (k) (2) (2) x (k+1) x (k) 2 f(x (k) ) 1 f(x (k) ) x (k) k k + 1 (1)

f(x) = (x1 0.4) 2 + (x 2 1 x 2 ) 2 x [ 2(x1 0.4) + 4x f(x) = 1 (x 2 1 x ] 2) 2(x 2 1 x, 2) [ ] 2 12x 2 f(x) = 1 4x 2 + 2 4x 1 4x 1 2

BFGS B (k+1) = B (k) + y(k) y (k)t y (k)t s B (k) s (k) s (k)t B (k)t (k) s (k)t B (k) s (k) B (0) = I, s (k) = x (k+1) x (k), y (k) = f(x (k+1) ) f(x (k) )