2014 3

Similar documents
H(ω) = ( G H (ω)g(ω) ) 1 G H (ω) (6) 2 H 11 (ω) H 1N (ω) H(ω)= (2) H M1 (ω) H MN (ω) [ X(ω)= X 1 (ω) X 2 (ω) X N (ω) ] T (3)

2 DS SS (SS+DS) Fig. 2 Separation algorithm for motorcycle sound by combining DS and SS (SS+DS). 3. [3] DS SS 2 SS+DS 1 1 B SS SS 4. NMF 4. 1 (NMF) Y

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1

Support Vector Machine (SVM) 4 SVM SVM 2 80% 100% SVM SVM SVM 4 SVM 2 2 SVM 4

pp d 2 * Hz Hz 3 10 db Wind-induced noise, Noise reduction, Microphone array, Beamforming 1

動画コンテンツ 動画 1 動画 2 動画 3 生成中の映像 入力音楽 選択された素片 テンポによる伸縮 音楽的構造 A B B B B B A C C : 4) 6) Web Web 2 2 c 2009 Information Processing S

untitled

untitled

thesis.dvi

IPSJ SIG Technical Report Vol.2014-MUS-104 No /8/27 F0 1,a) 1,b) 1,c) 2,d) (F0) F0 F0 Graphical User Interface (GUI) F0 1. [1] CD MIDI [2] [3,

IPSJ SIG Technical Report Vol.2012-MUS-94 No.27 Vol.2012-SLP-90 No /2/4 1 2 J K L 3 ( ) GUI Musical Audio Signal Modeling for Joint Estimation

2) 3) LAN 4) 2 5) 6) 7) K MIC NJR4261JB0916 8) 24.11GHz V 5V 3kHz 4 (1) (8) (1)(5) (2)(3)(4)(6)(7) (1) (2) (3) (4)

2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055

Hz

5 Armitage x 1,, x n y i = 10x i + 3 y i = log x i {x i } {y i } 1.2 n i i x ij i j y ij, z ij i j 2 1 y = a x + b ( cm) x ij (i j )


情報処理学会研究報告 IPSJ SIG Technical Report Vol.2011-MUS-89 No /2/12 NMF NMF NMF NMF NMF NMF Matrix Generation Using Probabilistic Spectrum Enve

2013 M

sigmus201007_fujihara.dvi

,.,. NP,., ,.,,.,.,,, (PCA)...,,. Tipping and Bishop (1999) PCA. (PPCA)., (Ilin and Raiko, 2010). PPCA EM., , tatsukaw

2000年度『数学展望 I』講義録

A Study of Adaptive Array Implimentation for mobile comunication in cellular system GD133

i


Wide Scanner TWAIN Source ユーザーズガイド

2007-Kanai-paper.dvi

main.dvi

Run-Based Trieから構成される 決定木の枝刈り法

, (GPS: Global Positioning Systemg),.,, (LBS: Local Based Services).. GPS,.,. RFID LAN,.,.,.,,,.,..,.,.,,, i

1 (1997) (1997) 1974:Q3 1994:Q3 (i) (ii) ( ) ( ) 1 (iii) ( ( 1999 ) ( ) ( ) 1 ( ) ( 1995,pp ) 1

IPSJ SIG Technical Report Vol.2011-MUS-91 No /7/ , 3 1 Design and Implementation on a System for Learning Songs by Presenting Musical St

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z +

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

IPSJ SIG Technical Report Vol.2012-MUS-96 No /8/10 MIDI Modeling Performance Indeterminacies for Polyphonic Midi Score Following and

第122号.indd

( ) [1] [4] ( ) 2. [5] [6] Piano Tutor[7] [1], [2], [8], [9] Radiobaton[10] Two Finger Piano[11] Coloring-in Piano[12] ism[13] MIDI MIDI 1 Fig. 1 Syst

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)

Computational Semantics 1 category specificity Warrington (1975); Warrington & Shallice (1979, 1984) 2 basic level superiority 3 super-ordinate catego

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

i 1.,,,,,,.,.,,,,, 1,.,, PR.,,.,., PR,,, 5.,., 1, 2. 1, PR,,

86 7 I ( 13 ) II ( )

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

P2P P2P peer peer P2P peer P2P peer P2P i

untitled

IPSJ SIG Technical Report Vol.2015-MUS-107 No /5/23 HARK-Binaural Raspberry Pi 2 1,a) ( ) HARK 2 HARK-Binaural A/D Raspberry Pi 2 1.

untitled

「産業上利用することができる発明」の審査の運用指針(案)

2016 : M SF

P361

1. HNS [1] HNS HNS HNS [2] HNS [3] [4] [5] HNS 16ch SNR [6] 1 16ch 1 3 SNR [4] [5] 2. 2 HNS API HNS CS27-HNS [1] (SOA) [7] API Web 2

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

17 Proposal of an Algorithm of Image Extraction and Research on Improvement of a Man-machine Interface of Food Intake Measuring System

IPSJ SIG Technical Report Vol.2013-GN-87 No /3/ Research of a surround-sound field adjustmen system based on loudspeakers arrangement Ak

25 fmri A study of discrimination of musical harmony using brain activity obtained by fmri

IPSJ SIG Technical Report Vol.2009-BIO-17 No /5/26 DNA 1 1 DNA DNA DNA DNA Correcting read errors on DNA sequences determined by Pyrosequencing

Getting Started Creative Sound Blaster Live! 5.1 Creative Sound Blaster Live! 5.1 Digital Audio Creative Technology Ltd. Creative Technology Ltd. 1 Co

[2] 2. [3 5] 3D [6 8] Morishima [9] N n 24 24FPS k k = 1, 2,..., N i i = 1, 2,..., n Algorithm 1 N io user-specified number of inbetween omis

Vol.53 No (Mar. 2012) 1, 1,a) 1, 2 1 1, , Musical Interaction System Based on Stage Metaphor Seiko Myojin 1, 1,a

User's Guide

IPSJ SIG Technical Report Vol.2017-MUS-116 No /8/24 MachineDancing: 1,a) 1,b) 3 MachineDancing MachineDancing MachineDancing 1 MachineDan

WISS 2018 [2 4] [5,6] Query-by-Dancing Query-by- Dancing Cao [1] OpenPose 2 Ghias [7] Query by humming Chen [8] Query by rhythm Jang [9] Query-by-tapp

untitled

OPA134/2134/4134('98.03)

SURF,,., 55%,.,., SURF(Speeded Up Robust Features), 4 (,,, ), SURF.,, 84%, 96%, 28%, 32%.,,,. SURF, i

o 2o 3o 3 1. I o 3. 1o 2o 31. I 3o PDF Adobe Reader 4o 2 1o I 2o 3o 4o 5o 6o 7o 2197/ o 1o 1 1o

The copyright of this material is retained by the Information Processing Society of Japan (IPSJ). The material has been made available on the website

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

1

prp6.PDF


28 Horizontal angle correction using straight line detection in an equirectangular image

5) 2. Geminoid HI-1 6) Telenoid 7) Geminoid HI-1 Geminoid HI-1 Telenoid Robot- PHONE 8) RobotPHONE 11 InterRobot 9) InterRobot InterRobot irt( ) 10) 4

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.




JIS Z803: (substitution method) 3 LCR LCR GPIB

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server



A Japanese Word Dependency Corpus ÆüËܸì¤Îñ¸ì·¸¤ê¼õ¤±¥³¡¼¥Ñ¥¹

MCMC: Marov Chain Monte Carlo [20] 2. VAE-NMF DNN DNN F T X x t R F t = 1,..., T x t 2. 1 Generative Adversarial Networ: GAN [21,22] GAN z t R D x t z

(2009), p.57 1) 2) 3) 4) (2004), p ) (1989), p.128 6) 12 2 (1989), p.122 7) ) 2) (1989), p ) 4) 5) 8 12 (1989), p.



, IT.,.,..,.. i

I II III 28 29

生活設計レジメ

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)


untitled

Doctor Thesis Template

178 5 I 1 ( ) ( ) ( ) ( ) (1) ( 2 )

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4)

7) 8) 9),10) 11) 18) 11),16) 18) 19) 20) Vocaloid 6) Vocaloid 1 VocaListener1 2 VocaListener1 3 VocaListener VocaListener1 VocaListener1 Voca



Transcription:

1 3

113 : 1 Copyright c 1 by Kobayashi Keisuke

Desktop Music (DTM) DAW (Digital Audio Workstation) YAMAHA Vocaloid DTM MIDI (Musical Instruments Digital Interface) Lee (Non-negative Matrix Factorization; NMF) NMF K NMF NMF K K 1 NMF (SDR) 3 11 db 3 3

, MIDI 6 8 NMF MIDI NMF MIDI

1 1 1.1................................. 1 1................................... 1 1..1............................ 1 1.............................. 1.3.................................. 1................................... 3.1..................................................................3.............................. 9....................................... 9 3 11 3.1......................... 11 3............................... 11 3..1................................. 1 3.................................... 1 3.3.................................. 1 3.... 1 3................................. 1 3.6...................................... 16 17.1 K................................ 17.1.1................................. 17.1.................................. 17.1.3..................................................................... 3..1................................. 3 i

................................... 31..3............................. 31.3...................................... 39.1....................................... 3.3......................... 6.3.1.................. 6.3.......................... 6.3.3................................................................. 1 6 3 6.1................................. 3 6.................................... 3 8 8 16 ii

.1.................................................................3......................... 6........................ 6............................... 7.6.............. 8.7 B n.................. 1 3.1........................... 11 3.................... 13 3.3 NMF........... 1.1 1......................... 19. 8..........................3 96......................... 1. SDR............................... K = 1 (RWC1)........................6 K = (RWC1)....................... 6.7 K = 3 (RWC1)....................... 7.8 K = (RWC1)....................... 8.9 K = (RWC1)....................... 9.1 NMF....................... 3.11......................... 33.1....................... 33.13 (GP)...................... 3.1 (RWC3).................... 3.1 NMF (UP1)........... 36.16 NMF (UP)........... 37.17 NMF (MAPS)......... 38.1............. 1.......... iii

.3........................................ 7.6....... 8.7......................... 9.8 (UP3)................... 1 1 YAMAHA GRAND C3............................. 6 GP1............................... 6 3 GP............................... 6....................... 63 K = 1 (MIDI)....................... 66 6 K = (MIDI)....................... 67 7 K = 3 (MIDI)....................... 68 8 K = (MIDI)....................... 69 9 K = (MIDI)....................... 7 1 K = 1 (UP1)........................ 71 11 K = (UP1)........................ 7 1 K = 3 (UP1)........................ 73 13 K = (UP1)........................ 7 1 K = (UP1)........................ 7 1 K = 1 (UP)........................ 76 16 K = (UP)........................ 77 17 K = 3 (UP)........................ 78 18 K = (UP)........................ 79 19 K = (UP)........................ 8 K = 1 (UP3)........................ 81 1 K = (UP3)........................ 8 K = 3 (UP3)........................ 83 3 K = (UP3)........................ 8 K = (UP3)........................ 8 K = 1 (UP)........................ 86 6 K = (UP)........................ 87 7 K = 3 (UP)........................ 88 8 K = (UP)........................ 89 9 K = (UP)........................ 9 3 K = 1 (MAPS)....................... 91 31 K = (MAPS)....................... 9 3 K = 3 (MAPS)....................... 93 iv

33 K = (MAPS)....................... 9 3 K = (MAPS)....................... 9 3 K = 1 (GP1)........................ 96 36 K = (GP1)........................ 97 37 K = 3 (GP1)........................ 98 38 K = (GP1)........................ 99 39 K = (GP1)........................ 1 K = 1 (GP)........................ 11 1 K = (GP)........................ 1 K = 3 (GP)........................ 13 3 K = (GP)........................ 1 K = (GP)........................ 1 K = 1 (RWC1)....................... 16 6 K = (RWC1)....................... 17 7 K = 3 (RWC1)....................... 18 8 K = (RWC1)....................... 19 9 K = (RWC1)....................... 11 K = 1 (RWC3)....................... 111 1 K = (RWC3)....................... 11 K = 3 (RWC3)....................... 113 3 K = (RWC3)....................... 11 K = (RWC3)....................... 11 NMF (UP1)........... 117 6 NMF (UP)........... 118 7 NMF (UP3)........... 119 8 NMF (UP)........... 1 9 NMF (MAPS)......... 11 6 NMF (GP1)........... 1 61 NMF (GP)........... 13 6 NMF (RWC1).......... 1 63 NMF (RWC3).......... 1 v

.1 K = 3 K =........... K = 3 K =.......... 3.1........................ 3....................... 3.3........................ 1.................................. 61.................................. 6 3 GP1............................ 6 GP............................ 6.................. 6 vi

1 1.1 Desktop Music (DTM) DAW (Didital Audio Workstation) Vocaloid [1]. DTM MIDI (Musical Instruments Digital Interface) 1. 1..1 1

1.. [ 7]. [8] [9] [1] Lee et al. [11] 1.3 (Non-negative Matrix Factorization; NMF) [1] NMF [9, 13 16] NMF K K R(R < K) R K R K R [17] [18]

1. 6 ( ) 3 NMF 3 6 3

.1.1 7 cm 1 cm. 1.3,. [19]... (1). () (3). () []

.1:.:

.3:.: 6

.: (1) () ( ) []. [] Fletcher [7].6 7

8.6:

.3 3 3 ( ) F n (n ) f n (.1) [7,1] f n = nf 1 + Bn (.1) F (.) (.1) f 1 F = 1 T L µ (.) L T µ ( ) B (.3) B = π3 Ed 6T L (.3) E d, T, L B [1, 1 ] []. B.7 1. (1), () (3) () 9

6 Frequency of n th harmonic component B=1.*1 3 B=.*1 B=1.*1 frequency [Hz] 6 8 1 1 1 16 18 n.7: B n 1

3. 3.1 3.1 NMF NMF 3. NMF Y ( R Ω T ) U( R Ω K ) V ( R K T ) (3.1) Y ω,t Ŷω,t = K U ω,k V k,t (3.1) k Ω T K NMF ω, t NMF ( ) Y U U V U NMF pre-emphasis FFT Log Scaling 3.1: 11

3..1 NMF Y U, V U, V ( (3.)) KL ( (3.3)) ( (3.)) [3, ] D euc (x y) = (x y) (3.) D KL (x y) = (x y) + y log y x (3.3) D IS (x y) = y x log y x 1 (3.) 3. 3.. U, V (3.6) U U. Y V t UV V t (3.) V V. U t Y U t UV (3.6) t. [, 6] D Euc (Y UV ) = Y UV F = ω,t Y ω,t k U ω,k V k,t = ω,t ( Y ω,t Y ω,t k U ω,k V k,t + k U ω,k V k,t ) (3.7) 3 Jensen Jensen f(x i ) f( i λ i x i ) i λ i f(x i ) (3.8) 1

D(y x) : Degree of proximity between x and y 1 9 Euc KL IS 8 7 D( x) 6 3 1 6 8 1 1 1 16 18 x 3.: (3.9) ( i x i ) = ( λ i x i λ i ) i λ i ( x i λ i ) = i x i λ i (3.9) 3 Jensen k U ω,k V k,t k U ω,k V k,t λ k,ω,t (3.1) (3.7) (3.11) D Euc (Y UV ) = ω,t ( Y ω,t Y ω,t k U ω,k V k,t + k U ω,k V k,t λ k,ω,t ) (3.11) 13

(3.11) U ω,k V k,t U ω,k = V ω,k = t Y ω,tv k,t t (3.1) Vk,t λ k,ω,t t Y ω,tu k,t t (3.13) Uk,t λ k,ω,t λ λ i 1 (3.1) λ k,ω,t = U ω,k V k,t k U ω,k V k,t (3.1) (3.13) (3.1) (3.16) t U ω,k = Y ω,tv k,t t V (3.1) k,t k U ω,k V k,t t V ω,k = Y ω,tu k,t t U (3.16) k,t k U ω,k V k,t U, V NMF 3.3 3.3 6.6 db/oct (3.17) H(z) = 1.97z 1 (3.17) 3. NMF Y 1

1 1. x 1 3 1 1. x 1 3 1 1. x 1 3 3.3: NMF NMF X A, B, C,... (3.18) X = A + B + C +... + N (3.18) (3.19) X = log A + log B + log C +... + log N = log(a B C D) (3.19) 3. NMF 1

3.6 NMF 16

.1 K.1.1 NMF NMF K K NMF [7, 8] 1 NMF K 1.1. RWC : ( RWC-DB ) [9], MIDI Aligned Piano Sound ( MAPS-DB ) [3] 1 RWC-DB 3 MAPS-DB RWC-DB RWC1 RWC3 MAPS-DB MAPS GP1 GP, UP1, UP, UP3, UP A3 ( Hz) 16,.1 khz (Short Time Fourie Transform; STFT) 8 ( ms) 18 ( 3 ms) 17

8.1.3 NMF.1 1. 8.3 96 1 8 96 96 8 96 3 8 96 8 STFT 18

6 8 1 x 1 3 6 8 1 x 1 3 Activation Matrix 6 8 1 x 1 3. 1 1...1: 1 19

. 1 1. x 1 3. 1 1. x 1 3 x 1 Activation Matrix 6 x 1 6 x 1 6. 1 1. x 1 3. 1 1...: 8

6 8 1 1 x 1 6 8 1 1 x 1 x 1 1 Activation Matrix 1 x 1 1 1 x 1 1 1 6 8 1 1 x 1. 1 1...3: 96 1

.1: K = 3 K = 1st (K=) nd (K=) 3rd (K=) th (K=) 1st (K=3).89.6 -.66.1 nd (K=3) -...7 -.33 3rd (K=3).3 -.9 -.1.98.1.3..9 ( ) K = 1 (.) K = (.6), 1 khz 1 K = 3 (.7) 3 1 3 K = 1, (1) () (3), () 1 () (Hz) K = (.8) K = 3 K = 1.1 K = 1 K = 3 1 K = (.9) 1 3 1 K = 3 1 3 K = 3 K = 3 3 (. )

.: K = 3 K = 1st(K=) nd (K=) 3rd (K=) th (K=) th (K=) 1st (K=3).78.1.38 -.77.3 nd (K=3) -..8.7. -. 3rd (K=3).6 -.3 -.9.1.96 3 K U V Ŷ Y (Signal to distortionratio;sdr) (.) S SDR = 1 log 1 db (.1) S Ŝ (S, Ŝ ) SDR. SDR K = 3 SDR K = SDR 11 db K 3 K SDR SDR K 3 3

Relationship between number of bases and SDR 1 1 Mean of SDR [db] 8 6 1 3 K : Number of bases.: SDR

x 1 Activation Matrix 9 8. 8 7. 7 6. 6.9 1 1.1 1. 1.3 1. 1. 1.6 1.7 x 1 3. 1 1...: K = 1 (RWC1)

.8 1 1. 1. 1.6 1.8 x 1 3 8 Activation Matrix x 1 6 x 1 8 6.8 1 1. 1. 1.6 1.8 x 1 3. 1 1...6: K = (RWC1) 6

1 3 x 1 3 Activation Matrix x 1 6 x 1 6 x 1 6 1 3 x 1 3 1 3 x 1 3. 1 1...7: K = 3 (RWC1) 7

1 x 1 3 1 x 1 3 Activation Matrix x 1 x 1 x 1 x 1 1 1 x 1 3 x 1 3. 1 1...8: K = (RWC1) 8

x 1 3 Activation Matrix x 1 x 1 x 1 x 1 x 1 1 3 1 3 x x 3 x 1 x 1 3. 1 1...9: K = (RWC1) 9

.1: NMF...1, 3 3 1 3 K = 3 NMF NMF (.1 U fix ) (.1 V fix ) (.1 U free ) NMF (U fix ) (V free ) NMF 3

.. 3 3 NMF K 6..3.11.1.11 1.1 khz khz.11.1.11 1 khz, khz.1 khz Hz,.13,.1.1,.16,.17,.13,.1 1 3.11..1,.16,.17 1 3.1 ( 6 ) 3 ( 1 3 ) ( 3 khz) (1 khz ) 31

3 6 3 6 3

. 1 1. x 1 3. 1 1. x 1 3. 1 1. x 1 3.11: 1 1 1 1 1 1 x 1 x 1 x 1.1: 33

1 x 1 3 1 x 1 3 1 x 1 3 x 1 Activation Matrix x 1 x 1 x 1 x 1 x 1 1 x 1 3 1 x 1 3 x 1 3 1. 1 1.. 3.13: (GP) 3

1 x 1 3 1 x 1 3 1 x 1 3 x 1 Activation Matrix x 1 x 1 x 1 x 1 x 1 1 x 1 3 1 x 1 3 x 1 3 1. 1 1...1: (RWC3) 3

1 x 1 3 x 1 Activation Matrix x 1 x 1 x 1 x 1 x 1 1 1 x 1 3 x 1 3 1 1 1 x 1 3 x 1 3 x 1 3. 1 1.. 3.1: NMF (UP1) 36

1 x 1 3 x 1 Activation Matrix x 1 x 1 x 1 x 1 x 1 1 3 1 3 1 3 1x 1 1x 3 1x 3 1 x 1 x 1 3. 1 1.. 3.16: NMF (UP) 37

1 x 1 3 x 1 Activation Matrix x 1 x 1 x 1 x 1 x 1 1 3 1 3 1 3 1x 1 1x 3 1x 3 1 x 1 x 1 3. 1 1...17: NMF (MAPS) 38

6.3 NMF NMF 39

.1.11 khz GP1 (.1) RWC3 (.1(d)) GP (.1) 1,,,, 6, 7 khz khz RWC1 (.1(c)) 1, 3 khz.13. 1. K = 3 3 6 3 6.. 6 6.1 RWC3 (.1) GP (.13)

1. x 1 3 th activation vector 1 Amplitude [deg].8.6.. Frequency [Hz] 1.8 x 1 3 th activation vector 1.6 1. Amplitude [deg] 1. 1.8.6.. Frequency [Hz] 3. x 1 3 th activation vector 3 Amplitude [deg]. 1. 1. Frequency [Hz] (c) 1. x 1 3 th activation vector 1 Amplitude [deg].8.6.. Frequency [Hz] (d).1: 1

7 x 1 3rd activation vector 6 Amplitude [deg] 3 1. 1 1.. Time [sec] 8 x 1 6th activation vector 7 Amplitude [deg] 6 3 1. 1 1.. Time [sec].:

.1: GP1 GP RWC1 RWC3 (deg/sec).3 1 1.1 1 1.97 1 3.6 1.: UP1 UP UP3 UP MAPS (deg/sec) 1.1 1 1.9 1 1.19 1 1.31 1 1.3 1..3.3 UP1.3 UP,.3(c) MAPS UP1 UP. khz MAPS khz 1. khz.. sec 3 6 6.. ( ).,(c),(e) UP1, UP,MAPS.(d)(f) UP1, UP,MAPS MAPS 6 UP1 (.) UP(.(c)) MAPS(.(e)) Hz 3

1.8 x 1 3 th activation vector 1.6 1. Amplitude [deg] 1. 1.8.6.. Frequency [Hz] 1. x 1 3 th activation vector Amplitude [deg] 1. Frequency [Hz] 1.8 x 1 3 th activation vector 1.6 1. Amplitude [deg] 1. 1.8.6.. Frequency [Hz] (c).3:

th basis vector. x 1 th activation vector Frequency [Hz] Amplitude [deg] 3. 3. 1. 1...6.8 1 1. 1. 1.6 Amplitude [deg] x 1 3. 1 1.. 3 Time[sec] th basis vector 3. x 1 th activation vector 3 Frequency [Hz] Amplitude [deg]. 1. 1....6.8 1 1. 1. 1.6 1.8 Amplitude [deg] (c) x 1 3. 1 1.. 3 Time[sec] (d) th basis vector x 1 th activation vector. Frequency [Hz] Amplitude [deg] 3. 3. 1. 1..6.7.8.9 1 1.1 1. 1.3 1. 1. 1.6 Amplitude [deg] (e) x 1 3. 1 1.. Time[sec] (f).:

.3 MIDI.3.1. (c) MIDI.(c) MIDI. sec MIDI.8 sec MIDI.6 (b ). sec.6 sec.3..7 (c) MIDI 1. 1.6 MIDI 1.3 6

8 x 1 3rd activation vector 7 Amplitude [deg] 6 3 1. 1 1.. Time [sec] 9 x 1 3rd activation vector 8 7 Amplitude [deg] 6 3 1. 1 1.. 3 Time[sec] 7 x 1 3rd activation vector 6 Amplitude [deg] 3 1. 1 1.. 3 Time [sec] (c).: 7

7 x 1 3rd activation vector 6 Amplitude [deg] 3 1. 1 1.. Time[sec] x 1 3rd activation vector 3. Amplitude [deg] 3. 1. 1.. 1 1.. 3 Time[sec].6: 8

3 x 1 3 1st basis vectors. Amplitude [deg] 1. 1. Frequency [Hz] 3 x 1 3 1st basis vectors. Amplitude [deg] 1. 1. Frequency [Hz]. x 1 3 1st basis vectors. Amplitude [deg] 1.8 1.6 1. 1. 1.8.6. Frequency [Hz] (c).7: 9

.3: GRAND UPRIGHT MIDI GRAND.77.63.73 UPRIGHT.78.67 MIDI 1. 7 1 8 1 [] 7, 8 8 8 1 6 6 1 MIDI,, 7 MIDI.3.77.63 MIDI MIDI MIDI MIDI.3.3 khz khz.8

1 1.. x 1 3 1 1.. x 1 3 1 1.. x 1 3.8: (UP3) khz. khz MIDI 1

MIDI khz

6 6.1 NMF NMF 3 + NMF MIDI MIDI khz 6. ( ) NMF MIDI NMF 3

MIDI

Mr. Elbarougy, Mr.Chau, Mr.Ngo

[1]. : ( )., Vol. 67, No. 1, pp. 6, 1. [],.., Vol. 9, No. 3, pp. 178 183, 1993. [3].., Vol., No. 1-, pp. 1 1, 7. [],. :.. SP,, Vol. 99, No. 66, pp. 1 6,. [],... [ ], Vol., No. 1, pp. 7 1,. [6],,.., 13. [7] N.H. Fletcher and T.D.Rossing. The Physics of Musical Instruments second edition, chapter 1, pp. 3 398. springer, 1998. [8],. :.. D-II,, II-, Vol. 81, No. 7, pp. 11 117, 1998. [9],,,,,. gmm midi (,,, )., Vol. 7, No., pp. 183 18, 1. [1],,,.., Vol. 3, No. 1, pp. 83 8, mar 3. [11] C.T.Lee, Y.H.Yang, and H.H.Chen. Multipitch estimation of piano music by exemplar-based sparse representation. Multimedia,IEEE transactions on, Vol. 1, No. 3, pp. 68 618, 1. 6

[1] D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization. Nature, Vol. 1, pp. 788 791, 1999. [13] P.Smaragdis and J.C.Brown. Non-negative matrix factorization for polyphonic music. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, pp. 19, 3. [1],,,,. nmf., No., pp. 163 16, 7. [1] F.Rigaud, A.Falaize, B.David, and L.Daudet. Does inharmonicity improve an nmfbased piano transcription model? Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 11 1, 13. [16],,,,,,. gmm nmf., Vol., No. 1, pp. 3839 38, 11. [17],,. :., Vol. 3, No.,. [18],. ( ( ), 13)., Vol. 37, No. 17, pp. 6 68, 13. [19].. http://jp.yamaha.com/ products/musical-instruments/keyboards/about/gp/#upgp. [] W.Goebl, R.Bresin, and A.Galembo. Once again: The perception of piano touch and tone: Can touch audibly change piano sound independently of intensity? Proceedings of the International Symposium on Musical Acoustics,, pp. 33 33,. [1] F.Rigaud, B.David, and L.Daudet. A parametric model of piano tuning. Proc. of the 1th International Conference on Difital Audio Effects, pp. 393 399, 11. [] F.Rigaud, A.Falaize, B.David, and L.Daudet. Does inharmonicity improve an nmfbased piano transcription model? ICASSP, 13. [3] A.Lefévre, F. Bach, and C.Févotte. Online algorithms for nonnegative matrix factorization with the itakura-saito divergence. In Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), Mohonk, NY, Oct. 11. 7

[] C.Févotte. Majorization-minimization algorithm for smooth itakura-saito nonnegative matrix factorization. In Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, May 11. []. nmf /., Vol. 9, No. 9, pp. 89 833, 1. [6]. :.. [ ], Vol. 11, No., p. 1, 11. [7],,,,,... [ ], Vol. 11, No. 6, pp. 1 8, jul 11. [8],.. MUS, Vol. 1-MUS-96, No. 8, pp. 1 8, 1. [9],,,. Rwc :., Vol. 3, No. 1, pp. 83 8, mar 3. [3] V.Emiya, R.Badeau, and B.David. Multipitch estimation of piano sounds using a new probabilistic spectral smoothness principle. IEEE Transactions on Audio, Speech and Language Processing, No. 18, pp. 163 16, 1. 8

1,7 1 3 1 1.m 1 PC ( I/F) 6 RWC-DB GP1 GP1 YAMAHA GRAND C3( 1) 1cm, 18cm 3 9

図 1: YAMAHA GRAND C3 (c) (d) 図 : GP1 のマイク設置 6

1: PC OS CPU DELL precision M6 windows 7 (3-bit) intel core i7 MATLAB13a Roland OCTA-CAPTURE Audio-Technica AT8Ra (1,,, ch) RAMSA WM-C7 (3 ch) SENNHEISER HDA GP GP YAMAHA GRAND S6A 11cm, 1cm 3 MAPS-DB UP1,UP,UP UP1,, YAMAHA YU3SZ 1 cm, 19cm, 6 cm UP3 UP3 KAWAI K8 YAMAHA 61

(c) (d) 図 3: GP のマイク設置 6

(c) (d) 図 : アップライトピアノのマイク設置 63

: [sec] 1 A3( Hz) m 3 P1 A3 f 3 P1 3 A3 p 3 P1 A3 m 3 P1 A( Hz) m 3 P1 6 A3 m 3 P 7 A f 3 P1 8 A p 3 P1 9 A3 m 3 P 1 A3 m 3 P 11 A3 m 3 P3 1 A3 m 3 P3 1 A3 p 3 P 1 A3 p 3 P3 3: GP1 Ch [cm] 1 7 cm 9 cm 8 18 cm 9 cm 3 7 cm 1 cm 8 1 cm MIDI 9 UP1 1 1 UP 1 19 UP3 UP 9 MAPS 3 3 GP1 3 39 GP1 RWC1 9 RWC3 K = 1 6

: GP Ch 1 7. cm 1 cm 8 cm 113 cm 1 cm cm 3 7. cm 11 cm 8 cm 1 cm : Ch 1 7 cm 1 cm 19 cm 7 cm 1 cm 179 cm 3 8 cm 1 cm 19 cm 1cm 1 cm 6

x 1 Activation Matrix 7.6 7. 7. 7 6.8 6.6 6. 6. 6.8.9 1 1.1 1. 1.3 1. 1. 1.6 1.7 1.8 1.9 x 1 3. 1 1.. 3 : K = 1 (MIDI) 66

1 1. x 1 3 7 Activation Matrix x 1 6 3 1 x 1 7 6 3 1 1 1. x 1 3. 1 1.. 3 6: K = (MIDI) 67

. 1 1. x 1 3 Activation Matrix x 1 6 x 1 6 x 1 6. 1 1.. 1 1. x 1 3 x 1 3. 1 1.. 3 7: K = 3 (MIDI) 68

1 1.. x 1 3 1 1.. x 1 3 Activation Matrix x 1 x 1 x 1 x 1 1 1.. x 1 3 x 1 3 1 1... 1 1.. 3 8: K = (MIDI) 69

1 x 1 3 1 x 1 3 1 x 1 3 Activation Matrix x 1 x 1 x 1 x 1 x 1 1 x 1 3 1 x 1 3. 1 1.. 3 9: K = (MIDI) 7

x 1 Activation Matrix 8. 8 7. 7 6..9 1 1.1 1. 1.3 1. 1. 1.6 x 1 3. 1 1.. 3 1: K = 1 (UP1) 71

1 1. x 1 3 8 x 1 Activation Matrix 6 8 x 1 6 1 1. x 1 3. 1 1.. 3 11: K = (UP1) 7

. 1 1.. x 1 3 6 Activation Matrix x 1 x 1 6 x 1 6. 1 1.. x 1 3. 1 1.. x 1 3. 1 1.. 3 1: K = 3 (UP1) 73

1 x 1 3 1 x 1 3 Activation Matrix x 1 x 1 x 1 x 1 1 1 x 1 3 x 1 3. 1 1.. 3 13: K = (UP1) 7

1 x 1 3 1 1 x 1 3 x 1 3 Activation Matrix x 1 x 1 x 1 x 1 x 1 1 1 x 1 3 x 1 3. 1 1.. 3 1: K = (UP1) 7

x 1 Activation Matrix 7. 7 6.8 6.6 6. 6. 6.8.6.9 1 1.1 1. 1.3 1. 1. 1.6 x 1 3. 1 1.. 3 1: K = 1 (UP) 76

1 1. x 1 3 Activation Matrix x 1 6 3 1 x 1 6 3 1 1 1. x 1 3. 1 1.. 3 16: K = (UP) 77

1 1. x 1 3 Activation Matrix x 1 x 1 x 1 1 1. 1 1. x 1 3 x 1 3. 1 1.. 3 17: K = 3 (UP) 78

. 1 1. x 1 3. 1 1. x 1 3 Activation Matrix x 1 x 1 x 1 x 1. 1 1.. 1 1. x 1 3 x 1 3. 1 1.. 3 18: K = (UP) 79

. 1 1.. x 1 3. 1 1.. x 1 3. 1 1.. x 1 3 Activation Matrix x 1 x 1 x 1 x 1 x 1. 1 1.. x 1 3. 1 1.. x 1 3. 1 1.. 3 19: K = (UP) 8

x 1 Activation Matrix 9. 9 8. 8 7..9 1 1.1 1. 1.3 1. 1. x 1 3. 1 1.. 3 : K = 1 (UP3) 81

.8 1 1. 1. 1.6 1.8 x 1 3 Activation Matrix x 1 8 6 x 1 8 6.8 1 1. 1. 1.6 1.8 x 1 3. 1 1.. 3 1: K = (UP3) 8

1 1.. x 1 3 8 x 1 Activation Matrix 6 8 x 1 6 8 x 1 6 1 1.. x 1 3 1 1.. x 1 3. 1 1.. 3 : K = 3 (UP3) 83

1 x 1 3 1 x 1 3 Activation Matrix x 1 x 1 x 1 x 1 1 1 x 1 3 x 1 3. 1 1.. 3 3: K = (UP3) 8

x 1 3 x 1 3 x 1 3 Activation Matrix x 1 x 1 x 1 x 1 x 1 x 1 3 x 1 3. 1 1.. 3 : K = (UP3) 8

x 1 Activation Matrix 9 8. 8 7. 7.9 1 1.1 1. 1.3 1. 1. x 1 3. 1 1.. 3 : K = 1 (UP) 86

.8 1 1. 1. 1.6 1.8 x 1 3 8 Activation Matrix x 1 6 x 1 8 6.8 1 1. 1. 1.6 1.8 x 1 3. 1 1.. 3 6: K = (UP) 87

1 x 1 3 6 Activation Matrix x 1 x 1 6 x 1 6 1 1 x 1 3 x 1 3. 1 1.. 3 7: K = 3 (UP) 88

1 x 1 3 1 x 1 3 Activation Matrix x 1 x 1 x 1 x 1 1 3 1 x 1 x 1 3. 1 1.. 3 8: K = (UP) 89

. 1 1.. x 1 3. 1 1... 1 1.. x 1 3 x 1 3 Activation Matrix x 1 x 1 x 1 x 1 x 1. 1 1... 1 1.. x 1 3 x 1 3. 1 1.. 3 9: K = (UP) 9

x 1 Activation Matrix 7. 7 6.8 6.6 6. 6. 6.8.6.9 1 1.1 1. 1.3 1. 1. 1.6 1.7 x 1 3. 1 1.. 3: K = 1 (MAPS) 91

1 1. x 1 3 6 Activation Matrix x 1 3 1 x 1 6 3 1 1 1. x 1 3. 1 1.. 31: K = (MAPS) 9

1 1. x 1 3 Activation Matrix x 1 x 1 x 1 1 1. 1 1. x 1 3 x 1 3. 1 1.. 3: K = 3 (MAPS) 93

1 x 1 3 1 x 1 3 Activation Matrix x 1 x 1 x 1 x 1 1 1 x 1 3 x 1 3. 1 1.. 33: K = (MAPS) 9

1 3 x 1 3 Activation Matrix x 1 x 1 x 1 x 1 x 1 1 3 1 3 1 3 x 1 3 x 1 3 x 1 3 1 3 x 1 3. 1 1.. 3: K = (MAPS) 9

x 1 Activation Matrix 7. 7. 7 6.8 6.6 6. 6. 6.9 1 1.1 1. 1.3 1. 1. 1.6 1.7 x 1 3. 1 1.. 3 3: K = 1 (GP1) 96

1 1. x 1 3 7 Activation Matrix x 1 6 3 1 x 1 7 6 3 1 1 1. x 1 3. 1 1.. 3 36: K = (GP1) 97

1 1. x 1 3 6 Activation Matrix x 1 x 1 6 x 1 6 1 1. 1 1. x 1 3 x 1 3. 1 1.. 3 37: K = 3 (GP1) 98

1 1. x 1 3 1 1. x 1 3 Activation Matrix x 1 x 1 x 1 x 1 1 1. 1 1. x 1 3 x 1 3. 1 1.. 3 38: K = (GP1) 99

1 x 1 3 1 x 1 3 1 x 1 3 Activation Matrix x 1 x 1 x 1 x 1 x 1 1 1 x 1 3 x 1 3. 1 1.. 3 39: K = (GP1) 1

x 1 1. Activation Matrix 1 9. 9 8..9 1 1.1 1. 1.3 1. 1. x 1 3. 1 1.. 3 : K = 1 (GP) 11

.8 1 1. 1. 1.6 1.8 x 1 3 Activation Matrix x 1 8 6 x 1 8 6.8 1 1. 1. 1.6 1.8 x 1 3. 1 1.. 3 1: K = (GP) 1

. 1 1. x 1 3 8 Activation Matrix x 1 6 x 1 8 6 x 1 8 6. 1 1.. 1 1. x 1 3 x 1 3. 1 1.. 3 : K = 3 (GP) 13

1 x 1 3 1 x 1 3 Activation Matrix x 1 x 1 x 1 x 1 1 1 x 1 3 x 1 3. 1 1.. 3 3: K = (GP) 1

. 1 1. x 1 3. 1 1.. 1 1. x 1 3 x 1 3 Activation Matrix x 1 x 1 x 1 x 1 x 1. 1 1.. 1 1. x 1 3 x 1 3. 1 1.. 3 : K = (GP) 1

x 1 Activation Matrix 9 8. 8 7. 7 6. 6.9 1 1.1 1. 1.3 1. 1. 1.6 1.7 x 1 3. 1 1.. : K = 1 (RWC1) 16

.8 1 1. 1. 1.6 1.8 x 1 3 8 Activation Matrix x 1 6 x 1 8 6.8 1 1. 1. 1.6 1.8 x 1 3. 1 1.. 6: K = (RWC1) 17

1 3 x 1 3 Activation Matrix x 1 6 x 1 6 x 1 6 1 3 x 1 3 1 3 x 1 3. 1 1.. 7: K = 3 (RWC1) 18

1 x 1 3 1 x 1 3 Activation Matrix x 1 x 1 x 1 x 1 1 1 x 1 3 x 1 3. 1 1.. 8: K = (RWC1) 19

x 1 3 Activation Matrix x 1 x 1 x 1 x 1 x 1 1 3 1 3 x x 3 x 1 x 1 3. 1 1.. 9: K = (RWC1) 11

8.6 x 1 Activation Matrix 8. 8. 8 7.8 7.6 7. 7. 7 6.8.9 1 1.1 1. 1.3 1. 1. 1.6 x 1 3. 1 1.. : K = 1 (RWC3) 111

.8 1 1. 1. 1.6 1.8 x 1 3 8 Activation Matrix x 1 6 x 1 8 6.8 1 1. 1. 1.6 1.8 x 1 3. 1 1.. 1: K = (RWC3) 11

1 1.. x 1 3 Activation Matrix x 1 6 x 1 6 x 1 6 1 1.. 1 1.. x 1 3 x 1 3. 1 1.. : K = 3 (RWC3) 113

. 1 1.. x 1 3. 1 1.. x 1 3 Activation Matrix x 1 x 1 x 1 x 1. 1 1... 1 1.. x 1 3 x 1 3. 1 1.. 3: K = (RWC3) 11

1 x 1 3 Activation Matrix x 1 x 1 x 1 x 1 x 1 1 1 1 1 x 1 3 x 1 3 x 1 3 x 1 3. 1 1.. : K = (RWC3) 11

UP1 UP 6 UP3 7 UP 8 MAPS 9 GP1 6 GP 61 RWC1 6 RWC3 63 116

1 x 1 3 x 1 Activation Matrix x 1 x 1 x 1 x 1 x 1 1 1 x 1 3 x 1 3 1 1 1 x 1 3 x 1 3 x 1 3. 1 1.. 3 : NMF (UP1) 117

1 x 1 3 x 1 Activation Matrix x 1 x 1 x 1 x 1 x 1 1 3 1 3 1 3 1x 1 1x 3 1x 3 1 x 1 x 1 3. 1 1.. 3 6: NMF (UP) 118

1 x 1 3 x 1 Activation Matrix x 1 x 1 x 1 x 1 x 1 1 1 x 1 3 x 1 3 1 x 1 3 1 x 1 3 1 x 1 3. 1 1.. 3 7: NMF (UP3) 119

1 x 1 3 x 1 Activation Matrix x 1 x 1 x 1 x 1 x 1 1 1 x 1 3 x 1 3 1 1 1 x 1 3 x 1 3 x 1 3. 1 1.. 3 8: NMF (UP) 1

1 x 1 3 x 1 Activation Matrix x 1 x 1 x 1 x 1 x 1 1 3 1 3 1 3 1x 1 1x 3 1x 3 1 x 1 x 1 3. 1 1.. 9: NMF (MAPS) 11

1 x 1 3 x 1 Activation Matrix x 1 x 1 x 1 x 1 x 1 1 x 1 3 1 x 1 3 1 x 1 3 1 x 1 3 x 1 3 1. 1 1.. 3 6: NMF (GP1) 1

1 x 1 3 x 1 Activation Matrix x 1 x 1 x 1 x 1 x 1 1 x 1 3 1 x 1 3 1 x 1 3 1 x 1 3 x 1 3 1. 1 1.. 3 61: NMF (GP) 13

x 1 3 x 1 Activation Matrix x 1 x 1 x 1 x 1 x 1 x 1 3 x 1 3 x 1 3 x 1 3 x 1 3. 1 1.. 6: NMF (RWC1) 1

1 x 1 3 x 1 Activation Matrix x 1 x 1 x 1 x 1 x 1 1 x 1 3 1 x 1 3 1 x 1 3 1 x 1 3 x 1 3 1. 1 1.. 63: NMF (RWC3) 1

Kobayashi,K.,Morikawa,D.,Akagi,M., Study on Analyzing Individuality of Piano Sounds Using Non-negative Matrix Factorization, The 6th seminar of A3 foresight program, February 1. Kobayashi,K.,Morikawa,D.,Akagi,M., Study on Analyzing Individuality of Instrurment Sounds Using Non-negative Matrix Factorization, Proc. 1 RISP International Workshop on Nonliner Circuits, Communications and Signal Processing, 33 36, March 1., in, December13., 1,March 1. 16