°ÌÁê¿ô³ØII

Similar documents
III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

2000年度『数学展望 I』講義録


18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

A

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X


Gmech08.dvi

201711grade1ouyou.pdf

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

II

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

untitled

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

Z: Q: R: C: sin 6 5 ζ a, b

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

Part () () Γ Part ,

日本内科学会雑誌第97巻第7号

日本内科学会雑誌第98巻第4号

Untitled

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

数学Ⅱ演習(足助・09夏)


() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

tnbp59-21_Web:P2/ky132379509610002944

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)


[] x < T f(x), x < T f(x), < x < f(x) f(x) f(x) f(x + nt ) = f(x) x < T, n =, 1,, 1, (1.3) f(x) T x 2 f(x) T 2T x 3 f(x), f() = f(t ), f(x), f() f(t )


2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

1

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

mugensho.dvi

pdf

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

agora04.dvi

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

1 I

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

untitled




9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m


1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete sp

untitled

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

Z: Q: R: C: 3. Green Cauchy

TOP URL 1

³ÎΨÏÀ

1 θ i (1) A B θ ( ) A = B = sin 3θ = sin θ (A B sin 2 θ) ( ) 1 2 π 3 < = θ < = 2 π 3 Ax Bx3 = 1 2 θ = π sin θ (2) a b c θ sin 5θ = sin θ f(sin 2 θ) 2


function2.pdf

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1.2 R A 1.3 X : (1)X (2)X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

: , 2.0, 3.0, 2.0, (%) ( 2.

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

DVIOUT

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

量子力学 問題

2

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 +

DVIOUT-HYOU

第1章 微分方程式と近似解法

i 18 2H 2 + O 2 2H 2 + ( ) 3K

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

p-sylow :

Transcription:

July 14, 2007

Brouwer f f(x) = x x

f(z) = 0

2 f : S 2 R 2 f(x) = f( x) x S 2

3 3 2

- - -

1. X x X U(x) U(x) x U = {U(x) x X} X 1. U(x) A U(x) x 2. A U(x), A B B U(x) 3. A, B U(x) A B U(x) 4. A U(x), B U(x) s.t. y B A U(y) U X X

1. X x X U(x) U(x) x U = {U(x) x X} X 1. U(x) A U(x) x 2. A U(x), A B B U(x) 3. A, B U(x) A B U(x) 4. A U(x), B U(x) s.t. y B A U(y) U X X

1. X = R n x R n ǫ > 0 B(x, ǫ) = {y R n y x < ǫ} A U(x) ǫ > 0 s.t. B(x, ǫ) A U = {U(x) x R n }

1. U X x U, U U(x) U R n x U, ǫ s.t. B(x, ǫ) U X O 1., X O 2. U, V O U V O 3. U λ O (λ Λ) λ Λ U λ O

1. U X x U, U U(x) U R n x U, ǫ s.t. B(x, ǫ) U X O 1., X O 2. U, V O U V O 3. U λ O (λ Λ) λ Λ U λ O

1. F X X F X X F 1., X F 2. F, G F F G F 3. F λ F (λ Λ) λ Λ F λ O

1. F X X F X X F 1., X F 2. F, G F F G F 3. F λ F (λ Λ) λ Λ F λ O

1. X B x B B U(x) Int B = {B }... B x B A U(x), A B B = {B }... B x B x B B = {B } = B IntB... B

1. X B 1. IntB B 2. B B 3. B

1. [U O] U O x U, U U(x) [O U] U U(x) O O s.t. x O U [O F] F F X F O [F O] U O X U F

1. [U O] U O x U, U U(x) [O U] U U(x) O O s.t. x O U [O F] F F X F O [F O] U O X U F

1. [U O] U O x U, U U(x) [O U] U U(x) O O s.t. x O U [O F] F F X F O [F O] U O X U F

1. [U O] U O x U, U U(x) [O U] U U(x) O O s.t. x O U [O F] F F X F O [F O] U O X U F

1. [U O] U O x U, U U(x) [O U] U U(x) O O s.t. x O U [O F] F F X F O [F O] U O X U F

1. U O (1), (2), (3) (4) O U U (4) U = U (4) A U(x) x B IntA A B IntA (4) A U (x) (1) (2) (3)

1. U 0 (x) U(x) x A U(x), B U 0 s.t. B A U 0 = {U 0 (x) x X} 1. U 0 (x) A U 0 (x) x 2. A, B U 0 (x) C U 0 (x) s.t. C A B 3. A U 0 (x), B U 0 (x) s.t. b B, C U 0 (b) s.t. C A U 0 U

1. U 0 (x) U(x) x A U(x), B U 0 s.t. B A U 0 = {U 0 (x) x X} 1. U 0 (x) A U 0 (x) x 2. A, B U 0 (x) C U 0 (x) s.t. C A B 3. A U 0 (x), B U 0 (x) s.t. b B, C U 0 (b) s.t. C A U 0 U

1. {B(x, ǫ) ǫ > 0} R n X U 0 (x) = {x } U 0 = {U 0 (x)}

1. {B(x, ǫ) ǫ > 0} R n X U 0 (x) = {x } U 0 = {U 0 (x)}

1. O 0 O U O, U λ O 0 (λ Λ) s.t. U = λ Λ U λ 1. X = U O 0 U ( x X, U O 0 s.t. x U) 2. U, V O 0, x U V, W O 0 s.t. x W U V O 0 O {B(x, ǫ) x R n, ǫ > 0} R n

1. O 0 O U O, U λ O 0 (λ Λ) s.t. U = λ Λ U λ 1. X = U O 0 U ( x X, U O 0 s.t. x U) 2. U, V O 0, x U V, W O 0 s.t. x W U V O 0 O {B(x, ǫ) x R n, ǫ > 0} R n

1. O 0 O U O, U λ O 0 (λ Λ) s.t. U = λ Λ U λ 1. X = U O 0 U ( x X, U O 0 s.t. x U) 2. U, V O 0, x U V, W O 0 s.t. x W U V O 0 O {B(x, ǫ) x R n, ǫ > 0} R n

1. O 0 O U O, U λ O 0 (λ Λ) s.t. U = λ Λ U λ 1. X = U O 0 U ( x X, U O 0 s.t. x U) 2. U, V O 0, x U V, W O 0 s.t. x W U V O 0 O {B(x, ǫ) x R n, ǫ > 0} R n

1. S O S = { n i=1 U i U 1,, U n S} O 1. X = U S U S O (, a) (b, + ) R

1. S O S = { n i=1 U i U 1,, U n S} O 1. X = U S U S O (, a) (b, + ) R

1. S O S = { n i=1 U i U 1,, U n S} O 1. X = U S U S O (, a) (b, + ) R

1. S O S = { n i=1 U i U 1,, U n S} O 1. X = U S U S O (, a) (b, + ) R

1.......

1.......

2. x X U(x) = {X} X O = {, X}

2. x X {x} U(x) X O X

2. K n K n K n Zariski

2. X U 0 (x) = {x } U 0 = {U 0 (x)}

2. d: X X R X 1. d(x, y) 0 d(x, y) = 0 x = y 2. d(x, y) = d(y, x) 3. d(x, y) d(x, z) + d(z, y)... d(x, y) = y x = (y 1 x 1 ) 2 + + (y n x n ) 2 R n

2. x X ǫ > 0 B(x, ǫ) = {y X d(y, x) < ǫ} {B(x, ǫ) ǫ > 0} R n d(x, y) = y x n = 1 R

2. V K K = R C V R, v v V 1. v 0 v = 0 v = 0 2. av = a v (a K, v V ) 3. v + w v + w d(x, y) = y x d: V V R

2. R n x 2 1 + + x2 n x 1 + + x n max{ x 1,..., x n } q x 2 1 + x2 2 < ǫ x 1 + x 2 < ǫ max{ x 1, x 2 } < ǫ Figure: R 2

2. 0 1 V v V c v 0 v 1 C v 0 c C 0 1 V

2. R n V

2. J = [a, b] V C(J, V ) V C(J, V ) max f(x) a x b b f(x) dx a J R n J C(J, V ) J V sup x J f(x)

3. X Y f : X Y x X f(x) V x U f(u) V U V x X f(x) V f 1 (V ) x

3. f : R m R n x X ǫ > 0 y x < δ = f(y) f(x) < ǫ ǫ > 0

3. 1. f : X Y 2. V f(x) = f 1 (V ) x 3. V Y = f 1 (V ) X 4. F Y = f 1 (F) X 5. X A f(a) f(a)

3. X f : X Y Y f : X Y

3. C C R 2, x + yi (x, y),

3. X T T 1. T T 2. T T 3. T T 4. (X, T ) (X, T )

3. T T T T X

3. f X Y X f Y f f 1 (V ) X Y V Y f X f Y V f 1 (V )

4. A X i: A A A X U O A O X U A (x) = {B A B U(x)}, O A = {U A U O} U A {z C z = 1} S 1 S 1

4. X q: X X/ Y = X/ Y X O X Y O Y = {U X f 1 (U) O X } R x y x y Z R/ S 1

4. X X i {f i : X X i i I} f i X (initial topology) (U i ) U i X i (i I)} {fi 1 X X i (i I) i I X i X X i X = i I X i

4. I = {1,...,n} i I X i = X 1 X n {U 1 U n U i O Xi } x = (x 1,...,x n ) {U i U n U i U Xi (x i )} R n

4. I i I X i { i I U i U i O Xi i U i = X i } x = (x i ) { i I U i U i U Xi (x i ) i U i = X i } { i I U i U i O Xi } i I X i (box topology)

4. Z X = i I U i U i O Xi f : Z X i p i f : Z X i i I

5. X U O F T 1 : a, b X, U U(a) s.t. b U. T 2 : a, b X, U U(a), V U(b) s.t. U V =. T 3 : A F, b X A, U, V O s.t. A U, b V, U V =. T 4 : A, B F s.t. A B =, U, V O s.t. A U, B V, U V =. T 0 T 2+1/2 T 3+1/2 T 5 T 6

5. T 1 T 1 T 2 T 1 + T 3 T 1 + T 4

5. X 1. X 2. X a {a} 3. = {(x, x) x X} X X (a,b) U V for all U V U(a,b) U V for all U U(a), V U(b) b U U(a)

5. X 1. X 2. X a {a} 3. = {(x, x) x X} X X (a,b) U V for all U V U(a,b) U V for all U U(a), V U(b) b U U(a)

5. X = i I X i 1. X i X 2. X X i

6. Y X Y i I U i X {U i i I} Y X Y U = {U i i I} Y i I 0 U i I I 0 Y X X

6. 1. 2. X Y Y f : X Y X Y f(x)

6. X, Y X Y X Y X Y R n

6. {X i i I} i X i i X i X i

7. X Y X X U V, U V X = Y U V X U X V

7. f X Y f(x) Y X A A B A B X {A i i I} i I A i i I A i X Y X Y

7. X a a a {a} X a

7. n J 1 J n R n J i,..., J n J 1 J n X 1 S n

7. f : I I f(x) = x x I f : S 1 R f(x) = f( x) x S 1 2

7. [0, 1] X α: [0, 1] X X α(0) α(1) X

7. f : X Y X f(x) X Y X Y S 1 S 1 S 1 R 2 A B A B A = {(0, y) 0 < y 1} B = {(x,0) 0 < x 1} {(1/n, y) 0 < y 1}

7. X X X X π 0 X A B π 0 (A B) = {A, B}

8. X α: [0, 1] X α(0) = α(1) α β α: [0, 1] [0.1] X α β α β x 0 X π 1 (X, x 0 ) x 0 1 S 1 C x 0 S 1 X π 1 (X, x 0 ) X

8. π 1 (X, x 0 ) ([α], [β]) [α] [β] = [α β] α(2t), α β(t) = β(2t 1), t 1 2 t 1 2 π 1 (X, x 0 ) c x0 (t) x 0 [α] α α(t) = α(1 t)

8. ([α] [β]) [γ] = [α] ([β] [γ]) (α β) γ α (β γ) [α] [c x0 ] = [c x0 ] [α] = [α] α c x0 c x0 α α [α] [α] = [α] [α] = [c x0 ] α α α α c x0 α β α β α X x 0 x 1 l l ([α]) = [l α l] l : π 1 (X, x 0 ) π 1 (X, x 1 ) l

8. f : X Y f : π 1 (X, x 0 ) π(y, y 0 ) y 0 = f(x 0 ) (X, x 0 ) (Y, y 0 ) f g H(x,0) = f(x), H(x,1) = g(x) H : (X [0, 1], {x 0 } [0, 1] ) (Y, y 0 ) f g f g f : (X, x 0 ) (Y, y 0 ) g f 1 X f g 1 Y g: (Y, y 0 ) (X, x 0 ) f ( )

8. 1. f : (X, x 0 ) (Y, y 0 ) g: (Y, y 0 ) (X, z 0 ) (g f) = g f 2. 1 X : (X, x 0 ) (X, x 0 ) 3. f g: (X, x 0 ) (Y, y 0 ) f = g 1, 2 f : (X, x 0 ) (Y, y 0 ) f 3

8. f : (X, x 0 ) (Y, y 0 ) f : π 1 (X, x 0 ) π 1 (Y, y 0 ) X x 0 π 1 (X, x 0 ) = {1} x 0 X π 1 (X, x 0 ) 1 1 n D n 1

8. S 1 C S 1 Z π 1 (S 1, e 0 ) Z e: R S 1 e(t) = cos2πt + i sin2πt S 1 e V 0 = S 1 { 1} V 1 = S 1 {1} {V 0, V 1 } S 1 U n = (n/2 1/2, n/2 + 1/2) {U n n Z} R e U n e U n : U n V n (n = n mod 2)

8. 1. l: I S 1 p(a) = l(0) a R e l = l, l(0) = a l: I R l 2. L: I I S 1 p(a) = L(0, 0) a R p L = L, L(0, 0) = a L: I I R

8. π 1 (S 1, 1) [α] α χ([α]) = α(1) α(0) α χ: π 1 (S 1, 1) Z

8. C 0 S 1 Z π 1 (C 0, x 0 ) z z x 0 π 1 (S 1, 1) = π 1 (C 0, x 0 ) Z f : S 1 C 0 W(f,0) = f (1) π 1 (C 0, x 0 ) = Z f (winding number)

8. arg f(e(t)) = 2πθ(t) (0 t 1) θ: [0, 1] R W(f,0) = θ(1) θ(0) e(t) = cos2πt + i sin2πt x c x W(c x, 0) = 0 n W(z n, 0) = n W(f g, 0) = W(f,0) + W(g, 0) W(f/g,0) = W(f,0) W(g, 0)

8. f g: (S 1, 1) (C 0, x 0 ) W(f,0) = W(g, 0) f g C 0 (f g: S 1 C 0) W(f,0) = W(g, 0) f(z) W(f,0) = 0

8. f D 2 S 1 f S 1 W(f S 1, 0) 0 f(z) = 0 z D 2 0 f(d 2 ) f c f(0) : S 1 C 0 W(f,0) = W(c f(0), 0) = 0 c f(0) (z) f(0) (z S 1 )

8. Brouwer f : D 2 D 2 f(x) = x x D 2

8. n + 1 S n f( x) = f(x) f : S n R m f : S 1 C 0 W(f,0) f : S 2 R 2 f(s 2 )

8. f : S 2 R 2 f(x) = f( x) x S 2 S 2 3 2