1 Edward Waring Lagrange n {(x i, y i )} n i=1 x i p i p i (x j ) = δ ij P (x) = p i p i (x) = n y i p i (x) (1) i=1 n j=1 j i x x j x i x j (2) Runge

Similar documents
tnbp59-21_Web:P2/ky132379509610002944

パーキンソン病治療ガイドライン2002

研修コーナー

第10章 アイソパラメトリック要素



d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

2011de.dvi

Morse ( ) 2014

1 c Koichi Suga, ISBN

第90回日本感染症学会学術講演会抄録(I)

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

Ł\”ƒ-2005

1 1 u m (t) u m () exp [ (cπm + (πm κ)t (5). u m (), U(x, ) f(x) m,, (4) U(x, t) Re u k () u m () [ u k () exp(πkx), u k () exp(πkx). f(x) exp[ πmxdx


No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)

6.1 (P (P (P (P (P (P (, P (, P.

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

2D-RCWA 1 two dimensional rigorous coupled wave analysis [1, 2] 1 ε(x, y) = 1 ε(x, y) = ϵ mn exp [+j(mk x x + nk y y)] (1) m,n= m,n= ξ mn exp [+j(mk x

ohpmain.dvi

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

II Time-stamp: <05/09/30 17:14:06 waki> ii

D 24 D D D

6.1 (P (P (P (P (P (P (, P (, P.101

°ÌÁê¿ô³ØII

1 yousuke.itoh/lecture-notes.html [0, π) f(x) = x π 2. [0, π) f(x) = x 2π 3. [0, π) f(x) = x 2π 1.2. Euler α


量子力学 問題

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

201711grade1ouyou.pdf

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

Part () () Γ Part ,

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18


y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

2000年度『数学展望 I』講義録

応用数学III-4.ppt

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y



,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

nm (T = K, p = kP a (1atm( )), 1bar = 10 5 P a = atm) 1 ( ) m / m

Gmech08.dvi

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

i 18 2H 2 + O 2 2H 2 + ( ) 3K

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

gr09.dvi

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

16 B

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

inkiso.dvi

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.


1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2


I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα =

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1.

1. x { e 1,..., e n } x = x1 e1 + + x n en = (x 1,..., x n ) X, Y [X, Y ] Intrinsic ( ) Intrinsic M m P M C P P M P M v 3 v : C P R 1

統計学のポイント整理


(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

5 Armitage x 1,, x n y i = 10x i + 3 y i = log x i {x i } {y i } 1.2 n i i x ij i j y ij, z ij i j 2 1 y = a x + b ( cm) x ij (i j )

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

DVIOUT

B2 ( 19 ) Lebesgue ( ) ( ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercia

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

日本内科学会雑誌第97巻第7号

数学Ⅱ演習(足助・09夏)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

A

1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete sp

newmain.dvi

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S

untitled

v er.1/ c /(21)

ft. ft τfτdτ = e t.5.. fx = x [ π, π] n sinnx n n=. π a π a, x [ π, π] x = a n cosnx cosna + 4 n=. 3, x [ π, π] x 3 π x = n sinnx. n=.6 f, t gt n 3 n


) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4


TOP URL 1

Transcription:

Edwrd Wring Lgrnge n {(x i, y i )} n x i p i p i (x j ) = δ ij P (x) = p i p i (x) = n y i p i (x) () n j= x x j x i x j (2) Runge [] [2] = ξ 0 < ξ < ξ n = b [, b] [ξ i, ξ i ] y = /( + 25x 2 ) 5 2,, 0,, 2

P n p 0,..., p n p 0 (x) ξ 0 x < ξ, P (x) =. p n (x) ξ n x < ξ n * deg P := mx deg p i. 0 i n k C k (, b) k {ξ i } n ξ = (ξ,..., ξ n ) k R S (k; ξ) S (k; ξ 0,..., ξ n ) S (k; ξ) s [ξ i, ξ i ] [, b] {ξ i } n i=0 k s s(k) s (k) [0, ) H k n s (k) (x) = c k + d i H(x ξ i ), x [, b] \ {ξ i } n i=0 s(x) = k c j x j + n d i (x ξ i ) k k! +, x [, b] (3) (x ξ i ) k + (x ξ i ) k + = n + k {c i } k, {d i} n n + k { H(x ξi ) k = 0 ( mx{0, x ξi } ) k k =, 2,... S (k; ξ) S (k; ξ) R (3) S (k; ξ) B. S (k; ξ 0,..., ξ n ) 0 p < q n [ξ p, ξ q ] S (k; ξ 0,..., ξ n ) s q s(x) = d i (x ξ i ) k +, x [ξ p, ξ q ] i=p * 0 2

d i q d i (x ξ i ) k = 0, i=p x ξ q q d i ξ j i i=p = 0, j = 0,,..., k (4) n f n x,..., x n {(x i, f(x i ))} n Legendre P P f n n {x i } n P = f x l = n x l i n j= x n δ l,n = n x l i x x j x i x j, l = 0,,..., n n j= (5) q = p + k + (4) d i d i = p+k+ j=p B k p B k p (x) := p+k+ i=p p+k+ j=p x i x j, l = 0,,..., n (5) ξ i ξ j, i = p, p +,..., p + k + ξ j ξ i (x ξ i ) k +, x R, p = 0,,..., n k (6) B p [ξ p, ξ p+k+ ] 2 B, B 2, B 3.2 B B B S (k; ξ 0,..., ξ n ) S (k; ξ 0,..., ξ n ) n + k B n k 2k ξ k, ξ k+,..., ξ, ξ n+, ξ n+2,..., ξ n+k i < j ξ i < ξ j (7) 3

B B 2 B 3 2 B n + k B {B k p } n p= k S (k; ξ 0,..., ξ n ) {B k p } n p= k B. 0 p < q n [ξ p, ξ q ] s S (k; ξ 0,..., ξ n ) s r r q (p + k + ) B B k p (ξ p, ξ p+k+ ) (ξ p, ξ p+ ) B k p B k p (ξ p, ξ p+k+ ) {B k p } n p= k s = n p= k s [, b] 0 λ p 0 B k p s (, ξ k ] 0 [, b] 0. (, b] 0 s [ξ k, ξ k+ ] λ p B k p s(x) = λ k B k k, x [ξ k, ξ k+ ] λ k = 0 [ξ k+, ξ k+2 ] s(x) = λ k B k k + λ k+ B k k+, x [ξ k+, ξ k+2 ] λ k = 0 λ k+ = 0 λ p 0 4

.2 {ξ j } n+k j= k (7) {Bk p } n+k p= k (6) B {Bp k } n+k p= k S (k; ξ 0,..., ξ n ) B B (6) x (3) B B B.3 Cox-de Boor k {ξ j } p+k+ j=p B (7) Bp k (x) = (x ξ p)bp k (x) + (ξ p+k+ x)bp+ k (x) (8) ξ p+k+ ξ p B 0 p [ξ p, ξ p+ ) B k (k ) Bp k {Bk j } Bp k, Bp+ k.4 k {ξ j } p+k+ j=p d dx Bk p (x) = (7) B k p k ( B k p ξ p+k+ ξ p k = x B B k p = (k + )B k p (x) B k p+ (x)) (9) 0 { B p k } S k s { B p k }.4 s k { B p }.5 k (7) h s = j β j B k j hs = j β j Bk j β j = β j β j n h n s (n) = j n β j Bk n j 5

.3 {(x i, y i )} n+k S (k; ξ 0,..., ξ n ) x i x < x 2 < < x n+k b (0) S (k; ξ 0,..., ξ n ) s(x i ) = y i, i =,..., n + k s S (k; ξ 0,..., ξ n ) S (k; ξ 0,..., ξ n ) B 2k.6 Schoenberg-Whitney (0) {(x i, y i )} n+k n p= k λ p B k p (x i ) = y i, i =, 2,..., n + k () {B k j k (x j)} n+k j= 0 {λ p} n p= k i j b ij = B k j k (x i) B B 0 b ij 0 x i / (ξ j k, ξ j ) x i ξ j k p j k, x x i B p (x) = 0 i i, j j b i j = 0 x i ξ j i i, j j b i j = 0 j b jj = 0 B, t B ( ) X 0 Y Z X j Z (n + k j) det X det Z X j 0 det X = 0 B 0 B ker B 0 s s(x) = n p= k λ p B k p (x) s(x i ) = 0, i =,..., n + k s 0 ξ k ξ p < ξ q ξ n+k [ξ p, ξ p ], [ξ q, ξ q+ ] s 0 (ξ p, ξ q ) s B 0 j x j (ξ j k, ξ j ) {x j } q j=p+k+ (ξ p, ξ q ) s (ξ p, ξ q ) q p k. s 0.2 λ p 0 6

[, b] {x i } n i=0 [, b] f {(x i, f(x i ))} n i=0 Lgrnge x n [x 0, x,..., x n ]f (),(2) [x 0, x,..., x n ]f f [x 0, x,..., x n ]f = n f(x k ) k=0 n j k x k x j (2) f(ξ) = ( ) k+ (x ξ) k + B (6) B k p (x) = [ξ p, ξ p+,..., ξ p+k+ ] { ( ) k+ (x ) k +}. B.7 [, b] {x i } k+ i=0 f Ck+ [, b] B k B [x 0, x,..., x n ]f = k! k+ B k (x) = (x x i ) k + i=0 B k (x)f (k+) (x)dx k+ x j x i (x x i ) k +f (k+) (x)dx = k l=0 ( ) l k! (k l)! (b x i) k l f k l (b) + ( ) k+ k!f(x i ) B k (5) = k+ = 0 k i=0 l=0 l=0 ( ) l k! (k l)! (b x i) k l f k l (b) i=0 k+ x j x i k k+ ( ) l k! (k l)! f k+ k l (b) (b x i ) k l x j x i 7

k+ k+ B k (x)f (k+) (x)dx = ( ) k+ k! f(x i ) k+ = k! i=0 f(x i ) i=0 k+ = k![x 0, x,..., x n ]f x i x j x j x i.4 [, b] x < x 2 < < x m {f(x i )} m C2 [, b] s s(x i ) = f(x i ), i =,..., m (3) m = 2 m > 2 (3).7 B p ( s (x) ) 2 dx (4) [x p, x p+, x p+2 ]s = [x p, x p+, x p+2 ]f, p =,..., m 2 (5) B p(x)s (x)dx = [x p, x p+, x p+2 ]f, p =,..., m 2 p+2 p+2 Bp(x) = (x x i ) + x j x i i=p j=p B p(x)u(x)dx = [x p, x p+, x p+2 ]f, p =,..., m 2 (6) 8

[, b] u E(u) = ( u(x) ) 2dx (7) u {B p} m 2 p= [, b] {B p} m 2 p= u v α u + αv (6) u v E(u + αv) < E(u) α u {Bp} m 2 p= u = λ j Bj (6) ( b m 2 ) Bpx λ j Bj (x) dx = [x p, x p+, x p+2 ]f, p =,..., m 2 j= ( b m 2 ) Bpx µ j Bj (x) dx = 0, p =,..., m 2 j= ( b m 2 2 µ j Bj (x)) dx = 0.2 µ j = 0 (6) u j= s u 2 s(x ), s(x 2 ) f(x ), f(x 2 ) (5) (3) s 2 s 3 3 s 2 x, x m 0 [, b] 3 [, x ], [x m, b].8 [, b] (2k + ) s (j) (x ) = s (j) (x m ) = 0, j = k +, k + 2,..., 2k (8) (2k + ) x, x m [, x ], [x m, b] k.9 (2k + ) S N (2k + ; x,..., x m ).8 m k + S N (2k + ; x,..., x m ) m.5 m k 9

.8 [, b] x < x 2 < < x m k k m [, b] f s(x i ) = f(x i ), i =,..., m (9) s S N (2k + ; x,..., x m ) < x [, x ] [x, x 2 ] x m < b = x, x m = b S (2k + ; x,..., x m ) (2k + m) 2k (8) S N (2k + ; x,..., x m ) m l := dim S N (2k + ; x,..., x m ).6 l = m s S N (2k + ; x,..., x m ) s(x i ) = 0, i =,..., m, s S N (2k + ; x,..., x m ) (20) s = 0 (8) s (2k+) (x i, x i+ ) (20) E ( s (k+)) = xm x m = ( ) k ( s (k+) (x) ) 2 dx m = ( ) k = 0 xi+ x i s (x) s (2k+) (x)dx s (2k+) (x i +) ( s(x i+ ) s(x i ) ) x i + (x i, x i+ ) s (k+) 0 s k k m (20) s 0.9.8.8 s (9) C k+ [, b] ( s (k+) (x) ) 2 dx (9) C k+ [, b] s E ( s (k+)) = E ( s (k+)) + E ( s (k+) s (k+)) + 2 ( s (k+) (x) s (k+) (x) ) s (k+) (x)dx.8 0 E ( s (k+)) = E ( s (k+)) + E ( s (k+) s (k+)) E ( s (k+)) 0

s (k+) s (k+) = 0 s s k (9) s s m k m s s 0 3 3 B 2 P {(x i, y i )} n x < < x n b s(x i ) = y i, i =,..., n s (2k + ) n ( P (s) = yi s(x i ) ) ( 2 2dx + λ s (x)) (k+) s λ k = 3 0 P λ P f C k+ [, b] {(x i, f(x i ))} n S N s.8 s.9 s P (s) P (f) P (s) 3 2

[] M.J.D. Powell. Approximtion Theory nd Methods. Cmbridge University Press, 98. [2].., 3, 2007. 2