Similar documents
I

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

数学の基礎訓練I

基礎数学I

1 Tokyo Daily Rainfall (mm) Days (mm)

確率論と統計学の資料

.. F x) = x ft)dt ), fx) : PDF : probbility density function) F x) : CDF : cumultive distribution function F x) x.2 ) T = µ p), T : ) p : x p p = F x

陦ィ邏・2

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

6.1 (P (P (P (P (P (P (, P (, P.

jigp60-★WEB用★/ky494773452500058730

プログラム



6.1 (P (P (P (P (P (P (, P (, P.101

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

Chap11.dvi

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

tokei01.dvi

0104.pages

untitled

- II

2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

Lebesgue Fubini L p Banach, Hilbert Höld

untitled

1 1.1 Excel Excel Excel log 1, log 2, log 3,, log 10 e = ln 10 log cm 1mm 1 10 =0.1mm = f(x) f(x) = n

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

数理統計学Iノート

概況


.. ( )T p T = p p = T () T x T N P (X < x T ) N = ( T ) N (2) ) N ( P (X x T ) N = T (3) T N P T N P 0

Microsoft Word - 信号処理3.doc

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

body.dvi

0104.pages


y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t) =(x(t),y(t),z(t)) ( dp dx dt = dt, dy dt, dz ) dt f () > f x


<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

meiji_resume_1.PDF

201711grade1ouyou.pdf

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

70の法則

放射線専門医認定試験(2009・20回)/HOHS‐01(基礎一次)

sin cos No. sine, cosine : trigonometric function π : π = 3.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even.

( [1]) (1) ( ) 1: ( ) 2 2.1,,, X Y f X Y (a mapping, a map) X ( ) x Y f(x) X Y, f X Y f : X Y, X f Y f : X Y X Y f f 1 : X 1 Y 1 f 2 : X 2 Y 2 2 (X 1

(pdf) (cdf) Matlab χ ( ) F t

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even.

[1] 1.1 x(t) t x(t + n ) = x(t) (n = 1,, 3, ) { x(t) : : 1 [ /, /] 1 x(t) = a + a 1 cos πt + a cos 4πt + + a n cos nπt + + b 1 sin πt + b sin 4πt = a

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

第85 回日本感染症学会総会学術集会後抄録(I)

1 1 [1] ( 2,625 [2] ( 2, ( ) /

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

PackageSoft/R-033U.tex (2018/March) R:

: , 2.0, 3.0, 2.0, (%) ( 2.

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

(1) (2) (3) (4) 1

renshumondai-kaito.dvi

A, B, C. (1) A = A. (2) A = B B = A. (3) A = B, B = C A = C. A = B. (3)., f : A B g : B C. g f : A C, A = C. 7.1, A, B,. A = B, A, A A., A, A

,, Poisson 3 3. t t y,, y n Nµ, σ 2 y i µ + ɛ i ɛ i N0, σ 2 E[y i ] µ * i y i x i y i α + βx i + ɛ i ɛ i N0, σ 2, α, β *3 y i E[y i ] α + βx i

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

講義のーと : データ解析のための統計モデリング. 第2回

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e


f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

12/1 ( ) GLM, R MCMC, WinBUGS 12/2 ( ) WinBUGS WinBUGS 12/2 ( ) : 12/3 ( ) :? ( :51 ) 2/ 71

gr09.dvi

<B54CB5684E31A4E9C0CBA4E5AA6BC160BEE3B27AA544A5552E706466>

ohpmain.dvi

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

App. of Leb. Integral Theory (S. Hiraba) Lebesgue (X, F, µ) (measure space)., X, 2 X, F 2 X σ (σ-field), i.e., (1) F, (2) A F = A c F, (3)

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

all.dvi

2011de.dvi



1 1. x 1 (1) x 2 + 2x + 5 dx d dx (x2 + 2x + 5) = 2(x + 1) x 1 x 2 + 2x + 5 = x + 1 x 2 + 2x x 2 + 2x + 5 y = x 2 + 2x + 5 dy = 2(x + 1)dx x + 1

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1

10

第1章 微分方程式と近似解法

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0,

(m/s)

II 2 II

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

Transcription:

1 1 1.1...................................... 1 1.2................................... 5 1.3................................... 7 1.4............................. 9 1.5.................................... 16 1.6...................................... 2 1.7....................................... 24 1.8.................................... 36 1.9.................................... 45 1.1............................. 47 2 53 2.1 (Inverse Transform method)......................... 53 2.1.1........................ 53 2.1.2........................ 59 2.1.3................................ 63 2.2 (Composition method)............................. 66 2.3 (Convolution method).............................. 82 2.4 (Acceptance-Rejection method)...................... 87 2.4.1....................... 87 2.4.2....................... 92 2.4.3................................ 93 2.4.4 (Squeeze method)............................ 13 3 17 3.1 (Normal distribution)...................... 17 3.1.1 Box-Muller Polar............................ 11 3.1.2 Monty Python................................. 114 3.1.3 Odd-Even................................... 12

iv 3.1.4 Ziggurat.................................... 129 3.1.5.......................... 139 3.1.6....................... 143 3.2 (Half Normal distribution).................. 144 3.3 (Log-Normal distribution).................. 153 3.4 (Cauchy distribution).................... 156 3.5 (Lévy distribution)....................... 175 3.6 (Exponential distribution).................... 181 3.7 (Laplace distribution).................... 19 3.8 (Rayleigh distribution)................... 2 3.9 (Weibull distribution).................... 24 3.1 (Gumbel distribution)................... 222 3.11 (Gamma distribution).................... 228 3.12 (Beta distribution)...................... 244 3.13 (Dirichlet distribution)................. 25 3.14 (Power Function distribution)............... 257 3.15 (Exponential Power distribution)............. 26 3.16 (Erlang distribution).................... 281 3.17 χ 2 (Chi-Square distribution)..................... 283 3.18 χ (Chi distribution)......................... 286 3.19 F (F distribution).......................... 289 3.2 t (t distribution)........................... 293 3.21 (Inverse Gaussian distribution).............. 316 3.22 (Triangular distribution).................... 321 3.23 (Pareto distribution).................... 328 3.24 (Logistic distribution)................ 343 3.25 (Hyperbolic Secant distribution)............ 366 3.26 (Raised Cosine distribution).................. 377 3.27 (Arcsine distribution)..................... 39 3.28 (von Mises distribution)............. 394 3.29 (Non-Central Gamma distribution).......... 44 3.3 (Non-Central Beta distribution)............ 48 3.31 χ 2 (Non-Central Chi-Square distribution).......... 416 3.32 χ (Non-Central Chi distribution)............... 419

v 3.33 F (Non-Central F distribution)................ 422 3.34 t (Non-Central t distribution)................. 426 3.35 (Planck distribution).................... 431 4 433 4.1 (Binomial distribution)...................... 433 4.1.1..................................... 435 4.1.2............................ 437 4.1.3 (Condensed table-lookup method)............... 439 4.1.4 (Table plus Square histogram method)..... 444 4.1.5....................... 448 4.1.6 (Table plus Square histogram plus Inverse transform method)............................... 449 4.2 (Geometric distribution)..................... 45 4.3 (Poisson distribution).................... 459 4.4 (Hypergeometric distribution)................ 471 4.5 (Multinomial distribution).................... 484 4.6 (Negative Binomial distribution).............. 486 4.7 (Negative Hypergeometric distribution)......... 494 4.8 (Logarithmic Series distribution).............. 499 4.9 (Yule-Simon distribution).............. 55 4.1 (Zipf-Mandelbrot distribution).... 512 4.11 (Zeta distribution)...................... 514 A 517 A.1....................................... 517 A.1.1............................... 52 A.1.2........................... 53 A.1.3................. 534 A.2....................................... 539 A.2.1............................... 539 A.2.2............................ 543 A.3................................... 554 B 557 B.1................ 557

vi B.2................................ 559 B.3........ 56 C 1/2 563 D 571 D.1................................... 571 D.2................................... 573 D.3................ 575 D.4.............................. 579 D.5................................ 581 E 583 587 591

2 [,1] [,1) (,1) ( ) 2.1 (Inverse Transform method) ( ) ( ) 2-1 1.7 2-2 F(x) 1 U = F(X) F 1 2-3 [,1] X F U [,1] [,1] ( ) 2.1.1 f F F(x) = f(x)dx (2.1) F 2-4 < F(x) < 1 lim F(x) = x 2-1 ( ) ( ) 3 1 2-2 (monotonic increasing function, increasing function) x 1 < x 2 F(x 1 ) F(x 2 ) (non-decreasing function) (monotonic decreasing function, decreasing function) x 1 < x 2 F(x 1 ) F(x 2 ) (non-increasing function) 2-3 1 (single-valued function) f y = f(x) x y 1 x y 2 (multi-valued function) 2-4 (strictly increasing function) x 1 < x 2 F(x 1 ) < F(x 2 ) x 1 < x 2 F(x 1 ) > F(x 2 ) (strictly decreasing function)

54 2 lim x F(x) = 1 2-5 U = F(X) U F X (,1)( < U < 1) F X U 1 1 2-6 F F 1 X = F 1 (U) (2.2) (2.2) U (,1) (U (,1) ) X F(x) ( 2.1) 2.1 F(x) X F(x) 1 U2 x1 U1 x2 x 2.1: 2.1: F(x) (x 1 < x 2 F(x 1 ) < F(x 2 )) < F(x) < 1 ( lim F(x) =, lim F(x) = 1) x x Step1. (,1) U Step2. X = F 1 (U) 2.1 X F ( 2.1) x P(X x) = F(x) 2-7 F P(X x) = P ( F 1 (U) x ) = P (U F(x)) = F(x). 2 F U (, 1) ( ) < F(x) < 1 2-5 1.7 (x 1 < x 2 F(x 1 ) F(x 2 )) F(x) 1 1 1 ( 2-6) (x 1 < x 2 F(x 1 ) < F(x 2 )) < F(x) < 1 ( lim F(x) =, lim F(x) = 1) x x F(x) 1 (x F(x) = x x F(x) = 1 x 1 1 ) 2.1.3 2-6 f 1 1 (1 1 one-to-one function) x 1 x 2 f(x 1 ) f(x 2 ) x 1 x 2 f(x 1 ) f(x 2 ) 2-7 x X X x 1 1 X x F (x) X F (x) X x F (x) X F

2.1. (Inverse Transform method) 55 F F 1 (, 1) U X = F 1 (U) X (,1) U f X Step1. f F F(x) = Step2. F F 1 f(t)dt Step3. (,1) U X = F 1 (U) Step1.,Step2. ( ) ( ) Step3. (,1) Step1.,Step2. ( ) ( ) (,1) [ 2.1] (Exponential distribution) (Exp(θ) ) f Exp(θ) (x) 181 (3.129) f Exp(θ) (x) x ( 1 F Exp(θ) (x) = f Exp(θ) (t)dt = θ exp t ) ( dt = 1 exp x ), (x ) θ θ u = F Exp(θ) (x) x F Exp(θ) 1 (u) = θ ln (1 u), ( u < 1) (2.3) (,1) U 2-8 X = θ ln U (2.4) Exp(θ) X 2-9 (2.4) Exp(4) 2-1 2.2 2-11 2-8 (,1) [, ) [,1) (2.3) 2.1.3 (,1) U 2-9 1 U (,1) 1 U (,1) U 1 U U ( 68 2.6 ) 2-1 ( ) ( ) (frequency table) (histogram) (proportional histogram) ((, ) ) 1 1 ( 1 ) 2-11 [,2) 1 ( ) 1 B

56 2.25.2.15 f(x).1.5 5 1 15 2 x 2.2: Exp(4) [ 2.2] (Exponential-exponential distribution) (EExp(µ, ) ) f EExp(µ,) (x) = 1 ( ) { ( )} x + µ x + µ exp exp exp, ( < x <, < µ <, > ) (2.5) µ (location parameter) (scale parameter) (2.5) F EExp(µ,) (x) = f EExp(µ,) (t)dt = 1 exp { exp ( < x <, < µ <, > ) ( x + µ )}, (2.6) (2.6) F 1 EExp(µ,) (u) = µ + ln { ln (1 u)}, ( < u < 1, < µ <, > ) (2.7) (, 1) U 1 U (, 1) U X = µ + ln ( ln U) (2.8) EExp(µ, ) X µ = = 1 EExp(, 1) (2.5) EExp(µ, ) EExp(, 1) Y X = µ + Y (2.9) EExp(, 1) f EExp(,1) (y) = exp {y exp (y)}, ( < y < ) (2.1) Y = ϕ(x) = X + µ (2.11)

2.1. (Inverse Transform method) 57 ϕ (x) = 1/ g(x) = f EExp(,1) (ϕ(x)) ϕ (x) { ( )} 1 x + µ x + µ = exp exp ( 21 (1.33)) (2.5) EExp(, 1) Y (2.9) EExp(µ, ) X EExp(, 1) Y Exp (1) Z Y = ln Z (2.12) (2.12) (184 (3.153)) f Exp(1) (z) = exp (z) ψ (y) = exp (y) Z = ψ (Y ) = exp (Y ) (2.13) g (y) = f Exp(1) (ψ(y)) ψ (y) = exp {y exp (y)} ( 21 (1.33)) (2.1) Exp (1) Z (2.12) Y (2.12) Y Z 2.2 2.2: EExp(µ, ) X Step1. Exp (1) Z z > Step2. Y = ln (Z) Step3. X = µ + Y * 2.1 3.6 * EExp (, 1) Step3. Y 2.2 Step1. (2.8) (,1) U Exp (1) Z z > (2.4) (,1) U Z = ln U (2.9) (2.12) 2.2 X = µ + Y = µ + ln Z = µ + ln ( ln U)

58 2 (2.8) EExp( 5, 2) (2.8) 2-12 2.3 f(x).2.18.16.14.12.1.8.6.4.2-1 -5 5 1 x 2.3: EExp( 5, 2) f(x) x f(x) x f(x) x 2.2 EExp( 5, 2) 2.4 2.5 2.4 x = 5 x = f(x) F(x) (F(x) = f(t)dt) f(x) x F(x) f(x) x F(x) f(x) x F(x) f(x) x F(x) f(x) x F(x) 2.4 2.5 f(x) x = 5 F(x) f(x) x = F(x) (,1) F(x) F(x) U F 1 F(x) x ( 2.1 ) 2.5 x = 5 F(x) x = F(x) x = 5 x = x x U f(x) X 2-12 [-13,1) 1 ( ) 1 B

2.1. (Inverse Transform method) 59 f(x).2.18.16.14.12.1.8.6.4.2-1 -5 5 1 x 2.4: EExp( 5, 2) F(x) 1.9.8.7.6.5.4.3.2.1-1 -5 5 1 x 2.5: EExp( 5, 2) 2.1.2 X (53 2-1) F(x) = P(X x) = x i x p(x i ) (2.14) (2.14) p X x 1, x 2,..., (x 1 < x 2 < ) (2.14) x 1 < x 2 F(x 1 ) < F(x 2 ) F(X) 1 [,1] U 2-13 2.3 2-13 F(X) 1 1 [,1)