xia2.dvi

Similar documents
xia1.dvi

sakigake1.dvi

ver.1 / c /(13)

Shunsuke Kobayashi 1 [6] [11] [7] u t = D 2 u 1 x 2 + f(u, v) + s L u(t, x)dx, L x (0.L), t > 0, Neumann 0 v t = D 2 v 2 + g(u, v), x (0, L), t > 0. x

重力方向に基づくコントローラの向き決定方法


第5章 偏微分方程式の境界値問題

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

1 Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier analog digital Fourier Fourier Fourier Fourier Fourier Fourier Green Fourier

pdf

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

K E N Z OU

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

Z: Q: R: C: sin 6 5 ζ a, b

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

( ) ( )

TOP URL 1

Swift-Hohenberg

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25

Microsoft Word - 11問題表紙(選択).docx

Note.tex 2008/09/19( )

note1.dvi

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google


18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

2 2 L 5 2. L L L L k.....

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

i 18 2H 2 + O 2 2H 2 + ( ) 3K


2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

untitled

05Mar2001_tune.dvi

kokyuroku.dvi

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

( ) (, ) ( )

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

Gmech08.dvi


1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

²ÄÀÑʬΥ»¶ÈóÀþ·¿¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤ÎÁ²¶á²òÀÏ Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation


II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

Powered by TCPDF ( Title 第 11 講 : フィッシャー統計学 II Sub Title Author 石川, 史郎 (Ishikawa, Shiro) Publisher Publication year 2018 Jtitle コペンハーゲン解

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x

1

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

Part () () Γ Part ,

曲面のパラメタ表示と接線ベクトル

Gmech08.dvi

ADM-Hamiltonian Cheeger-Gromov 3. Penrose

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

LLG-R8.Nisus.pdf

Untitled

Jorgenson F, L : L: Inada lim F =, lim F L = k L lim F =, lim F L = 2 L F >, F L > 3 F <, F LL < 4 λ >, λf, L = F λ, λl 5 Y = Const a L a < α < CES? C

量子力学 問題

meiji_resume_1.PDF

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

Gmech08.dvi


= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) (

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

四変数基本対称式の解放

Gelfand 3 L 2 () ix M : ϕ(x) ixϕ(x) M : σ(m) = i (λ M) λ (L 2 () ) ( 0 ) L 2 () ϕ, ψ L 2 () ((λ M) ϕ, ψ) ((λ M) ϕ, ψ) = λ ix ϕ(x)ψ(x)dx. λ /(λ ix) ϕ,

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

TOP URL 1

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y


) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

untitled

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P


D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

30

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

KENZOU



( ) Loewner SLE 13 February

The Physics of Atmospheres CAPTER :

Transcription:

Journal of Differential Equations 96 (992), 70-84 Melnikov method and transversal homoclinic points in the restricted three-body problem Zhihong Xia Department of Mathematics, Harvard University Cambridge, Massachusetts 0238 Abstract 2 2 [0] McGehee[7]. Sitnikov[3] Alekseev[] Sitnikov Moser[9] [3,8,2] 2 Smale Sitnikov [0] 2 McGehee[7] Easton[2] Robinson[]

2 Llibre and Simó[5,6] J.Llibre [5] Llibre and Simó C ± 2 [5,6] K.Meyer 2. R 2 3 P,P 2,P 3 P P 2 μ μ 0 μ P 3 P 3 P P 2 P P 2 P P 2 q =(q,q 2 ) P 3 p =(p,p 2 )=(q,q 2) P 3 P 3 q = p, () p = U q. U U q q U U = μ (q μx 2 ) 2 +(q 2 μy 2 ) + μ (q 2 +( μ)x 2 ) 2 +(q 2 +( μ)y 2 ). 2 x 2,y 2 P P 2 x y x 2 =cost, y 2 =sint. μ =0 μ μ U 2

U = ( + μ q 2 + q2 2 (q 2 + q2) + q cos t + q 2 sin t 2 /2 (q 2 + q2) 2 3/2 ) + + O(μ 2 ). ((q +cost) 2 +(q 2 +sint) 2 ) /2 μ =0 t t μ q = x 2 S s q = x 2 s p = ys + x 2 ρis. is s ρ P 3 U = x 2 + μx 2 ( +x 2 cos(t θ)+ (2) ) + O(μ 2 ), (3) ( + 2x 2 cos(t θ)+x 4 ) 3/2 x = 2 x3 y, y = x 4 + x 6 ρ 2 + μg (x, t θ)+o(μ 2 ), θ = x 4 ρ, ρ = μg 2 (x, t θ)+o(μ 2 ). (4) θ S s =(cosθ, sin θ) g (x, t θ),g 2 (x, t θ) g (x, t θ) =x ( 4 2x 2 +x 2 ) cos(t θ) cos(t θ), ( ( + 2x 2 cos(t θ)+x ) 4 ) 3/2 (5) g 2 (x, t θ) =x 4 sin(t θ). ( + 2x 2 cos(t θ)+x 4 ) 3/2 5 2 y2 + 2 x4 ρ 2 U ρ = C, 3

C ρ ρ μx 2 ( ) ρ = ρ 0 +x 2 cos(t θ)+ + O(μ 2 ), ( x 4 ρ 0 ) ( + 2x 2 cos(t θ)+x 4 ) 3/2 ρ 0 = ± (6) x 4 (y 2 2x 2 2C). x 4 ± P 3 t t θ s s = t θ, s S. x = 2 x3 y, y = x 4 + x 6 ρ 2 + μg (x, s)+o(μ 2 ), s = x 4 ρ. ρ x, y, s C (6) μ =0 x = 2 x3 y, y = x 4 + x 6 ρ 2, (8) s = x 4 ρ. ρ (ρ P 3 ) x, y s H x y H(x, y, ρ) = 2 y2 + 2 x4 ρ 2 x 2. (9) (7) Figure H(x, y, ρ) (H P 3 ) Figure 4

x, y (x >0 ) H (0, 0) x 3 x(t) =ξ(t, C) = 2 (3t + 9t 2 + C 6 ) 2/3 +(3t 9t 2 + C 6 ) 2/3 C 2, ± 2ξ 2 (t) ξ 4 (t)c 2 for x 0, y(t) =η(t, C) = 2ξ 2 (t) ξ 4 (t)c 2 for x 0. (0) ± C ξ(t, C) t η(t, C) t t 0 R (ξ(t t 0,C),η(t t 0,C)) ξ(t, C) η(t, C) s s x 0 (s) y 0 (s) s x 0 (s) =ξ[t(s),c] y 0 (s) =η[t(s),c] θ 0 (?) x 0 (s) s y 0 (s) 0 <μ x y s dx ds = 2 x3 y x 4 ρ, dy ds = x4 + x 6 ρ 2 + μg (x, s) x 4 ρ x 4 ρ + O(μ2 ). ρ x, y, s C (6) s x 4 ρ 0x ρ<0 μ 0 s 2π t ω t α x 3 ω α McGehee[7] ω α. () {x 0} γ : x =0,y =0,s S x>0 W s (γ) {x>0} W u (γ) {x>0} C ω α () 5

McGehee[7] Robinson[] McGehee Robinson[] 2 () C μ, μ 0 (μ =0 ) 3. μ =0 W s (γ) W u (γ) μ 0 P 3 t =0 x ω α γ Σ s 0 s = s 0 (x u μ (s, s 0),yμ u(s, s 0)) W u (γ) (x u μ(0,s 0 ),yμ(0,s u 0 )) Σ s 0 (x s μ(s, s 0 ),yμ(s, s s 0 )) W s (γ) (x s μ (0,s 0),yμ s(0,s 0)) Σ s 0. C > 2 C x s μ (s, s 0)=x 0 (s s 0 )+μx s (s, s 0)+O(μ 2 ), s [s 0, ), yμ s(s, s 0)=y 0 (s s 0 )+μy s(s, s 0)+O(μ 2 ), s [s 0, ), x u μ (s, s 0)=x 0 (s s 0 )+μx u (s, s 0)+O(μ 2 ), s (,s 0 ], yμ u(s, s 0)=y 0 (s s 0 )+μy u(s, s 0)+O(μ 2 ), s (,s 0 ]. (2) x s (s, s 0 ),y s (s, s 0 ) x u (s, s 0 ),y u (s, s 0 ) (x 0,y 0 ) () 2 () Gronwall (x 0 (0),y 0 (0)) O(μ) (x 0 (s),y 0 (s)) O(μ) (2) W u (γ),w s (γ) C C μ>0 C 2 C > 2 6

H(x, y) = 2 y2 + 2 x4 ρ 2 x 2 (9) ρ (6) μ 0 H dh ds = μ(yg (x, s)+x 4 ρg 2 (x, s)) x 4 + O(μ 2 ). (3) ρ d(s 0 ) d(s 0 )=(x s μ (s 0,s 0 ),y s μ (s 0,s 0 )) (x u μ (s 0,s 0 ),y u μ (s 0,s 0 )). W s (γ) W u (γ) Σ s 0 s = s 0 d(s 0 ) W s (γ) W u (γ) H N (x 0 (0),y 0 (0)) (x 0 (0),y 0 (0)) H(x, y) H N (x 0 (0),y 0 (0)) = (H x (x 0 (0),y 0 (0)),H y (x 0 (0),y 0 (0))). d(s 0 ) (x 0 (0),y 0 (0)) H(x, y) d(s 0 ) d(s 0 ) = HN (x 0 (0),y 0 (0)) H N (x 0 (0),y 0 (0)) (xs μ(s 0,s 0 ) x u μ(s 0,s 0 ),y s μ(s 0,s 0 ) y u μ(s 0,s 0 )) = μ HN (x 0 (0),y 0 (0)) H N (x 0 (0),y 0 (0)) (xs (s 0,s 0 ) x u (s 0,s 0 ),y s (s 0,s 0 ) y u (s 0,s 0 )) + O(μ 2 ). x s (s, s 0),y s (s, s 0),x u (s, s 0),y u (s, s 0) d(s 0 ) Σ s 0 (x 0 (0),y 0 (0)) W u (γ),w s (γ) H(x s μ (s 0,s 0 ), y s μ (s 0,s 0 )) = H(x 0 (0),y 0 (0)) + μh N (x 0 (0),y 0 (0)) (x s (s 0,s 0 ),y s (s 0,s 0 )) + O(μ 2 ), H(x u μ (s 0,s 0 ), y u μ (s 0,s 0 )) = H(x 0 (0),y 0 (0)) + μh N (x 0 (0),y 0 (0)) (x u (s 0,s 0 ),y u (s 0,s 0 )) + O(μ 2 ). d(s 0 ) H N (x 0 (0),y 0 (0)) = H(x s μ (s 0,s 0 ),yμ s(s 0,s 0 )) H(x u μ (s 0,s 0 ),yμ u(s 0,s 0 )) + O(μ 2 ) dh(x, y) = ds + O(μ 2 ) ds = μm(s 0 )+O(μ 2 ), M(s 0 ) dh M(s 0 ) = μ ds (x 0(s s 0 ),y 0 (s s 0 ))ds yg (x 0 (s s 0 ),s)+x 4 = 0(s s 0 )ρg 2 (x 0 (s s 0 ),s) ds. x 4 0(s s 0 )ρ (4) (5) 7

ρ = C d(s 0 )= M(s 0 ) μ H N (x 0 (0),y 0 (0)) + O(μ2 ) = M(s 0 ) μ 2x 3 0(0)C 2 2x 0 (0) + O(μ2 ) (6) = μ C 2 2 M(s 0)+O(μ 2 ). g (x, s)+x 4 ρg 2 (x, s) x 4 ρ = g 2(x, s) x 4 ρ + d ( ( x 2 +x 2 cos(t θ) ds )) + + O(μ 2 ). ( + 2x 2 cos(t θ)+x 4 ) 3/2 ρ ρ 0 x(s),y(s) s M(s 0 )= = = = g 2 (x(s s 0 ),s) ds x 4 0(s s 0 )ρ 0 g 2 (x(s),s+ s 0 ) ds x 4 0(s)ρ 0 g 2 (x 0 (s),s+ s 0 )dt ( x 4 0 (s)sin(s + s 0) ) dt. ( + 2x 2 0(s)cos(s + s 0 )+x 4 0) 3/2 (7) s 0 = π M(s 0 )=0 s 0 = π M(s 0 ) M (s 0 ) s0 =π 0 M (π) = x 4 0 (s)cos(s + π)dt x 4 0 (s)cos(s + π) ( + 2x 2 0(s)cos(s + π)+x 4 0(s)) 3/2 dt 3x 6 0 sin 2 (s + π) dt. ( + 2x 2 0(s)cos(s + π)+x 4 5/2 0(s)) (8) x 0 (s) =ξ(t, C) (0) s s = t θ = t t 0 x 4 ρdt = t + t 0 ξ 4 (t, C)Cdt. C = ± 2 M(s 0 ) M (π) t =0 t =0 C = ± 2 +2ξ 2 cos(s + π) +ξ 4 =0 +2ξ 2 cos(s + π) +ξ 4 t =0 C > 2 C ± 2 8

M (0) C > 2 C 2 M (π) 0 C μ γ W s (γ) W u (γ) μ W s (γ) W u (γ) μ s 0 = π Σ s 0 W s (γ) x W u (γ) C μ W u (γ) W s (γ) ( C ) ([4] ) W u (γ) W s (γ) μ C x p(μ, C) k(μ, C) p(μ, C) W s (γ) p(μ, C) W u (γ) k(μ, C) k(μ, C) 0 p(μ, C) W u (γ) W s (γ) W u (γ) W s (γ) C μ k(μ, C) k(μ, C) 0 ( W u (γ) x ) C μ k(μ, C) 0 C μ k(μ, C) C μ μ C > 2 W u (γ) W s (γ) k(μ, C) 0 k(μ, C) C μ μ C k(μ, C) 0 k(μ, C) C μ W u (γ) W s (γ) C = C C μ k(μ, C ) k(μ, C ) 0 k(μ, C) μ [0, ] k(μ, C ) k(μ, C ) 0 2. μ γ W s (γ) W u (γ) 4. Smale-Birkhoff ( s 9

) t ± lim sup r = lim inf r< r P 3 r = q 2 + q2 2 = x 2 t ± r t lim sup r< Moser[9] s 0 Γ=Σ s 0 C Γ p R 2 W s (p) W u (p) (Fig.2 ) φ q R k = k(q) φ k (q) R ( ) k>0 q R D φ(q) =φ k (q) for all q D. Moser φ R φ D (shift) D Fig.2 3. φ I D S = N Z ( ) I φ S τ τ : S I σ S φτ = τσ. [9] Smale-Birkhoff 0

q I k(q) 4. I 3 q I S I s = {...,s 3,s 2,s,s 0,s,s 2,s 3,...) sup{s i,i Z} = Fig.2 R R 5. (989)[0] 2 μ 5. μ [0, ] P P 2 μ μ References. V.M. Alekseev, Quasirandom dynamical systems, I, II, III, Math. USSR-Sb. 5 (968), 73-28; 6 (968), 505-560; 7 (969), -43. 2. R. Easton, Parabolic orbits for the planar three-body problem, J. Differential Equations 52 (984), 6-34. 3. R. Easton and R. McGehee, Homoclinic phenomena for orbits doubly asymptotic to an invariant three-sphere, Indiana Univ. Math. J. 28 (979), 2-240. 4. J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York, 983. 5. J. Llibre and C. Simó, Some homoclinic phenomena in the three-body problem, J. Differential Equations 37 (980), 444-465. 6. J. Llibre and C. Simó, Oscillatory solutions in the planar restricted three-body problem, Math. Ann. 248 (980), 53-84.

7. R. McGehee, A stable manifold theorem for degenerate fixed points with applications to celestial mechanics, J. Differential Equations 4 (973), 70-88. 8. R. Moeckel, Heteroclinic phenomena in the isosceles three-body problem, SIAM J. Math. Anal. 5 (984), 857-876. 9. J. Moser, Stable and Random Motions in Dynamical Systems, Annals of mathematics Studies, No.77, Princeton Univ. Press, Princeton, NJ, 973. 0. H. Poincaré, Les méthodes nouvelles de la mécanique céleste III, Gauthier-Villars, Paris, 899.. C. Robinson, Homoclinic orbits and oscillation for the planar three-body problem, J. Differential Equations 52 (984), 356-377. 2. D. Saari and Z. Xia, The existence of oscillatory and superhyperbolic motion in Newtonian systems, J. Differential Equations 82 (989), 342-355. 3. K. Sitnikov, The existence of oscillatory motion in the three-body problem, Dokl. Akad. Nauk USSR 33 (960), 303-306. 4. A. Weinstein, Lagrangian submanifolds and Hamiltonian systems, Ann. of Math. 98 (973), 377-40. 2