8.3 ( ) Intrinsic ( ) (1 ) V v i V {e 1,..., e n } V v V v = v 1 e v n e n = v i e i V V V V w i V {f 1,..., f n } V w 1

Similar documents

Gmech08.dvi


1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

応力とひずみ.ppt

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

第10章 アイソパラメトリック要素

( ) ( )

Quiz x y i, j, k 3 A A i A j A k x y z A x A y A z x y z A A A A A A x y z P (x, y,z) r x i y j zk P r r r r r r x y z P ( x 1, y 1, z 1 )

Untitled

1. x { e 1,..., e n } x = x1 e1 + + x n en = (x 1,..., x n ) X, Y [X, Y ] Intrinsic ( ) Intrinsic M m P M C P P M P M v 3 v : C P R 1

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )


d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r

A

K E N Z OU


プログラム


x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

sec13.dvi

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

KENZOU

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3



r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

Step 2 O(3) Sym 0 (R 3 ), : a + := λ 1 λ 2 λ 3 a λ 1 λ 2 λ 3. a +. X a +, O(3).X. O(3).X = O(3)/O(3) X, O(3) X. 1.7 Step 3 O(3) Sym 0 (R 3 ),

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

untitled

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

nakata/nakata.html p.1/20

v er.1/ c /(21)

Chap11.dvi

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0

Microsoft Word - 11問題表紙(選択).docx

<4D F736F F D2094F795AA8C608EAE8E478B4C92A08250>

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,



熊本県数学問題正解

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

数学Ⅲ立体アプローチ.pdf

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

Z: Q: R: C: 3. Green Cauchy

研修コーナー

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

tnbp59-21_Web:P2/ky132379509610002944

第86回日本感染症学会総会学術集会後抄録(I)

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete sp

第1章 微分方程式と近似解法

パーキンソン病治療ガイドライン2002

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

日本内科学会雑誌第97巻第7号

st.dvi

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( 4) ( ) (Poincaré) (Poincaré disk) 1 2 (hyperboloid) [1] [2, 3, 4] 1 [1] 1 y = 0 L (hyperboloid) K (Klein disk) J (hemisphere) I (P

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

mobius1

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

pdf

08-Note2-web

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

F = 0 F α, β F = t 2 + at + b (t α)(t β) = t 2 (α + β)t + αβ G : α + β = a, αβ = b F = 0 F (t) = 0 t α, β G t F = 0 α, β G. α β a b α β α β a b (α β)


f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14

Maxwell

日本内科学会雑誌第98巻第4号

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

Part () () Γ Part ,

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

i

A

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

b3e2003.dvi

_0212_68<5A66><4EBA><79D1>_<6821><4E86><FF08><30C8><30F3><30DC><306A><3057><FF09>.pdf

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα =

i 18 2H 2 + O 2 2H 2 + ( ) 3K

all.dvi

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

30

difgeo1.dvi

73

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

6.1 (P (P (P (P (P (P (, P (, P.

January 27, 2015

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

Transcription:

83 ( Intrinsic ( (1 V v i V {e 1,, e n } V v V v = v 1 e 1 + + v n e n = v i e i V V V V w i V {f 1,, f n } V w 1

V w = w 1 f 1 + + w n f n = w i f i V V V {e 1,, e n } V {e 1,, e n } e 1 (e 1 e n e n = E E n A = (a i j, B = (bi j ( A i j a i j w i = a i j ej, v i = b j i e j V {w 1,, w n }, V {v 1,, v n } w 1 (v 1 v n w n 2

e 1 = A = AB e n (e 1 e n B {w 1,, w n } {v 1,, v n } AB = E B A E ( n, E m ( n m ( En A En B En A + B = 0 E m 0 E m 0 E m ( En A 0 E m ( En A 0 E m ω X, Y dω(x, Y = X(ω(Y Y (ω(x ω([x, Y ] Intrinsic 3

n R n U r (Pfaff ω p = 0 (1 p r U Pfaff ω p = a p i dxi a p i C (U Pfaff U R n ω p = 0 (1 p r U r Pfaff R m N U f : N( R m U f ω p 0, (1 p r m f(n Pfaff ω p = 0 (1 p r U P P n r Pfaff ω p = 0 (1 p r 4

R n r Pfaff i, j 1 i, j n p, q 1 p, q r α, β r + 1 α, β n Σ R n U r Pfaff U r Pfaff ω p (p = 1,, r rank( r (U, x i ω p = a p i dxi ω 1 a 1 1 a 1 n = ω r dx 1 a1 r a r n dx n (a p i rank r ωr+1,, ω n {ω 1,, ω n } (1 U Pfaff (a i j (bi j (1 X 1, X n X i = b j i x j 5

E = ω 1 ω r (X 1 X n a 1 1 a 1 n dx 1 = ( x 1 a n 1 a n n dx n a 1 1 a 1 n b 1 1 b 1 n = x 1 b 1 1 b 1 n b n 1 b n n a n 1 a n n b n 1 b n n U r Pfaff ω 1,, ω r U P D n r (P = {X T P (R n ω 1 (X = 0,, ω r (X = 0} {ω 1,, ω n } {X 1,, X n } D n r = Span{X r+1,, X n } dim D n r (P = n r U r Pfaff U n r D n r U r Pfaff ω 1,, ω r Pfaff n r D n r 6

ω p ω r+1,, ω n {X 1,, X n } D n r R n (N, f Pfaff ω p = 0 (1 p r N X 0 = (f ω p (X = ω p (f (X (N, f D n r ω p = 0 (1 p r D n r U R n U r Pfaff ω 1,, ω r U P n r D n r (P = {X T P (R n : ω 1 (X = 0, ω r (X = 0} Pfaff ω p = 0 (1 p r D n r 7

Pfaff ω p = 0 (1 p r Pfaff r Pfaff ω p (p = 1, r ω p = ω p i dxi ω p i Rn ω p i = ωp i (x1,, x n (ω p i rank r xi r (ω p q (a p q {θ p } θ p = a p qω q = dx p + b p αdx α b p α = a p qω q α θ 1 a 1 1 a 1 r ω 1 = θ r a r 1 a r r ω r 8

a 1 1 a 1 r ω1 1 ωr 1 ωr+1 1 ω 1 n = a r 1 a r r ω1 r ωr r ωr+1 r ωn r 1 0 0 b 1 r+1 b 1 n = 0 0 1 b r r+1 b r n dx r+1,, dx n {θ 1,, θ r, dx r+1,, dx n } dx 1 dx r dx r+1 dx n dx 1 dx r dx r+1 dx n R n 1 0 0 b 1 r+1 b 1 n dx 1 0 0 1 b r r+1 b r n dx r 0 0 0 1 0 0 dx r+1 0 0 1 dx n {θ 1,, θ r, dx r+1,, dx n } X 1, X n 9

θ 1 (X 1 X n = E θ n ( En A 1 = ( En A 0 E m 0 E m 1 0 0 b 1 r+1 b 1 n ( x 1 0 0 1 b r r+1 b r n x n 0 0 0 1 0 0 0 0 1 r Pfaff ω p (p = 1, r 1 r Pfaff n-r D n r r+1 n R 5 2 x = x(u, v y = y(u, v z = z(u, v x x y y x x = a, = b, = c, = d, = e, u v u v u v = f Pfaff dx = x x du + dv = adu + bdv u v 10

dy = y y du + dv = cdu + ddv u v dz = z z du + dv = edu + fdv u v θ 1 = dx adu vdv = 0 θ 2 = dy cdu ddv = 0 θ 3 = dz edu fdv = 0 θ 4 = du θ 5 = dv θ 1, θ 2, θ 3, θ 4, θ 5 1 0 0 a b dx 0 1 0 c d dy 0 0 1 e f dz 0 0 0 1 0 du 0 0 0 0 1 dv X 1, X 2 X 1 = u + x u x + y u y + z u z = u + a x + c y + e z X 2 = v + b x + d y + f z X 1, X 2 a b ( x y z u v c d e f 1 0 0 1 11

Pfaff Pfaff U R n U Pfaff ω 1 = 0,, ω r = 0 p(1 p r dω p = θq p ω q r 2 θq p ( 29 11 U R n U Pfaff ω 1 = 0,, ω r = 0 (x 1,, x n ω p = ω p i dxi (1 p r pfaff η p r r (a p q η p = a p qω q {ω p } {η p } 12

( (a p q (b p q ω p = b p qη q dω p = θ p q ω q dη p dη p = d(a p qω q = da p q ω q + a p qdω q = da p q ω q + a p qθ q r ω r = (da p q + a p rθ r q ω q = (da p q + a p rθ r q b q sη s = (da p s + a p rθ r s b s qη q θ p q = (da p s + a p rθ r sb s q dη p = θ p q η q {η p } {ω p } ω p a p qω q = dx p + b p αdx α {ω 1,, ω r } n r Pfaff {ω 1,, ω n }, {X 1,, X n } X r+1, X n X r+1, X n 13

{ω i ω j 1 i < j n} 2 dω p = c p ij ωi ω j i<j {ω i }, {X i } ω p (X α = 0 (1 p r, r + 1 α n c p αβ = dωp (X α, X β = X α (ω p (X β X β (ω p (X α ω p ([X α, X β ] = ω p ([X α, X β ] ω 1 = 0,, ω r = 0, dω p = θq p ω q (ω α ω β c p αβ = 0 ωp ([X α, X β ] = 0 (1 q r [X α, X β ] {X r+1,, X n } {X r+1,, X n } {X r+1,, X n } c p αβ = 0 dω p ω α ω β Pfaff Pfaff Intrinsic [X, Y ] = XY Y X 14

R n (R n (1d R (2 f df d(df = 0 (3ω k (R n, η (R n d(ω η = dω η + ( 1 k ω dη d : (R n (R n Pfaff d 1 R 3 ω 1 = P dx + Qdy + Rdz ω 2, ω 3 {ω 1, ω 2, ω 3 } {X 1, X 2, X 3 } dω 1 = aω 1 ω 2 + bω 1 ω 3 + cω 2 ω 3 ω 1 c = 0 15

dω 1 ω 1 = cω 2 ω 3 ω 1 = cω 1 ω 2 ω 3 ω 1 dω 1 ω 1 = 0 ω = P dx + Qdy + Rdz P x = P x dω ω = (P y dy dz + P z dz dx + Q x dx dy + Q z dz dx + R x dx dz + R y dy dz (P dx + Qdy + Rdz = (P (R y Q z + Q(P z R x + R(Q x P y dx dy dz = 0 P (R y Q z + Q(P z R x + R(Q x P y = 0 2 16

X 1 = x 1 + (x3 + 3(x 1 2 x 4 X 2 = x 2 + x2 x 4 X 3 = x 3 + x1 x 4 x 4 (0, 0, 0 = 0 ( X 1 X 2 X 3 x 4 = ( x 1 x 2 x 3 x 4 1 0 0 0 0 1 0 0 0 0 1 0 x 3 + 3(x 1 2 x 2 x 1 1 1 0 0 0 dx 1 0 1 0 0 dx 2 0 0 1 0 dx x 3 3(x 1 2 x 2 x 1 1 dx 4 {X 1, X 2, X 3 } Pfaff (x 3 + 3(x 1 2 dx 1 x 2 dx 2 x 1 dx 3 + dx 4 = 0 dx 4 = (x 3 + 3(x 1 2 dx 1 + x 2 dx 2 + x 1 dx 3 ( 17