SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

Similar documents
2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ


Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo

D 24 D D D

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

wiles05.dvi

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

Part () () Γ Part ,

C p (.2 C p [[T ]] Bernoull B n,χ C p p q p 2 q = p p = 2 q = 4 ω Techmüller a Z p ω(a a ( mod q φ(q ω(a Z p a pz p ω(a = 0 Z p φ Euler Techmüller ω Q

Z: Q: R: C:

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

prime number theorem

2,., ,. 8.,,,..,.,, ,....,..,... 4.,..

( ) X x, y x y x y X x X x [x] ( ) x X y x y [x] = [y] ( ) x X y y x ( ˆX) X ˆX X x x z x X x ˆX [z x ] X ˆX X ˆX ( ˆX ) (0) X x, y d(x(1), y(1)), d(x

Super perfect numbers and Mersenne perefect numbers /2/22 1 m, , 31 8 P = , P =


II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

Q p G Qp Q G Q p Ramanujan 12 q- (q) : (q) = q n=1 (1 qn ) 24 S 12 (SL 2 (Z))., p (ordinary) (, q- p a p ( ) p ). p = 11 a p ( ) p. p 11 p a p

( ) ( ) 1729 (, 2016:17) = = (1) 1 1

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3


A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

2 2 L 5 2. L L L L k.....

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

16 B

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x A (1)

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

量子力学 問題


2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

TOP URL 1

Z: Q: R: C: 3. Green Cauchy

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

Morse ( ) 2014

Onsager SOLUTION OF THE EIGENWERT PROBLEM (O-29) V = e H A e H B λ max Z 2 Onsager (O-77) (O-82) (O-83) Kramers-Wannier 1 1 Ons


On a branched Zp-cover of Q-homology 3-spheres

, = = 7 6 = 42, =

29

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

Mathematical Logic I 12 Contents I Zorn

1

第1章 微分方程式と近似解法

1 1.1 Excel Excel Excel log 1, log 2, log 3,, log 10 e = ln 10 log cm 1mm 1 10 =0.1mm = f(x) f(x) = n


Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1


SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α

Z: Q: R: C: sin 6 5 ζ a, b

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

x 3 a (mod p) ( ). a, b, m Z a b m a b (mod m) a b m 2.2 (Z/mZ). a = {x x a (mod m)} a Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} a + b = a +

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

数学Ⅱ演習(足助・09夏)

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.


d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j


SFGÇÃÉXÉyÉNÉgÉãå`.pdf

newmain.dvi

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

(1) (2) (3) (4) 1

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

液晶の物理1:連続体理論(弾性,粘性)

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

Jacobi, Stieltjes, Gauss : :


62 Serre Abel-Jacob Serre Jacob Jacob Jacob k Jacob Jac(X) X g X (g) X (g) Zarsk [Wel] [Ml] [BLR] [Ser] Jacob ( ) 2 Jacob Pcard 2.1 X g ( C ) X n P P

Dynkin Serre Weyl

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy


II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

untitled

( ) 1., ([SU] ): F K k., Z p -, (cf. [Iw2], [Iw3], [Iw6]). K F F/K Z p - k /k., Weil., K., K F F p- ( 4.1).,, Z p -,., Weil..,,. Weil., F, F projectiv

main.dvi

G H J(g, τ G g G J(g, τ τ J(g 1 g, τ = J(g 1, g τj(g, τ J J(1, τ = 1 k g = ( a b c d J(g, τ = (cτ + dk G = SL (R SL (R G G α, β C α = α iθ (θ R

B

第10章 アイソパラメトリック要素

Transcription:

SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary idempotent 9 3.2. ordinary 10 4. Eichler- 10 4.1. 10 4.2. Γ 0 pp α Eichler- 12 5. ordinary part 14 5.1. 14 5.2. 5.1 16 References 17 1. : p :, Q C = Q p, p : Q p {0 p Q : p p = p 1, 4 p = 2, p := p p > 2, { N := { Γ 0 N := { Γ 1 N := a c a c a c b d b d b d c 0 mod N M 2 Z, a, N = 1, ad bc > 0 SL 2 Z c 0 mod N, SL 2 Z c 0, d 1 mod N, 1

2 H := {z C Imz > 0 :, ω : Z p Z p /pz p Z p : Teichmüller 1.1 : p Dirichlet, : Z p 1 + pz p ; x xωx 1, u := 1 + p Z p : 1 + pz p i.e. Z p = 1 + pzp ; x u x xx 1... x n + 1 := p n, n! χ : Z/NZ Q : N Dirichlet Dirichlet character, 1 N : Z/NZ {1 Q :N Dirichlet., N Dirichlet χ 1 N, r > 1 r, χr = 0 χ χ : Z C. a b 2 δ = N c d χδ := χa, N C p 3 A C, Q p or F p,. A[χ] := A[{χc c Z/NZ ] log p : Q p Q p p : 1 n s n log p 1 + s = n log p p = 0. s p < 1 1.1. p x Z p /pz p, x Z p x = x mod pz p lim n xpn, x ω x p = 2, ω Z 2 /4Z 2 = {1, 1 Z 2

SAMA- SUKU-RU 3 2. 7.1. p-adic families of Eisenstein series 2.1. modular form Hecke. k 1, f : H C H, detγ > 0 a b γ = GL 2 R c d f k γz := detγ k 1 cz + d k fγ z., γ z, γ Γ 1 N, f k γ = f α SL 2 Z, L Z >0 1 L f k α z = f k αz + L = f k αz 0 1 2.3. L L α Z >0, Fourier : f k αz = n Z an, f k αe 2πinz/Lα. 2.1, 2.1 k 1 Z, N Z >0 χ : Z/NZ Q Dirichlet., k, N, χ χγf k γ = f for γ Γ 0 N, f : H C M k Γ 0 N, χ := Fourier 2.1 : an, f k α = 0 for n < 0, α SL 2 Z, k, N, χ cusp form χγf k γ = f for γ Γ 0 N, f : H C S k Γ 0 N, χ := Fourier 2.1 : an, f k α = 0 for n 0, α SL 2 Z 2.2. M k Γ 0 N, χ S k Γ 0 N, χ C 2.3. f : H C γ Γ 1 N f k γ = f α SL 2 Z, L Z >0 1 L f k α z = f k αz + L = f k αz 0 1 f M k Γ 0 N, χ fz = an, fq n q = e 2πiz. n=0

4 q- C C[[q]] q M k Γ 0 N, χ, S k Γ 0 N, χ C[[q]] : 2.4. k, N, χ Z[χ] M k Γ 0 N, χ; Z[χ] := M k Γ 0 N, χ Z[χ][[q]], { m k Γ 0 N, χ; Z[χ] := f M k Γ 0 N, χ a1, f Q[χ], an, f Z[χ] for n > 0, S k Γ 0 N, χ; Z[χ] := S k Γ 0 N, χ Z[χ][[q]], A Z[χ], A,, M k Γ 0 N, χ; A := M k Γ 0 N, χ; Z[χ] Z[χ] A, m k Γ 0 N, χ; A := m k Γ 0 N, χ; Z[χ] Z[χ] A, S k Γ 0 N, χ; A := S k Γ 0 N, χ; Z[χ] Z[χ] A 2.5. M k Γ 0 N, χ; A, m k Γ 0 N, χ; A, S k Γ 0 N, χ; A A 2.6. Z[χ] A C, M k Γ 0 N, χ; A = M k Γ 0 N, χ A[[q]], { m k Γ 0 N, χ; A = f M k Γ 0 N, χ a1, f F raca, an, f A for n > 0, S k Γ 0 N, χ; A = S k Γ 0 N, χ A[[q]] Hecke 1 0 2.7. l, Γ 0 N Γ 0 N 0 l 1 0 r Γ 0 N Γ 0 N = Γ 0 Nγ j 0 l. f M k Γ 0 N, χ Hecke T l r f T l := χγ j f k γ j, T 1 = id, m > 1 T l m j=1 j=1 T l m := T lt l m 1 χll k 1 T l m 2, l N, T l m := T l m, n Z >0, n = p m 1 1... p m r r T n := r j=1 T p m j j, l 1, l 2, T l m 1 1 T lm 2 2, 2.9, T n well-defined.

SAMA- SUKU-RU 5 2.8. q Hecke T q {γ j f T q M k Γ 0 N, χ Hecke q : 2.9. f M k Γ 0 N, χ. n Z >0 am, f T n = mn χbb k 1 a b 2, f. : 0<b m,n S k Γ 0 N, χ T q S k Γ 0 N, χ, M k Γ 0 N, χ; Z[χ] T q M k Γ 0 N, χ; Z[χ]. 2.10. k 1, χ N Dirichlet Z[χ] A H k Γ 0 N, χ; A := A[{T l 1 l ] End A m k Γ 0 N, χ; A, h k Γ 0 N, χ; A := A[{T l 1 l ] End A S k Γ 0 N, χ; A A Hecke Hecke : 2.11. k 1, χ N Dirichlet, A Z[χ] m k Γ 0 N, χ, A H k Γ 0 N, χ; A A; f T a1, f T, S k Γ 0 N, χ, A h k Γ 0 N, χ; A A; f T a1, f T perfect pairing., : m k Γ 0 N, χ; A = Hom A H k Γ 0 N, χ; A, A, H k Γ 0 N, χ; A = Hom A m k Γ 0 N, χ; A, A, S k Γ 0 N, χ; A = Hom A h k Γ 0 N, χ; A, A, h k Γ 0 N, χ; A = Hom A S k Γ 0 N, χ; A, A. 2.2. Eisenstein. k 1, χ : Z/NZ Q N Dirichlet, : k, χ Eisenstein χ 1 = 1 k. E k z, χ := 2 1 L1 k, χ + = if k>2 2.13 σ k 1,χ nq n { N k k 1! 2τχ 1 2πi k m,n 0,0 χ 1 n mnz + n k,

6 Ls, χ : Dirichlet L- χn = n s for Res > 1, τχ 1 := N χ 1 re 2πir/N, r=1 σ k 1,χ n :=. k 2 χ 1 1, 2.14, 2.15. 2.12. k = 2, χ = 1 1, z = x + yi 0<d n χdd k 1 E k z, χ M k Γ 0 N, χ; Q[χ] E 2z := 1 8πy + E 2z, 1 1, E 2 z, γ Γ 01 E 2z 2 γ = E 2z 2.13. π cotπz := πi eπiz + e πiz e πiz = πi 1 2 e 2πinz e πiz π cotπz = z 1 + n= { 1 z + n + 1 z n z, k 2, 1 z + n k = 2πik n k 1 e 2πinz k 1!, k > 2, { 2 1 L1 k, χ + σ k 1,χ nq n N k k 1! = 2τχ 1 2πi k. 2.14. k > 2., E k z, χ M k Γ 0 N, χ; Q[χ] m,n 0,0 χ 1 n mnz + n k 2.15. k, χ N Eisenstein Ez, s, χ := y s c,d: χ 1 d cnz + d k cnz + d 2s

SAMA- SUKU-RU 7, s, s = 0 E k z, χ + δ χ,11 1 8πy Ez, 0, χ...[m], 7.2.. δ χ,11 Kronecker 2.16. k 1 N Dirichlet χ, E k z, χ χpp k 1 E k pz, χ = 2 1 1 χpp k 1 L1 k, χ +. k 1 N Dirichlet χ k 2, [M], Theorem 7.2.16. E k z, χ χpp k 1 E k pz, χ M k Γ 0 p, 1 p 0<d n,p,d=1 χdd k 1 qn 2.3. Eisenstein p., a Dirichlet ω a : Z p /pz p Q if a 0, χ := 1 1 if a = 0 2.2. s Z p Z p [[X]] 1 + X s :=, s m := 2.17. s Z p, m Z. d, p = 1 d Z X = u k 1. : m=0 s m X m, ss 1 s m + 1. mm 1 1 s m Z p log p d A d X := d 1 log 1 + X p u, log A d u k 1 = d 1 k p d log u p u = d 1 d k = ωd k d k 1

8 2.18 p-adic L-function [Wa], Theorem 5.11, Proposition 7.6, Theorem 7.10. η Dirichlet,, η 1 = 1. f η conductor f η = p c p cα N c = 0 or 1, α 0, N, p = 1. η 0 : Z/p c NZ Z/p c NZ 1 + p c Z/1 + p c p cα Z = Z/f η Z η Q., 2Z p [η][[x]] if η 0 1 p L p ηx c N, 2 X ηu+1 Z p[η][[x]] if η 0 = 1 p c N : Dirichlet ξ, f ξ = p d p dβ M d = 0 or 1, β 0, M, p = 1, ϵ : Z/f ξ Z 1 + p d Z/1 + p d p dβ Z Z/f ξ Z ξ Q, k 1, L p ηξuu k 1 = 1 ηϵω k pp k 1 L1 k, ηϵω k, ηϵ = ω k ηϵω k p = 1., n > 0, A χ n; X := 0<d n,p,d=1 χda d X EχX 1 X Z p[[x]][[q]] χ 1 1 Z p [[X]][[q]] : EχX := 2 1 L p χ + A χ n; Xq n. Eχ 2.19. χ a 2.2, k a mod ϕp k 1, Eχu k 1 = E k z, 1 1 p k 1 E k pz, 1 1 M k Γ 0 p, 1 p ; Q ψ = ψ 0 ϵ : Z/pp α Z = Z/pZ 1 + pz/1 + pp α Z Q p α p Dirichlet, ψ 0 := ψ Z/pZ {1, ϵ := ψ {1 1+pZ/1+pp α Z, χ = ψ 0 α > 0 k a mod ϕp Eχψuu k 1 = E k z; ψω k M k Γ 0 p α p, ψω k ; Q[ψ]

2.20. χ a 2.2 SAMA- SUKU-RU 9 ψ = ψ 0 ϵ : Z/p α pz = Z/pZ 1 + pz/1 + p α pz Q p α p Dirichlet, ψ 0 := ψ Z/pZ {1, ϵ := ψ {1 1+pZ/1+p α pz, χ = ψ 0 k 1 Eψ 0 ψuu k ψuu k 1 1 Z p [ψ][[q]] if a = 0, 1 Z p [ψ][[q]] if a 0 2.21. 2.19, 2.20 3.1. The ordinary idempotent. 3. 7.2. The projection to the ordinary part 3.1. R, A R x A, e := lim n xn! e 2 = e Proof. A R[x], A R, A R. A = R R m. x m e, e = 0. x / m, m x R/m m R/m m lim n x n! 1 R e e = 1. 3.2. R, M R, x End R M, e := lim n xn! e 2 = e x em, x em : em em 3.3. T p H k Γ 0 p α, χ; Z p [χ] e := lim n T p n! H k Γ 0 p α, χ; Z p [χ] 3.2 e Z p [χ] f M k Γ 0 p α, χ; Z p [χ] f: ordinary f e = f def

10, H ord k Γ 0p α, χ; Z p [χ] := eh k Γ 0 p α, χ; Z p [χ], h ord k Γ 0p α, χ; Z p [χ] := eh k Γ 0 p α, χ; Z p [χ], M ord k Γ 0 p α, χ; Z p [χ] := M k Γ 0 p α, χ; Z p [χ] e, S ord k Γ 0 p α, χ; Z p [χ] := S k Γ 0 p α, χ; Z p [χ] e 2.11 : Hom Zp [χ] H ord k Γ 0p α, χ; Z p [χ], Z p [χ] = M ord k Γ 0 p α, χ; Z p [χ], Hom Zp[χ] h ord k Γ 0p α, χ; Z p [χ], Z p [χ] = S ord k Γ 0 p α, χ; Z p [χ]. 3.2. ordinary χ : Z/p α pz Z p [χ] pp α Dirichlet, : E k χ T p = σ k 1,χ pe k χ = E k χ. 3.4. 2.9 : E k χ T p = σ k 1,χ pe k χ = E k χ E k χ e = E k χ., E k χ ordinary. β α, M ord k Γ 0pp β, χ; Z p [χ] Zp Q p 3.5. χ pp α Dirichlet k 2, β α, : M ord k Γ 0pp β, χ; Z p [χ] Zp Q p = Q p [χ] E k χ Sk ord Γ 0 pp β, χ; Z p [χ] Zp Q p. 4. Eichler- 4.1. 4.1 Γ, M Z[Γ] f C n Γ, M C n Γ, M := {f : Γ n M : d n : C n Γ, M C n+1 Γ, M n 1 d n fγ 1,..., γ n+1 := fγ 1, γ 2,..., γ n γ n+1 + 1 r+1 fγ 1,..., γ n r γ n r+1,..., γ n+1 r=0 + 1 n+1 fγ 2,..., γ n+1

, n SAMA- SUKU-RU 11 d n+1 d n = 0, {C n, d n i n, 4.2. :, M H n Γ, M H n Γ, M Ext n Z[Γ] Z, M = H n Γ, M. Γ-Mod Ab; M M Γ := { x M xγ = x for any γ Γ n : 4.3. Γ, Γ Γ Γ. M Z[Γ], C n Γ, M C n Γ, M; f f Γ n res Γ Γ : Hn Γ, M H n Γ, M Hecke : 4.4 Hecke. Γ 1, Γ 2, Γ 3, Γ 1, Γ 2 Γ 3 σ Γ 3 Γ 1, σ 1 Γ 2 σ commensurable [Γ 1 : Γ 1 σ 1 Γ 2 σ], [σ 1 Γ 2 σ : Γ 1 σ 1 Γ 2 σ] <. M Z[Γ 1, Γ 2, σ], M Γ 1, Γ 2, σ, Γ 3,, [Γ 2 σγ 1 ] : H n Γ 2, M H n Γ 1, M Γ 2 \Γ 2 σγ 1 {σ j m j=1, γ Γ 1 Γ 2 σ j γ 1 = Γ 2 σ jγ σ jγ, [f] H n Γ 2, M f C n Γ 2, M, m [Γ 2 σγ 1 ][f] := γ i n i=1 f σ jγi γ i σj 1 n i=1, j=1 [f] [Γ2 σγ 1 ] := [Γ 2 σγ 1 ][f] σ j

12. Hecke 4.5. 4.4 well-defined 4.6. 4.6. 4.3, 4.4 [Γ 2 σγ 1 ] 0 M Γ M Γ ; x x M Z[Γ], m N Γ 2 N Γ 1 ; x xσ j N Z[Γ 1, Γ 2, σ] j=1 4.2. Γ 0 pp α Eichler-. Γ Γ 0 pp α [S], Chapter 8. { pp α a b := M 2 Z c d c ppα Z, a, p = 1, ad bc > 0 P 1 Q Γ, s P 1 Q Γ s. 4.7. M Γ HP 1 Γ, M := Ker res Γ Γ s : H 1 Γ, M H 1 Γ s, M s P 1 Q s P 1 Q M pp α l [ ] T l := Γ 0 pp α 1 0 Γ 0 pp α : H n Γ 0 pp α, M H n Γ 0 pp α, M, 0 l Γ 0 pp α l 0 Γ 0 pp α if l p, T l, l = 0 l 0 if l = p, T 1 = id, m > 1 T l m T l m := T lt l m 1 lt l, lt l m 2, n Z >0, n = p m 1 1... p mr r r T n := T p m j j j=1, l 1, l 2, T l m 1 1 T lm 2 2 4.8.. T l m = [ Γ 0 pp α 1 0 0 l m Γ 0 pp α ]

SAMA- SUKU-RU 13 4.9 Ln, ψ; R. R, ψ : pp α R, pp α Ln, ψ; R n Ln, ψ; R := RX i Y n i ψ, i=0, R, R 2 n, fx, Y R 2 a b n γ = pp α, c d pp α fx, Y γ := ψγfax + by, cx + dy k 2, χ pp α Dirichlet γ Γ, z H, f M k Γ, χ S k Γ, χ c ϕ z fγ := γ 1 z. χ χ, z S k Γ, χ c := fwx wy k 2 dw Lk 2, χ; C { f z f S k Γ, χ, a b χ c d χ pp α = χa 4.10., ϕ z f C 1 Γ, Lk 2, χ; C : 4.11., ϕ z f Kerd 1 for z H, ϕ z f ϕ z f Imd 0 for z, z H, ϕ z f T n ϕ z f T n Imd 0 for n > 0. Φ : M k Γ, χ S k Γ, χ c H 1 Γ, Lk 2, χ; C; f ϕ z f z well-defined Z[{T l l ] 4.12 Eichler-. Φ ΦS k Γ, χ S k Γ, χ c = H 1 P Γ, Lk 2, χ; C, 4.13 [S], Proposition 8.6., Kerj. j : H 1 Γ, Ln, χ; Z[χ] H 1 Γ, Ln, χ; Q[χ] Imj Z[χ] Q[χ] = H 1 Γ, Ln, χ; Q[χ]

14 4.14 [LFE], Chapter 6, Proposition 1. + α. Z p [Γ] M H 2 Γ, M = 0 5. ordinary part 5.1. 5.1. k 2, pp α Dirichlet χ rank Zp [χ]h ord k Γ 0pp α, χω k ; Z p [χ] = rank Zp [χ]m ord k Γ 0 pp α, χω k ; Z p [χ] = rank Zp M ord 2 Γ0 p, χ 0 ω 2 ; Z p, rank Zp [χ]h ord k Γ 0pp α, χω k ; Z p [χ] = rank Zp [χ]sk ord Γ 0 pp α, χω k ; Z p [χ] = rank Zp S2 ord Γ0 p, χ 0 ω 2 ; Z p χ 0 χ 0 : Z/pZ Z/pZ 1 + pz/1 + pp α Z = Z/pp α Z : χ Q 5.2. R, ψ : pp α R., β α, eh 1 Γ 0 pp α, Ln, ψ; R res Γ 0 ppα Γ 0 pp β e := lim n T p n! 3.2. eh 1 Γ 0 pp β, Ln, ψ; R Proof. r β α 5.3: Γ 0 pp β 1 0 0 p r Γ 0 pp α = Γ 0 pp β c Z/p r Z 1 c 0 p r 4.4 [ ] Γ 0 pp β 1 0 0 p r Γ 0 pp α : H 1 Γ 0 pp β, Ln, ψ; R H 1 Γ 0 pp α, Ln, ψ; R 5.4: [ ] res Γ 0pp α Γ 0 pp β Γ 0 pp β 1 0 0 p r Γ 0 pp α = T p r, [ ] Γ 0 pp β 1 0 0 p r Γ 0 pp α res Γ 0pp α Γ 0 pp β = T pr.. e, 3.2

5.3. r β α 0, Γ 0 pp β 1 0 0 p r Γ 0 pp α = : σ :=. SAMA- SUKU-RU 15 1 0 0 p r 5.4. 5.2 [ res Γ 0pp α [ Γ 0 pp β Γ 0 pp β. c Z/p r Z Γ 0 pp β Γ 0 pp β \Γ 0 pp β σγ 0 pp α σ 1 Γ 0 pp β 1 0 0 p r 1 c 0 p r ] 1 0 0 p r Γ 0 pp α = T p r, ] Γ 0 pp α res Γ 0pp α Γ 0 pp β = T pr 5.5. ψ : pp α F p, ω : Γ 0 pp α ω Z p [χ] F p., Γ 0 pp α 5.6 i : Ln, ψ; F p L0, ψω n ; F p ; fx, Y f1, 0., i ordinary ei : eh 1 Γ 0 pp α, Ln, ψ; F p eh 1 Γ 0 pp α, L0, ψω n ; F p Proof. Γ = Γ 0 pp α. : 0 keri Ln, ψ; F p i L0, ψω n ; F p 0 H 1 Γ, keri H 1 Γ, Ln, ψ; F p i H 1 Γ, L0, ψω n ; F p H 2 Γ, keri. q = 1, 2 eh q Γ, keri = 0, q 1 0, σ := T p = [Γ 0 pp α σγ 0 pp α ] 0 p keri = X n 1 Y,..., Y n Fp keri σ 0. T p 4.4 q eh q Γ, keri = 0. ei 5.6. O Z p, ψ 1, ψ 2 : pp α O n 1 n 2, Hom Γ0 pp α Ln 1, ψ 1 ; O, Ln 2, ψ 2 ; O = {0 0

16 5.2. 5.1. Proof. Z p [χ], ϖ. Hecke rank 2.11, 3.5, β cχ cχ χ p,, rank Zp[χ]S ord k rank Zp[χ]M ord k Γ 0 pp β, χω k ; Z p [χ] Γ 0 pp α, χω k ; Z p [χ] = rank Zp[χ]M ord k Γ 0 pp β, χω k ; Z p [χ] 1 = rank Zp M ord 2 Γ0 p, χ 0 ω 2 ; Z p Eichler- 4.12, 3.5, 4.13, k 2 pp β Dirichlet η rank Zp [η]eh 1 Γ 0 pp β, Lk 2, η; Z p [η] = 2rank Zp [η]m ord k Γ 0pp β, η; Z p [η] 1, n = k 2, ψ := χω n 2, Γ := Γ 0 p α p. 0 Ln, ψ; Z p [χ] ϖ Ln, ψ; Z p [χ] Ln, ψ; F p 0, ψ : Γ ψ Z p [χ] F p : H 0 Γ, Ln, ψ; F p H 1 Γ, Ln, ψ; Z p [χ][ϖ] 0. [ϖ] := { x ϖx = 0. Fp p 1 X n j Y j 1 c p = p j X + cy n j Y j X n 1 Y,..., Y n Fp if j = 0, = 0 p 0 if j > 0 c=0 c=1, 4.4 5.3, H 0 Γ, Ln, ψ; F p T p 2 = 0, eh 0 Γ, Ln, ψ; F p = 0 eh 1 Γ, Ln, ψ; Z p [χ][ϖ] = 0. eh 1 Γ, Ln, ψ; Z p [χ], 0 H 1 Γ, Ln, ψ; Z p [χ] Zp [χ] F p H 1 Γ, Ln, ψ; F p H 2 Γ, Ln, ψ; Z p [χ], H 2 Γ, Ln, ψ; Z p [χ] = 0 4.14,. 5.5 dim Fp eh 1 Γ, Ln, ψ; F p = rank Zp[χ]eH 1 Γ, Ln, ψ; Z p [χ] 5.1 dim Fp eh 1 Γ, Ln, ψ; F p = dim Fp eh 1 Γ, L0, ψω n ; F p, Γ/Γ 1 pp β Γ 0 p/γ 1 p p ψω n Γ 0 p, ψω n = χ 0 ω 2 χ 0 : Γ 0 p χ 0 Z p [χ] F p, 5.2 dim Fp eh 1 Γ, L0, ψω n ; F p = dim Fp eh 1 Γ 0 p, L0, χ 0 ω 2 ; F p 5.2

SAMA- SUKU-RU 17. 5.1 n 0, Γ Γ 0 p, ψ ψω n = χ 0 ω 2, 5.2, dim Fp eh 1 Γ, L0, ψω n ; F p = rank Zp [χ]eh 1 Γ 0 p, L0, χ 0 ω 2 ; Z p [χ]., rank Zp [χ]eh 1 Γ, Ln, ψ; Z p [χ] = dim Fp eh 1 Γ, Ln, ψ; F p = dim Fp eh 1 Γ, L0, χ 0 ω 2 ; F p = rank Zp eh 1 Γ 0 p, L0, χ 0 ω 2 ; Z p References [LFE] H. Hida, Elementary theory of L-functions and Eisenstein series, London Mathematical Society Student Texts 26. Cambridge University Press, Cambridge, 1993. [M] T. Miyake, Modular Forms, Springer-Verlag, 2006. [S] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton University Press, 1971. [Wa] Lawrence C. Washington, Introduction to Cyclotomic Fields, Second Edition, Graduate Texts in Mathematics, ematics 83, Springer-Verlag, New York, 1997, xiv+487 pp.