SPring-8_seminar_

Similar documents
1 d 6 L S p p p p-d d 10Dq 1 ev p-d d 70 % 1: NiO [3] a b CI c [5] NiO Ni [ 1(a)] Ni 2+ d 8 d 7 d 8 + hν d 7 + e d 7 1(b) d 7 p Ni 2+ t 3 2g t3 2g e2

1 2 LDA Local Density Approximation 2 LDA 1 LDA LDA N N N H = N [ 2 j + V ion (r j ) ] + 1 e 2 2 r j r k j j k (3) V ion V ion (r) = I Z I e 2 r

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.


SPring8菅野印刷.PDF

untitled

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

4/15 No.


02-量子力学の復習

1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru

動関数が反対称の性質を持つことになる.(2.4.4) の行列式を Slater 行列式とよぶ.(2.4.1) の波動方程式を解くためには,(2.4.4) の Slater 行列式を用いた波動関数 Φ e に関するエネルギー汎関数の最小値を求めればよい. その際に, 一電子軌道に関する極値 ( つまり

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

1.06μm帯高出力高寿命InGaAs歪量子井戸レーザ

PowerPoint プレゼンテーション

QMI_10.dvi

PowerPoint プレゼンテーション

1: Sheldon L. Glashow (Ouroboros) [1] 1 v(r) u(r, r ) ( e 2 / r r ) H 2 [2] H = ( dr ψ σ + (r) 1 2 ) σ 2m r 2 + v(r) µ ψ σ (r) + 1 dr dr ψ σ + (r)ψ +

Ni PLD GdBa 2 Cu 3 O 7 x 2 6

Materials Studio Basic Training - CASTEP

untitled

chap1_MDpotentials.ppt

¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤®

Undulator.dvi

4 1 Ampère 4 2 Ampere 31

技術会議資料

d (i) (ii) 1 Georges[2] Maier [3] [1] ω = 0 1

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

C 3 C-1 Cu 2 (OH) 3 Cl A, B A, A, A, B, B Cu 2 (OH) 3 Cl clinoatacamite S=1/2 Heisenberg Cu 2+ T N 1 =18K T N 2 =6.5K SR T N 2 T N 1 T N 1 0T 1T 2T 3T

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

PowerPoint Presentation

K 吸収端 XAFS 用標準試料 Ti Ti-foil 金属箔 縦 1.3 cm 横 1.3 cm 厚さ 3 µm TiO2 anatase ペレット φ 7 mm 厚さ 0.5 mm 作製日 TiO2 rutile ペレット φ 7 mm 厚さ 0.5 mm 作製日 2017.

陦ィ邏・2

Frontier Simulation Software for Industrial Science

(2/32) AV OA 1-1 / / ferrite_ni-zn_material_characteristics_ja.fm

表紙

C 3 C-1 Ru 2 x Fe x CrSi A A, A, A, A, A Ru 2 x Fe x CrSi 1) 0.3 x 1.8 2) Ru 2 x Fe x CrSi/Pb BTK P Z 3 x = 1.7 Pb BTK P = ) S.Mizutani, S.Ishid

158 A (3) X X (X-raystressmeasurement) X X 10μm (4) X X (neutron stress measurement) X (5) (magnetostriction) (magnetostriction stress measurem

E-2 A, B, C A, A, B, A, C m-cresol (NEAT) Rh S m-cresol m-cresol m-cresol x x x ,Rh N N N N H H n Polyaniline emeraldine base E-3 II

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

スライド 1

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

vdw-df vdw-df vdw-df 2

Microsoft PowerPoint - 14.菅谷修正.pptx

(extended state) L (2 L 1, O(1), d O(V), V = L d V V e 2 /h 1980 Klitzing

Mott散乱によるParity対称性の破れを検証

スライド 1

note4.dvi

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K


遍歴電子磁性とスピン揺らぎ理論 - 京都大学大学院理学研究科 集中講義

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

untitled

スライド 1


反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

03J_sources.key

研究成果報告書(基金分)

X線分析の進歩36 別刷

スライド 1

EOS and Collision Dynamics Energy of nuclear matter E(ρ, δ)/a = E(ρ, )/A + E sym (ρ)δ 2 δ = (ρ n ρ p )/ρ 1 6 E(ρ, ) (Symmetric matter ρ n = ρ p ) E sy

untitled

<4D F736F F F696E74202D208D7C CD8F6F95A882CC8D5C91A295CF89BB82CC D C835B83932E707074>

Microsoft PowerPoint - 物構研シンポ09(岡本-misumi).ppt

( ) URL: December 2, 2003

(a) (b) (c) (d) 1: (a) (b) (c) (d) (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4

にしむらだより159号.indd

untitled

T g T 0 T 0 fragile * ) 1 9) η T g T g /T *1. τ τ η = Gτ. G τ

講 座 熱電研究のための第一原理計算入門 第1回 密度汎関数法による第一原理バンド計算 桂 1 はじめに ゆかり 東京大学 2 密度汎関数理論 第一原理 first-principles バンド計算とは 結晶構造 Schrödinger 方程式は 量子力学を司る基本方程式で 以外の経験的パラメータや

3 3.1 R r r + R R r Rr [ ] ˆn(r) = ˆn(r + R) (3.1) R R = r ˆn(r) = ˆn(0) r 0 R = r C nn (r, r ) = C nn (r + R, r + R) = C nn (r r, 0) (3.2) ( 2.2 ) C

untitled

EGunGPU

研究成果報告書

rcnp01may-2


SC2006c.ppt

nenmatsu5c19_web.key

IS(A3) 核データ表 ( 内部転換 オージェ電子 ) No.e1 By IsoShieldJP 番号 核種核種半減期エネルギー放出割合核種番号通番数値単位 (kev) (%) 核崩壊型 娘核種 MG H β-/ce K A

輻射の量子論、選択則、禁制線、許容線

( ) ) AGD 2) 7) 1

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼ Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

untitled

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

2


X線散乱と放射光科学


(2) N elec = D p,q p,q χ q χ p dr = p,q D p,q S q,p Mulliken PA D Mull p = p = group A D p,p 1 + D p,q S q,p p q p [ r A D Mull p ] group χ p G Mull A

あいち SR 硬 X 線 XAFS ビームライン参照試料リスト 周期表のリンクをクリックすると 各元素の参照試料リストに飛びます H He Li Be B C N O F Ne Na Mg Al Si P S

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

news

Transcription:

X 21 SPring-8 XAFS 2016 (= )

X PC cluster Synchrotron TEM-EELS XAFS / EELS HΨ k = E k Ψ k

XANES/ELNES DFT ( + ) () WIEN2k, Elk, OLCAO () CASTEP, QUANTUM ESPRESSO FEFF, GNXAS, etc. Bethe-Salpeter (BSE) exciting, Elk, OCEAN, WIEN2k-BSE etc. (Configuration Interaction; CI) DFT-CI XANES/ELNES Typical element K-edge, L-edge [deep core] independent particle approximation Supercell + DFT + core-hole Multiple scattering theory K-edge, L-edge [shallow core (< 100eV)] two-particle theory strong excitonic effects Bethe-Salpeter Equation (BSE) Transition metal Rare-earth K-edge (main features) Supercell + DFT + core-hole Multiple scattering theory L 2,3 -edge, M 4,5 -edge, K-pre-edge many-electron theory multiplet effects Configuration Interaction (CI)

-e -e electron (r): electron cloud dr +Z 1 e +Z 2 e nucleus +Z 1 e +Z 2 e nucleus LDA, GGA dr t 2g e g t 2g e g

3d L 2,3 XANES/ELNES ( &3d) () -e +Z 1 e +Z 2 e E F, F E I, I

(CI) { i (r)} Configuration Interaction (CI) CI Coulomb

Ĥ = φ i ĥ φ j a i a j + 1 2 i,j φ i φ j ĝ φ k φ l a i a j a la k i,j,k,l φ i ĥ φ k = φ i (r)ĥ(r)φ j(r)dr φ i φ j ĝ φ k φ l = φ i (r 1)φ j (r 2)ĝ(r 1, r 2 )φ k (r 1 )φ l (r 2 )dr 1 dr 2 LDADirac SrTiO 3 unit cell TiO 6 8- + Ti Sr O

CI (3d) 0 (2p) 5 (3d) 1 (3d) 0 + (3d) 1 L (2p) 5 (3d) 1 + (2p) 5 (3d) 2 L Ikeno et al., J. Phys.: Condens. Matter 21, 104208 (2009). CI Ikeno et al., J. Phys.: Condens. Matter 21, 104208 (2009).

L 2,3 XANES Park et al., (2000) Gilbert et al., (2003) Rigan et al., (2001) XANES/ELNES X

L 2,3 XANES [2p 3d (4s) ] 3d LiNiO 2 Ni-L 2,3 ELNES NiO 2 () Ni 4+ low-spin LiNiO 2 Ni 3+ low-spin NiO Ni 2+ Theory: Ikeno et al., Phys. Rev. B 72, 075123 (2005). Experiments: Y. Koyama et al., J. Phys. Chem. B 109, 10749 (2005).

Li x MnO 3 Mn-L 2,3 XAS Kubobuchi, Ikeno, Mizoguchi, et al., Appl. Phys. Lett. 104, 053906 (2014). Li 2 MnO 3 Mn-K (1s4p) XAS [Yu et al., J. Electrochem. Soc. 156, A417 (2009).] DFT calc. [Koyama et al., J. Power Sources 189, 798 (2009).]

Li x MnO 3 Mn-L 2,3 XAS Kubobuchi, Ikeno, Mizuguchi, et al., Appl. Phys. Lett. 104, 053906 (2014). L 2,3 XANES +

ZnO:TM (TM=Mn,Ni) : ZnO-5mol%MnO 2, ZnO-1mol%NiO : Pulsed Laser Deposition (PLD) (Al 2 O 3 (0001)) GaN:Mn (Mn 8%) : NH 3 (MBE) (S. Sonoda et al., J. Cryst. Growth 237-239, 1358 (2002).) XANES (SPring-8 BL25SU, ALS BL8.0.1, KEK-PF BL11A) Mn-L 2,3 : 620-680eV Ni-L 2,3 : 835-890eV 0.1 ev e - slit monochromator sample synchrotron radiation slit mirror I 0 e - I ZnO:MnMn-L 2,3 XANES Theory Mn L 3 Mn 2+ in ZnO L 2 Theoretical fingerprinting Mn 3+ in ZnO

ZnO:MnMn-L 2,3 XANES Experiment Theory L 3 Zn 0.95 Mn 0.05 O () L 3 Mn 2+ in ZnO L 2 L 2 Mn 3+ in ZnO Mn+2Zn Mn ZnO:MnMn-L 2,3 XANES Experiment Theory L 3 Zn 0.95 Mn 0.05 O () L 3 Mn 2+ in ZnO () t 2 e L 2 L 2 Mn+2 Zn Mn Mn 2+ in ZnO () t 2 e

NiO, ZnO:NiNi-L 2,3 XANES Experiment Theory NiO () Ni 2+ in NiO (6) Zn 0.95 Ni 0.05 O () Ni 2+ in ZnO (4) Ni Ga 1-x Mn x NMn-L 2,3 XANES Experiment Theory Intensity (arb. units) L 3 Ga 1-x Mn x N x = 0.068 ferromagnetic L 2 Zn 1-x Mn x O x = 0.05 (Mn 2+ ) O 4 Intensity (arb. units) L 3 Mn 2+ in GaN (4) L 2 Mn 2+ in ZnO (4) 635 640 645 650 655 660 Photon energy (ev) 635 640 645 650 655 660 Energy (ev)

Ga 1-x Mn x N Mn-L 2,3 XANES Intensity (arb. units) Experiment Ga 1-x Mn x N x = 0.068 ferromagnetic Theory Mn 2+ in GaN Mn 3+ in GaN Intensity (arb. units) Experiment Ga 1-x Mn x N x = 0.068 ferromagnetic Mn 2+ : Mn 3+ = 85 : 15 635 640 645 650 655 660 Photon energy (ev) 635 640 645 650 655 660 Energy (ev) Mn 2+ /Mn 3+ (Mn 3+ ) X (XMCD) LCP RCP = +1 = -1 LCP - RCP

XMCD : J = 1 J = +1 (LCP) J = -1 (RCP) XMCD B : magnetic flux density B : Bohr magneton p : Slater determinant i : relativistic MO J ij

Theoretical Calculation of XMCD CI Zeeman Ĥ = Ĥ0 + ĤZeeman Ĥ Zeeman = μ B (l i +2s i ) B B B l i s i i : magnetic flux density : Bohr magneton : angular momentum : spin momentum NiFe 2 O 4 ()

NiFe 2 O 4 Ni-L 2,3 XMCD NiFe 2 O 4 Ni-L 2,3 XMCD XMCD x 5 (c) NFO Ni L 2,3 σ + 850 860 870 880 Photon Energy (ev) *M.C. Richter et al., Eur. Phys. J. Special Topics 169, 175 (2009). Ni+2B(6) σ

NiFe 2 O 4 Fe-L 2,3 XMCD NiFe 2 O 4 Fe-L 2,3 XMCD 705 XMCD x 10 (b) NFO Fe L 2,3 σ + σ 710 715 720 725 Photon Energy (ev) 730 *M.C. Richter et al., Eur. Phys. J. Special Topics 169, 175 (2009). Fe+3A,BA, BFe 3+

L 2,3 XANES/ELNES Dirac (CI)3d 3d L 2,3 XANES/ELNES / () XMCD