kokyuroku.dvi

Similar documents
sakigake2.dvi

sakigake1.dvi

Shunsuke Kobayashi 1 [6] [11] [7] u t = D 2 u 1 x 2 + f(u, v) + s L u(t, x)dx, L x (0.L), t > 0, Neumann 0 v t = D 2 v 2 + g(u, v), x (0, L), t > 0. x

R¤Çʬ¤«¤ëÎÏ³Ø·Ï - ¡Áʬ´ô¤ÎÍͻҤò²Ä»ë²½¤·¤Æ¤ß¤ë¡Á

xia2.dvi

II

2008chom.pdf

ver.1 / c /(13)

第5章 偏微分方程式の境界値問題

D-brane K 1, 2 ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane

A

main.dvi

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

., White-Box, White-Box. White-Box.,, White-Box., Maple [11], 2. 1, QE, QE, 1 Redlog [7], QEPCAD [9], SyNRAC [8] 3 QE., 2 Brown White-Box. 3 White-Box

koji07-01.dvi

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

86 6 r (6) y y d y = y 3 (64) y r y r y r ϕ(x, y, y,, y r ) n dy = f(x, y) (6) 6 Lipschitz 6 dy = y x c R y(x) y(x) = c exp(x) x x = x y(x ) = y (init

L P y P y + ɛ, ɛ y P y I P y,, y P y + I P y, 3 ŷ β 0 β y β 0 β y β β 0, β y x x, x,, x, y y, y,, y x x y y x x, y y, x x y y {}}{,,, / / L P / / y, P

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

(a) (b) (c) 4. (a) (b) (c) p.2/27

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

Centralizers of Cantor minimal systems

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

chapter5

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

2000年度『数学展望 I』講義録

. T ::= x f n t 1 t n F n,m (x(t 1 t n )t 1 t m) x, f n n, F n,m n, m-., F n,m (x(t 1 t n )t 1 t m), x, t 1,..., t n, t 1,..., t m. F n,m (x(t 1 t n )

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α,

2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? , 2 2, 3? k, l m, n k, l m, n kn > ml...? 2 m, n n m

RIMS Kôkyûroku Bessatsu B3 (22), Numerical verification methods for differential equations: Computer-assisted proofs based on infinite dimension

第8章 位相最適化問題

³ÎΨÏÀ

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

d dt A B C = A B C d dt x = Ax, A 0 B 0 C 0 = mm 0 mm 0 mm AP = PΛ P AP = Λ P A = ΛP P d dt x = P Ax d dt (P x) = Λ(P x) d dt P x =

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

: 1g99p038-8

( ) ( )


Gauss Fuchs rigid rigid rigid Nicholas Katz Rigid local systems [6] Fuchs Katz Crawley- Boevey[1] [7] Katz rigid rigid Katz middle convolu

等質空間の幾何学入門

空間多次元 Navier-Stokes 方程式に対する無反射境界条件

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

Gelfand 3 L 2 () ix M : ϕ(x) ixϕ(x) M : σ(m) = i (λ M) λ (L 2 () ) ( 0 ) L 2 () ϕ, ψ L 2 () ((λ M) ϕ, ψ) ((λ M) ϕ, ψ) = λ ix ϕ(x)ψ(x)dx. λ /(λ ix) ϕ,

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

waseda2010a-jukaiki1-main.dvi

°ÌÁê¿ô³ØII

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1,

Part () () Γ Part ,

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

Untitled

: , 2.0, 3.0, 2.0, (%) ( 2.

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2

ohp_06nov_tohoku.dvi

all.dvi

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

function2.pdf



SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

C による数値計算法入門 ( 第 2 版 ) 新装版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 新装版 1 刷発行時のものです.

Microsoft Word - 信号処理3.doc

6.1 (P (P (P (P (P (P (, P (, P.101

Morse ( ) 2014

非可換Lubin-Tate理論の一般化に向けて

i

1 : ( ) ( ) ( ) ( ) ( ) etc (SCA)

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

ε ε x x + ε ε cos(ε) = 1, sin(ε) = ε [6] [5] nonstandard analysis 1974 [4] We shoud add that, to logical positivist, a discussion o



1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

数学の基礎訓練I

2 1 Introduction (1.1.2) Logistic ث Malthus (1.1.3) (( ) ث)( ) α = ( ) ( + ) [Verhulst 1845] 0 ( ) ( + ) lim ( ) = 0 t (1.1.4) (( ) ث)( ) α = ( ) Logi

6.1 (P (P (P (P (P (P (, P (, P.

(time series) ( 225 ) / / p.2/66

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

( ) (, ) ( )

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

"05/05/15“ƒ"P01-16

Nosé Hoover 1.2 ( 1) (a) (b) 1:

I

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

Excel ではじめる数値解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

IV (2)

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0,

1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1.2 R A 1.3 X : (1)X (2)X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f

Transcription:

On Applications of Rigorous Computing to Dynamical Systems (Zin ARAI) Department of Mathematics, Kyoto University email: arai@math.kyoto-u.ac.jp 1 [12, 13] Lorenz 2 Lorenz 3 4 2 Lorenz 2.1 Lorenz E. Lorenz R 3 ẋ = σx + σy ẏ = ρx y xz ż = βz + xy Lorenz σ, ρ, β Lorenz (σ, ρ, β) =(10, 28, 8/3) 1963 1 1

50 45 40 35 30 z 25 20 15 10 5 0 40 20 y 0 20 40 20 15 10 5 0 5 10 15 20 x 1 Lorenz Lorenz Hilbert 23 S. Smale 21 18 14 Lorenz 1990 W. Tucker k Σ k := i=0 {1, 2,...,k} k full-shift s :Σ k Σ k s(x 0,x 1,...)=(x 1,x 2,...) k k A =(a ij ) Σ A := {(s n ) Σ k a sn s n+1 0} s(σ A )=Σ A. 1 (Mishaikow-Mrozek[8, 9, 10]). Lorenz (σ, ρ, β) (10, 28, 8/3) I {z =27} P well-defined π :Inv(I,P) Σ 6 π P = s π 2

Σ A π(inv(i,p)) A A = 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 2 (Galias-Zgliczyński[6]). Lorenz (σ, ρ, β) (10, 28, 8/3) I {z =27} P well-defined π :Inv(I,P 2 ) Σ 2 π P 2 = s π π Lorenz 3 (Tucker[14]). (σ, ρ, β) =(10, 28, 8/3) Lorenz robust starange attractor robust strange attractor [4] Tucker Mischaikow-Mrozek Galias-Zgliczyński 0 Mischaikow-Mrozek Galias-Zgliczyński Tucker Normal Form 1. Tucker Normal Form Poincaré 2. Poincaré 3

2 3 2.2 Tucker Euler Galias-Zgliczyński 4 Taylor Mischaikow-Mrozek 4 Runge-Kutta 4 Runge-Kutta Galias-Zgliczyński 4 Runge-Kutta 4 Taylor Taylor wrapping effect 2.3 Wrapping Effect 2 X X 4

X X 2 wrapping effect X wrapping effect Lorenz wrapping effect Tucker X wrapping effect Galias-Zgliczyński wrapping effect. x ɛ B(x, ɛ) h x h P P logarithmic norm P P B(x, ɛ) P Mischaikow-Mrozek wrapping effect {z =27} {z =27} wrapping effect wrapping effect 2 (x, y) (x + y, x y) X Lohner [16] 5

3 Results for Discrete Dynamical Systems [11] 3.1 X f : X X X f f(s) =S S X f int N N 4. S N S N, S =Inv(N,f) :={x N {x i } i Z N s.t. x 0 = x, f(x i )=x i+1 for all i Z} S =Inv(N,f) int N N S N f f C 0 g N Inv(N,f) Inv(N,g) N 6

5. S index pair P =(P 1,P 0 ) P 1 \P 0 S f(p 0 ) P 1 P 0 f(p 1 \P 0 ) P 1 3 P 1 /P 0 P 1 P 0 P 0 [P 0 ] f P : P 1 /P 0 P 1 /P 0 { [f(x)] f(x) P 1 f P ([x]) := [P 0 ] f P index map index map S f [7] P 1 /P 0 H (P 1 /P 0, [P 0 ]) f P f P : H (P 1 /P 0, [P 0 ]) H (P 1 /P 0, [P 0 ]) H (P 1 /P 0, [P 0 ]) (P 1 /P 0, [P 0 ]) H (P 1 /P 0, [P 0 ]) H k (P 1 /P 0, [P 0 ]) f P 0 k f P k : H k (P 1 /P 0, [P 0 ]) H k (P 1 /P 0, [P 0 ]) S index pair H (P 1 /P 0, [P 0 ]) f P 6. f : X X g : Y Y m r : X Y, s : Y X r f = g r, s g = f s, r s = g m,s r = f m S index pair P = (P 1,P 0 ) Q =(Q 1,Q 0 ) S index pair f P f Q 7

7. S P =(P 1,P 0 ) S index pair f P 8(Ważewski principle [7, 11]). P =(P 1,P 0 ) S index pair f P 0:{0} {0} S 9 (Index pair Lefschetz [7]). P = (P 1,P 0 ) S index pair L(f P ):= k ( 1)k tr f P k 0 S k ( 1)k tr f n P k 0 S f n [7, 15] connecting orbit [3] index pair index map 3.2 X = R n R n R n n n d i (i =1...n) { n } Ω:= [k i d i, (k i +1)d i ]:k i Z i=1 R n Ω B Ω B B R n f f ω Ω f( ω ) f(ω) f( ω ) Ω f( ω ) Ω F(ω) F :Ω {Ω } : ω {ω Ω: f( ω ) ω } f( ω ) int F(ω) f( ω ) F(ω) 8

1. 2. 3. 4. I Ω I I index pair 1. I 2 2. I Inv( I,f) int I I B Ω o(b) :={ω Ω: ω B }, d(b) :=o(b) \B o(b) Ω B Inv(B, F) {ω B γ : Z B γ(0) = ω γ(k +1) F(γ(k)) } f( ω ) int F(ω) Inv( I,f) Inv(I, F) o(inv(i, F)) I Inv( I,f) Inv(I, F) int o(inv(i, F)) int I I o(inv(i, F)) I I [7] I I 3. I f B =Inv(I, F) (P 1, P 0 )= ( (d(b) F(B)) B, d(b) F(B) ) P =( P 1, P 0 ) Inv( I,f) index pair [7] 4. [7] H ( P 1 / P 0, [ P 0 ]) f P f F 4 CHomP F 9

1.5 1 0.5 y 0 0.5 1 1 0.5 0 0.5 1 1.5 x 3 7 index pair H a,b : R 2 R 2 :(x, y) (a x 2 + by, x) 9 Hénon Hénon Lorenz a =1.4, b =0.3 3 index pair P 1 \ P 0 P 0 CHomP 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 f P 1 = 0 0 0 0 0 1 0 : Z 7 Z 7 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 f P 0 tr((f P 1 ) 7 )=7 9 Inv(P 1 \ P 0 ) f 7 P 1 f Inv(P 1 \ P 0 ) 7 Hénon [3] [2] [1] 10

4 Software Packages 4.1 GAIO (Global Analysis of Invariant Objects) http://math-www.uni-paderborn.de/~agdellnitz/gaio/ M. Dellnitz and O. Junge Python MATLAB MATLAB GAIO 3 GAIO PROFIL C/C++ MATLAB 4.2 CHomP (Computational HOMology Project) http://www.math.gatech.edu/~chomp/ Conley P. Pilarczyk 4.3 BIAS (Basic Interval Arithmetic Subroutines) http://www.ti3.tu-harburg.de/knueppel/profil/ 11

O. Knüppel C PROFIL BIASINTERVAL C PROFIL b4m BIAS BiasF.c BIAS sin, cos, exp BiasExp libm exp BIAS 4.4 b4m (BIAS for MATLAB) http://www.ti3.tu-harburg.de/zemke/b4m J. Zemke MATLAB BAIS x = interval(1,2) x [1, 2] MATLAB BIAS BIAS 4.5 PROFIL (Programmer s Runtime Optimized Fast Interval Library) http://www.ti3.tu-harburg.de/knueppel/profil/ BIAS O. Knüppel C++ BIAS BIAS 4.6 CAPD (Computer Assisted Proofs in Dynamics) http://capd.wsb-nlu.edu.pl/ 2 [6] Z. Galias P. Zgliczyński CHomP P. Pilarczyk 2 Lohner 12

5 [1],,, 15 (2005), 20 31. [2] Z. Arai, On Hyperbolic Plateaus of the Hénon Maps, preprint. [3] Z. Arai and K. Mischaikow, Rigorous Computations of Homoclinic Tangencies, preprint. [4] C. Bonatti, L. Díaz and M. Viana, Dyamics Beyound Uniform Hyperbolicity, Encyclopaedia of Mathematical Sciences, 102, Springer-Verlag, 2005. [5] M. Dellnitz and O. Junge, The algorithms behind GAIO - set oriented numerical methods for dynamical systems, Ergodic theory, analysis, and efficient simulation of dynamical systems, Springer, Berlin, 2001, 145 174, 805 807. [6] Z. Galias and P. Zgliczyński, Computer assisted proof of chaos in the Lorenz equations, Physica D, 115 (1998), 165 188. [7] T. Kaczynski, K. Mischaikow andm. Mrozek, Computational Homology, Applied Mathematical Sciences, 157, Springer-Verlag, 2004. [8] K. Mischaikow and M. Mrozek, Chaos in the Lorenz equations: a computer-assisted proof, Bull.Amer.Math.Soc.(N.S.), 3 (1995), 66 72. [9] K. Mischaikow and M. Mrozek, Chaos in the Lorenz equations: a computer-assisted proof. II. Details, Mathematics of Computation, 67 (1998), 1023 1046. [10] K. Mischaikow and M. Mrozek, Chaos in the Lorenz equations: a computer-assisted proof. III. Classical parameter vallues, J. Differential Equations, 169 (2001), 17 56. [11] K. Mischaikow and M. Mrozek, The Conley index theory, Handbook of Dynamical Systems II, North-Holland, 2002, 393 460. [12],,, 1998. [13],,, 2000. [14] W. Tucker, A rigorous ODE solver and Smale s 14th problem, Found. Comput. Math., 2 (2002), 53 117. [15] A. Szymczak, The Conley index and symbolic dynamics, Topology, 35 (1996), 287 299. [16] P. Zgliczyński, C 1 Lohner algorithm, Fuound. Comput. Math., 2 (2002), 429 465. 13