Activation and Control of Electron-Transfer Reactions by Noncovalent Bond

Similar documents
6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

物理化学I-第12回(13).ppt


LLG-R8.Nisus.pdf

untitled

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

1 2 2 (Dielecrics) Maxwell ( ) D H

36 th IChO : - 3 ( ) , G O O D L U C K final 1

スライド 1

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

09_organal2


PowerPoint プレゼンテーション

Microsoft Word - 章末問題

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =



医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k


( ) ,


Ł\”ƒ-2005

linearal1.dvi

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

第90回日本感染症学会学術講演会抄録(I)

Microsoft Word - 11問題表紙(選択).docx

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

PDF

1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載

201711grade1ouyou.pdf

The Physics of Atmospheres CAPTER :

AC Modeling and Control of AC Motors Seiji Kondo, Member 1. q q (1) PM (a) N d q Dept. of E&E, Nagaoka Unive

2001 Mg-Zn-Y LPSO(Long Period Stacking Order) Mg,,,. LPSO ( ), Mg, Zn,Y. Mg Zn, Y fcc( ) L1 2. LPSO Mg,., Mg L1 2, Zn,Y,, Y.,, Zn, Y Mg. Zn,Y., 926, 1


untitled

Note.tex 2008/09/19( )

µµ InGaAs/GaAs PIN InGaAs PbS/PbSe InSb InAs/InSb MCT (HgCdTe)

03J_sources.key

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

Mott散乱によるParity対称性の破れを検証

( ) ( )

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3


( )

From Evans Application Notes

c 2009 i

B

Part () () Γ Part ,

pdf

untitled

放射線専門医認定試験(2009・20回)/HOHS‐05(基礎二次)

プログラム

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

: , 2.0, 3.0, 2.0, (%) ( 2.


1 223 KamLAND 2014 ( 26 ) KamLAND 144 Ce CeLAND 8 Li IsoDAR CeLAND IsoDAR ν e ν µ ν τ ν 1 ν 2 ν MNS m 2 21

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

総研大恒星進化概要.dvi

1.500 m X Y m m m m m m m m m m m m N/ N/ ( ) qa N/ N/ 2 2

Jacobson Prime Avoidance

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

dvipsj.8449.dvi

untitled

2

2

PowerPoint Presentation

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

熊本県数学問題正解


名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(a) 4 1. A v = / 2. A i = / 3. A p = A v A i = ( )/( ) 4. Z i = / 5. Z o = /( ) = 0 2 1

untitled

Microsoft Word - 演習5_蒸発装置

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P

τ τ


1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

本文/目次(裏白)

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

ダイアライザー性能評価表

chap1.dvi

4 1 Ampère 4 2 Ampere 31

【アフィリコード】総合マニュアル

【アフィリコードプラス】総合マニュアル

PR

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

untitled

Transcription:

2 + 4e- + 4 + hν 2 2 1

2

20 J. Am. Chem. oc. Angew. Chem. Int. Ed. umber of Papers 15 10 5 0 1998 1999 2000 2001 2002 2003 Year : J. Am. Chem. oc. (Trost, B. M.; tanford University, UA) 3

π 1/2 k ET = V 2 ( G 0 ET + λ) 2 exp (1) λ k B T h 4 λk B T 4

(a) (b) mall λ Long-lived C tate * e D A G 0 C Charge eparation (C) e D A k C λ small λ large fast C hν G 0 CR Charge Recombination (CR) 1 lo g(k E T/s ) k CR slow CR D A G 0 C G 0 CR G 0 ET / ev λ π 0 5

l ogk 11 10 9 e t, M 12 11 10 9 12 10 13 13 9 14 7 15 6 8 16 8 7 15 14 11 6 3 7 16 5 5 3 4 17 6 4 1 2 2 5 18 18 1 s 1 0.2 0 0.2 0.4 0.6 0.8 1.0 G 0 et, ev 6

Me Me Me 2 C M Me Et Me Me Me M Me Me 2 C Et Me Me Me Et M Me Me Me 2 C M = Zn (5, ZnCh C 60 ) M = Zn (1, ZnCh C 60 ) = 2 (3, 2 Ch C 60 ) 12 10 8 3 2 6 4 5 1 M = Zn (2, ZnPor C 60 ) = 2 (4, 2 Por C 60 ) CR Me Me Me Me 2 C Me Et M Me l ogk 6 C 4 E Tor k BE T,s 1 5 1 2 0 M = 2 (6, 2 BCh C 60 ) G 0 ET or G 0 BET, ev 0.4 0.8 1.2 1.6 7

(a) Me Me Me Me 2 C Zn Me exyl Et τ = 230 µs (298 K) Me Angew. Chem., Int. Ed., 2004, 45, 853 (b) Zn = C τ = 0.77 µs (298 K) JAC, 2001,, 2607 Me (c) Zn τ = 330 µs (278 K) Me (d) Zn ZnPQ AuPQ + τ = 10 µs (298 K) Au rg. Lett. 2003, 5, 2719 JAC, 2003, 125, 14984 8

(a) (3) (2) (1) Fe C Zn C C C 3 (4) τ = 0.38 s Fc-ZnP- 2 P-C 60 = 3,5-di-t-butylphenyl (b) hν hν hν e e Fe C Zn Zn Zn C C 3 τ = 0.53 s Fc-(ZnP) 3 -C 60 9

1 * Fc- ZnP - 2 P-C 60 (2.04 ev) k E Fc-ZnP- 1 2 P * -C 60 (1.89 ev) k ET(C1) Fc-ZnP- 2 P + -C 60 (1.63 ev) k ET(C1) Fc-ZnP + - 2 P-C 60 hν k ET(CR1) (1.34 ev) k ET(C2) Fc + -ZnP- 2 P-C 60 hν k ET(CR2) (1.11 ev) k ET(CR3) 0.4 s Fc-ZnP- 2 P-C 60 10

(C 2 ) n n = 3, 6, 10 Zn hν k CR = ~10 6 s 1 Control of a tructural caffold Control of Redox Reactivity of Quinone µ 11

12

λ λ Ph + Me λ = 0.34 ev Ph Me (AcrPh + ) (AcrPh ) EXP. 5 G 2.00 0.28 G 1.00 g = 2.0025 3.00 C 0.60 3 3.62 3.20 IM. J. Am. Chem. oc. 2001,123, 8459 msl = 0.22 G λ 13

14

Ph-Q Me 3 Ph-AQ Ph-AQ aph-aq An-AQ aph- 1 (AQ) * (2.85 ev) hυ 0.34 ps aph- 3 (AQ) * 1.7 ps (2.45 ev) 71 s at 263 K in Frozen DM aph + -AQ (1.97 ev) aph-aq 15

Bz C 2 BA 0.57 V BA + ZnP-C 60 h ZnP + -C 60 0.71 V 0.67 V ZnP + - 2 P-C 60 0.67 V 0.67 V V + V 2+ 0.42 V C 6 13 + (Cl 4 ) 2 + C 6 13 = C = V 2+ nv 2+ Au n BA + V + Au n 2 PC 11 AuMPC BA + BA V 2+ 2 PC 11 AuMPC/V 2+ hν BA 2 P + C 11 AuMPC 1 11AuMPC/V 2+ 2 P * C V + 16

2 2 hν Acr -Mes + + + + 2 Acr + -Mes Acr + -Mes 2 + 2 2 + 2 2 17

TE e - e - n 2 TE: ptically Transparent Electrode e - e - e - e - hν e - e - I - / I 3 - Mes-Acr + -0.6 V Mes + -Acr + /(Mes-Acr + ) * Pt -0.2 V - C 60 /C 60-0.3 V Mes-Acr + /Mes-Acr CB 0 V VB hν 1.8 V C * - 60 /C 60 Enhanced Photocurrent by upramolecular Charge eparation hν 2.0 V Mes + -Acr + /Mes-Acr + 0.5 V I - 3 /I - n 2 vs E 18

e - n 2 e - e - hν TE e - I - / I 3 - e - Pt Acridinium Dye C 60 Ti 2 anoparticle TE: ptically Transparent Electrode 19

D 4 P 4 = 2 P-ref D 8 P 8 D 16 P 16 η 20

18 a IPCE, % 12 6 b d c 0 400 500 600 700 800 900 1000 Wavelength, nm 21

Primary Molecule econdary rganization C (C 2 ) n (n = 5, 11, 15) Toluene C 60 Au Tertiary rganization C11 2 PC15MPC (n=15) 2 PC11MPC (n=11) 2 PC5MPC (n=5) 300 nm C11 Quaternary rganization Au MeC/Tol = 3/1 ( 2 PCnMPC+C 60 ) m η 22

e - Pt e TE I - / I 3 - TE: ptically Transparent Electrode e - - Porphyrin C 60 Gold anoparticle e - hν 23

λ D 2 D + 2 D 2 D + 2 M n+ M n+ D + 2 D 2 M n+ D + 2 D + 2 M n+ 24

hν + Lewis acid hν f Lewis acid Me Me (2) 25

g = 2.0038 M n+ Fc Q ET Fc Q Fc + Q /M n+ First Example 6 G Fc + Q /c 3+ Fe + Fc-Q Angew. Chem. Int. Ed. 2002, 41, 620. (C 2 ) 5 ² msl = 0.35 G a(c) = 2.57 G c 3+ a(1) = 1.80 G 1.73 G 0.60 G 0.20 G 0.10 G a(3) = 0.70 G a(2) = 0.09 G a(2) = 0.04 G 26

c 3+ Ir(ppy) Q -nc 3+ 3 + [Ir(ppy) 3 ] + + -Q Q (a) Exp. (Q) 298 K (c) 203 K g = 2.0040 Exp. (n = 2, 3) g = 2.0040 (b) im. 5 G (d) 5 G im. c 3+ a(2c 3+ ) = 1.12 G c 3+ a(8) = 1.12 G Η msl = 0.90 G a(2c 3+ ) = 1.50 G a(c 3+ ) = 0.75 G c 3+ c 3+ c 3+ a(8) = 1.50 G Η msl = 0.75 G 27

Fc-Q Fe Fe Fc-Q Me + +M n+ Fe + +M n+ Fe Me M n+ M n+ Fc-(Me)Q 28

no alt hυ hυ in DM + + 2 P* Q 2 P + Q /( 4 + ) 2 in C 2 Cl 2 4 PF 6 no alt Bu 4PF 6 2 P + + + 2 P + + Q Q tabilization tabilization 2 P* Q 2 P + + Q + /Bu 4 29

π ππ 30

µ µ 1 ZnP*-Im 431 nm hν 2.5 ns (2.12 ev) 0.29 ns ZnP + -Im Š (1.33 ev) Zn ZnP-Im c 3+ nc 6 13 1.3 µs ZnP + -Im Š /c 3+ (0.80 ev) ZnP-Im [c 3+ ] = 1 mm 14 µs 31

Fc- 1 AQ* Fc- 1 AQ* Y(Tf) 3 < 500 fs < 500 fs Fe Fc-AQ hυ Fc + -AQ hυ Fc + -AQ Y(Tf) 3 Y(Tf) 3 12 ps 83 µs Fc-AQ Fc-AQ Y(Tf) 3 µ µ 32

µµ 33

2 2 2 + Cu(II)-Zn(II) 2 2 Cu(I)-Zn(II) Cu(I)-Zn(II) 2 2 34

3 1 1 2 2 35

C 2 Ph C 2 + M n+ Electron Transfer C 2 Ph C 2 (a) M n+ M n+ BA + Q 2M n+ (b) M n+ C 2 M n+ C 2 Ph C 2 Ph M n+ M n+ C 2 M n+ + C 2 M n+ C Ph BA Q M n+ BA + + M n+ g = 2.0031 2 C 2 Ph keto form tautomerization 2 C 2 Ph enol form 5 6 4 2 2 1 C 2 Ph g = 2.0031 4 5 D D 2 6 1 2 C 2 Ph 40 G msl = 1.8 G a (2) = 1.0 G a (4) = 53.0 G a (5) = 7.6 G a (6) = 1.8 G a (1) = 8.0 G a (C2Ph) = 7.4 G 40 G msl = 1.8 G a (2) = 1.0 G a (D4) = 8.1 G a (5) = 7.6 G a (6) = 1.8 G a (1) = 8.0 G a (C 2 Ph) = 7.4 G 36

C2 C 2 Ph BA e - C2 C 2 Ph Keto Form + + Ru(bpy) 3+ 3 C 2 C 2 + C 2 Ph Ru(bpy) 2+* C 2 Ph BA 3 BA + hν BA + 3 C C 2 Ph Pr i 2 + c 3+ ET without c 3+ 3 C 5 6 g = 2.0037 1 2 C 2 Ph Pr i 2 5G K 3 C C 2 Ph msl = 0.21 G c 3+ Pr i 2 k et Fe(Cp * ) 2 Fe(Cp * ) 2 + g = 2.0030 5 G 3 C c 3+ C 2 Ph 3 C 5 6 1 2 C 2 Ph Pr i 2 c 3+ Pr i 2 a (C 3 ) = 1.03 G a (2) = 0.90 G a (5) = 0.82 G a (6) = 1.11 G a (C 2 Ph) = 2.31 G a (1) = 2.63 G a (c) = 1.24 G 37

Bn 2 C C 2 + Bn [(BA) 2 ] Me (Acr + ) Bn + 2 C + Acr C 2 Bn DA Cleavage Bn C 2 2 + + + 2 2 BA + Bn (BA + ) C 2 38

(a) g // =2.010 75 G g = 2.005 (b) (BA) 2 + Acr + + Fe 4 Form II Form III 1 2 3 4 5 6 7 + + + + + + + + + + Form I 2 + 4 + Cat. 4 Fe 4 Fe Fe(C 5 4 Me) 2 2 2 + Catalyst p Co Co p DPA DPB DPX DPD 39

2Fe(C 5 5 ) 2 + + 2 2 Co(III) + Fe(C5 5) 2 2Fe(C 5 5 ) 2 + 4 + Co(III) + k et(1) Fe(C 5 5 ) 2 + Fe(C 5 Me 5 ) 2 Co(III) + 2 Co(IV) + 2 2 Co(II) Co(III) + r.d.s - bond cleavage Co(III) + + 2 + + Co(III) + Fe(C 5 5 ) 2 Fe(C 5 4 Me) 2 r.d.s 2 2 2 Co(III) + Co(III) + + Co(III) + 2 Fe(C 5 5 ) 2 Co(II) Fe(C 5 5 ) 2 + 40

R R 2 + 2 + 2 + 2 + + 2 2 Cat. Me Me Dehydrogenation p Co Co 2 + + 2R Me xygenation 41

42

43

44

45

46

47

48

49

µ 50

µ 51

µ 52

µη η µ µ µ 53

γ µ 54

π 55

α 56

57

π 58

π π 59

α α π 60

é 61

62

γ 63

64

µ 65

ü ü 66

67

π é 68

69

µ 70

µ 71

γ 72

73

74

75

76

π 77

78

79

π π 80

81

82

π π 83

84

85

π 86

µ 87

88

α 89

π 90

91

92

93

ü 94

95

96

π 97

98

99

100

101

102

I 103

ü 104

105

106