(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like

Similar documents
1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

TOP URL 1

st.dvi

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

液晶の物理1:連続体理論(弾性,粘性)


all.dvi

meiji_resume_1.PDF

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

量子力学 問題

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n

B ver B

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

1 Tokyo Daily Rainfall (mm) Days (mm)

Part () () Γ Part ,

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

等質空間の幾何学入門

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

TOP URL 1

chap9.dvi

第86回日本感染症学会総会学術集会後抄録(I)

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

A

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

( )

熊本県数学問題正解

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í


( ) (, ) ( )

応力とひずみ.ppt

ver Web

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

newmain.dvi

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

all.dvi

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc +


微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.


Twist knot orbifold Chern-Simons

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

TOP URL 1

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

BD = a, EA = b, BH = a, BF = b 3 EF B, EOA, BOD EF B EOA BF : AO = BE : AE, b : = BE : b, AF = BF = b BE = bb. () EF = b AF = b b. (2) EF B BOD EF : B

n ( (

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

untitled

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

waseda2010a-jukaiki1-main.dvi

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

* 09 α-24 0 ἅ ὅς 17 β-52 0 ἄβατον ἄβατος 17 β-52 0 ἄβατος(,-η),-ον, 17 β-55 0 ἀβάτῳ ἄβατος 30 δ ἄγ ἄγω 2 ἄγε 30 γ ἀγαγεῖν ἄγω 2 13 α-02 0

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

( ) ( )

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

LLG-R8.Nisus.pdf

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

6.1 (P (P (P (P (P (P (, P (, P.


Z: Q: R: C: sin 6 5 ζ a, b

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

2011de.dvi

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e


A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B


II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

四変数基本対称式の解放

( 4) ( ) (Poincaré) (Poincaré disk) 1 2 (hyperboloid) [1] [2, 3, 4] 1 [1] 1 y = 0 L (hyperboloid) K (Klein disk) J (hemisphere) I (P

Transcription:

() 10 9 30 1 Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [], [13]) Poincaré e m Poincaré e m Kähler-like Kähler-like Kähler M g M X, Y, Z (.1) Xg(Y, Z) = g( X Y, Z) + g(y, XZ) g ( ) = (M, g, ) ([4]) (M, g, ) M X, Y, Z, W (.) g((x, Y )Z, W ) = g(z, (X, Y )W ) (X, Y )Z = [ X, Y ]Z [X,Y ] Z (.3) (X, Y )Z = k{ g(y, Z)X g(x, Z)Y } (M, g, ) k 1

iemann (M, g) p(x; ξ) n M = { p(x; ξ) ξ = (ξ 1,..., ξ n ) Ξ n } (ξ 1,..., ξ n ) n iemann l = l(x; ξ) = log p(x; ξ) i = / ξ i p(x; ξ) E M g (.4) g ij = E[ i l j l ] (ξ 1,..., ξ n ) g Fisher E[ i l ] = 0 Fisher (.5) g ij = E[ i j l ] α [ ( Γ (α) ij,k = E i j l + 1 α ) ] (.6) i l j l k l α (α) (.7) g( (α) i j, k ) = Γ (α) ij,k α Fisher ( α) (α) (M, g, (α) ) (0) Fisher Levi Civita α (M, g, (α) ) α χ C F 1,..., F n n Θ φ [ ] (.8) p(x; θ) = exp C(x) + θ s F s (x) φ(θ) n θ = (θ 1,..., θ n ) Dirichlet Cauchy Weibull (.8) χ p(x; θ) dx = 1 [ ] (.9) exp φ(θ) = exp C(x) + θ s F s (x) dx. χ θ i i φ exp φ = exp φ E[ F i ] (.10) E[ F i ] = i φ i = / θ i j ( i φ exp φ) = exp φ E[ F i F j ] k {( i j φ + i φ j φ) exp φ} = exp φ E[ F i F j F k ] (.11) (.1) E[ F i F j ] = i j φ + i φ j φ, E[ F i F j F k ] = i j k φ + i j φ k φ + j k φ i φ + k i φ j φ + i φ j φ k φ

(.8) l(x; θ) = C(x) + θ s F s (x) φ(θ) (.5) i j l = i j φ Fisher g (.13) g ij = i j φ. g g 1 = (g ij ) (.6), (.10) (.13) (.14) Γ (α) ij,k = 1 (1 α) ig jk = 1 (1 α) i j k φ (.7) α (.15) (α) i j = 1 (1 α) sg ij g st t α (α) (.16) (α) ( i, j ) k = c(α) 4 ( j g ks i g st i g ks j g st ) t. c(α) = (1 α)(1 + α) ([1]) A (.16) ±1 3 1 (3.1) p(x; µ, σ) = ] 1 (x µ) exp [ π σ σ < x < µ σ Fisher (3.) M 1 = { (µ, σ) < µ <, σ > 0 } = + ds 1 = dµ + dσ σ µ = / µ, σ = / σ α (α) (3.3) (α) µ µ = 1 α σ σ, (α) µ σ = (α) σ µ = 1 + α σ (α) σ σ = 1 + α σ. σ 3 µ,

α (3.4) (α) ( µ, σ ) µ = c(α) σ σ, (α) ( µ, σ ) σ = c(α) σ µ (M 1, ds 1, (α) ) α c(α) ±1 Fisher (3.) Poincaré M = { (x, y) y > 0 } = + (3.5) ds = dx + dy y Poincaré (M, ds ) (Levi Civita ) 1 (Levi Civita ) x y y > 0 M 1 α α d µ (1 + α) dµ dσ dt σ dt dt = 0, (3.6) d σ dt + 1 α ( ) dµ 1 + α σ dt σ (1) σ σ > 0 ( ) dσ = 0 dt () α < 1 µ σ > 0 ( α = 1 µ σ > 0 ) (3) α = 1 µ σ > 0 µ (4) α > 1 µ σ > 0 Poincaré Poincaré M n+1 = { (x 1,..., x n, x n+1 ) x n+1 > 0 } = n + (3.7) ds = 1 (x n+1 ) { (dx 1 ) + + (dx n ) + (dx n+1 ) } Poincaré 1 n [ 1 (3.8) p(x; ξ) = ( π) n det Σ exp 1 4 ] t (x µ)σ 1 (x µ)

x = t (x 1,..., x n ) n, µ = t (µ 1,..., µ n ) n Σ = (σ ij ) ξ = (µ 1,..., µ n, σ 11, σ 1,..., σ 1n, σ,..., σ n,..., σ nn ) M = { ξ n+ 1 n(n+1) < µ i < (i = 1,..., n), (σ ij ) } Σ = diag (σ,..., σ ) (3.9) p(x; ξ) = 1 ( π σ) n n i=1 [ exp (x i µ i ) σ ξ = (µ 1,..., µ n, σ) M n+1 1 = { (µ 1,..., µ n, σ) < µ i < (i = 1,..., n), σ > 0 } = n + Fisher ] (3.10) ds 1 = 1 σ ( dµ 1 + + dµ n + n dσ ) n = 1 1 Fisher n dµ 1 + + dµ n n f(µ 1,..., µ n ) = n + dσ σ + g(σ) = 1 σ (M1 n+1, ds 1 ) doubly warped product Poincaré (Mi n+1, ds i ) (i = 1, ) ω (3.11) ds = 1 σ ( dµ 1 + + dµ n + ω dσ ) M n+1 = { (µ 1,..., µ n, σ) < µ i < (i = 1,..., n), σ > 0 } = n + ω = 1 Poincaré (M n+1, ds ) ω = n (M1 n+1, ds n+1 1 ) M 1 α α (M n+1, ds ) (α) (3.1) (α) i j = 1 α ω σ ij σ, (α) i σ = (α) σ i = 1 + α σ (α) σ σ = 1 + α σ. σ i = / µ i, σ = / σ (M n+1, ds, (α) ) α c(α) ω ±1 (M n+1, ds, (α) ) α d µ i (1 + α) dµ i dσ dt σ dt dt = 0 (3.13) d σ dt + 1 α ( ) dµs ω 1 + α σ dt σ i, (i = 1,..., n), ( ) dσ = 0 dt 1 5

4 M J = I (1,1) J I M iemann (M, J) M X, Y g(jx, JY ) = g(x, Y ) (M, g, J) Hermite (4.1) g(jx, Y ) + g(x, J Y ) = 0 (1,1) J iemann (M, g) (M, g, J) Hermite-like (J ) = J (J ) = I (4.) g(jx, J Y ) = g(x, Y ) Hermite-like J (M, g,, J) Kähler-like (4.1) X, Y, Z (4.3) g(( Z J)X, Y ) + g(x, ( ZJ )Y ) = 0 ([6]) B (1) (M, g, J) Hermite-like (M, g, J ) Hermite-like () (M, g,, J) Kähler-like (M, g,, J ) Kähler-like Kähler M n M n > 1 M Kähler-like (X, Y )JZ = J(X, Y )Z (.3) Kähler ([11]) C Kähler-like (M n, g,, J) M (n > 1) M (M, g, (α) ) α J (α) J (α) M (4.1) (4.4) (J (α) ) = g 1 J (α) g α J (α) ( (α) i J (α)) { j = i J (α) t j + 1 ( ) } (1 α) J (α) r j i g rs g st i g js g sr J r (α) t t, (α) J (α) = 0 i J (α) k j + 1 ( (4.5) (1 α) j J (α) r ) i g rs g sk i g js g sr J r (α) k = 0. 6

α = 1 (4.6) P k j (4.7) J (1) k j = P k j Pj rp r i = j i J ( 1) k j ([11]) D = P s r g sj g rk (1) (M, g, J (±1) ) Hermite-like () (M, g, (±1), J (±1) ) Kähler-like (M, g, (α) ) α (.15) A (α) l ijk = c(α)a(g jk l i g ik l j ) A C ([11]) E (M n, g, (α) ) (n > 1) A 0 M (J (α) ) = I (4.5) α = ±1 5 1 ( 1) 3 Poincaré (M, ds, (α) ) (α) c(α) ω dim M = n (> ) E α = ±1 (±1) J (±1) ( j µ i + P i 1 j 4µ i s µ s J (1) σ = j σ s µ s + S J ( 1) = i µ j P j i ( 1 ω σ 4µ j s µ s + Λ = P j i p j sµ s Sµ j Q j ) P i j, Qi, j, S Λ = I j Q i S P i sµ s + Sµ i + Q i ) ω i σ, s µ s S 7

(1) (M, ds, J (±1) ) Hermite-like () (M, ds, (±1), J (±1) ) Kähler-like ω = 1 M Poincaré Poincaré Kähler Poincaré e m 4 (5.1) p(x; ξ) = Γ(m + x 1 + + x n ) Γ(m) x 1!x! x n! p m 0 p x 1 1 pxn n ξ = (p 1,..., p n ) Γ(x) m k = 1,..., n x k {0, 1,,... } p k (> 0) p 0 + p 1 + + p n = 1 { p(x; ξ) = exp log Γ(m + x 1 + + x n ) log Γ(m) log x s! + } x s log p s + m log(1 p 1 p n ) C(x) = log Γ(m + x 1 + + x n ) log Γ(m) log x s!, F i (x) = x i, θ i = log p i (i = 1,,..., n), φ(θ) = m log(1 p 1 p n ) M n = { (θ 1,..., θ n ) 0 < θ i < (i = 1,..., n) } = ( + ) n p i = e θi (i = 1,,..., n) (5.) τ(θ) = 1 e θs φ(θ) = m log τ(θ). (5.3) (5.4) (5.5) i φ = m e θi τ(θ), i j φ = m { i j k φ = m e θi e θj τ(θ) ij + e θi τ(θ) { e θi } τ(θ) ij ik + e θi τ(θ) } + e θi e θj e θk τ(θ) 3, e θk ij + e θj e θk τ(θ) ik + e θi e θj τ(θ) jk 8

i = / θ i (.13) (5.4) Fisher (5.6) g ij = m Fisher g (5.7) { g ij = e θi e θj τ(θ) ij + e θi τ(θ) τ(θ) m e θi ( ij e θi ) (.14), (5.5), (5.7) : { (5.8) Γ (α) k ij = Γ (α) ij,s gsk = 1 (1 α) α α (α) { (5.9) (α) i j = 1 (1 α) } ij ik + e θj τ(θ) ik + e θi τ(θ) jk ij i + e θj τ(θ) i + e θi τ(θ) j. } }. α [{ } { (α) ( i, j ) k = c(α) e θj 4 τ(θ) jk + e θj e θk e θi τ(θ) i τ(θ) ik + e θi τ(θ) e θk } j ] ([10]) F c(α) 4m (4.6), (4.7), (5.6), (5.7) 1 ( 1) J (1) J ( 1) J (1) k j = Pj k { ( ) } e θs J ( 1) k j = e θj e θk P j k e θk r=1 ([10]) P j r + 1 τ(θ) P s k e θk G dim M ( 4) (1) (M, g, J (±1) ) Hermite-like () (M, g, (±1), J (±1) ) Kähler-like r=1 P s r n = J (0) 1 1 = J (0) = ± J (0) 1 = 1 e θ e θ J (0) 1 = ± 1 e θ1 e θ1 ( ( ( e θ1 θ 1 e θ1 e θ e θ1 θ 1 e θ1 e θ e θ1 θ 1 e θ1 e θ ) 1 ) 1 ) 1,, (M, g, (0), J (0) ) Kähler 9

6 (M n, g) p M J p : T p M T p M ( ) ( ) ( ) ( ) J p x α = p y α, J p p y α = p x α (α = 1,..., n) p u, v T p M J p (u + 1 v) = J p u + 1 J p v J p : T C p M T C p M Z α = Zᾱ = z α = 1 ( x α 1 z α = z α = 1 ) y α, ( x α + 1 ) y α JZ α = 1 Z α, JZᾱ = 1 Zᾱ (α = 1,..., n) J = I M g p M g T p M u + 1 v, u + 1 v T C p M g(u + 1 v, u + 1 v ) = {g(u, u ) g(v, v )} + 1{g(u, v ) + g(v, u )} g T C p M (z 1,..., z n ) α, β = 1,,..., n g (z 1,..., z n ) g αβ, g α β, gᾱβ, gᾱ β g αβ = g(z α, Z β ), gᾱβ = g(zᾱ, Z β ), g α β = g(z α, Z β), gᾱ β = g(zᾱ, Z β) g αβ = g βα, gᾱ β = g βᾱ, g α β = g βα, ḡ αβ = gᾱ β, ḡ α β = gᾱβ M g u, v T p M g(ju, Jv) = g(u, v) g M Hermite g Hermite g g αβ = 0 (gᾱ β = 0) (α, β = 1,..., n) J M g u, v T p M (6.1) g(ju, J v) = g(u, v) 10

J J (M, g, J) Hermite-like (6.) (6.3) J Zβ = 1 ( g βσ g σω g β σ g σω) Z ω 1 ( g βσ g σ ω g β σ g σ ω) Z ω, J Z β = 1 ( g βσ g σω g β σ g σω) Z ω 1 ( g βσ g σ ω g β σ g σ ω) Z ω (J ) = I J Z β = JZ β ( 1 g βσ g σω Z ω + g σ ω ) (6.4) Z ω (6.5) = JZ β + ( 1 g g σω β σ Z ω + g σ ω ) Z ω, J Z β = JZ β ( 1 g βσ g σω Z ω + g σ ω ) Z ω = JZ β + 1 g β σ ( g σω Z ω + g σ ω Z ω ) 6.1 J = J g αβ = 0 (gᾱ β = 0) JJ Z α = ( g ασ g σω g α σ g σω) Z ω ( g ασ g σ ω g α σ g σ ω) Z ω, JJ Zᾱ = ( gᾱσ g σω gᾱ σ g σω) Z ω ( gᾱσ g σ ω gᾱ σ g σ ω) Z ω, J JZ α = ( g ασ g σω g α σ g σω) Z ω + ( g ασ g σ ω g α σ g σ ω) Z ω, J JZᾱ = ( gᾱσ g σω gᾱ σ g σω) Z ω ( gᾱσ g σ ω gᾱ σ g σ ω) Z ω JJ J J 6. [J, J ] = 0 ( ) g ασ g σ β = 0, g g σ β α σ = 0. gᾱσ g σβ = 0, gᾱ σ g σβ = 0. 6.3 JJ + J J = I g ασ g σβ = 0, g α σ g σβ = β α. ( gᾱσ g σ β = β ) ᾱ, gᾱ σ g σ β = 0. α (6.6) J (α) = 1 + α J + 1 α J 6.4 g ασ g σβ = 0, g g σβ α σ = α β α J (α) 7 A, B, C, = 1,..., n, 1,..., n ZA Z B = Γ E AB Z E, Z A Z B = Γ E AB Z E Z A = / z A Z A g(z B, Z C ) = g( ZA Z B, Z C ) + g(z B, Z A Z C ) Z A g BC = Γ E AB g EC + Γ E AC g BE 11

(7.1) (7.) (7.3) (7.4) (7.5) (7.6) Z α g βγ = Γ ε αβ g εγ + Γ ε αβ g εγ + Γ ε αγ g βε + Γ ε αγ g β ε, Z α g β γ = Γ ε αβ g ε γ + Γ ε αβ g ε γ + Γ ε α γ g βε + Γ ε α γ g β ε, Z α g βγ = Γ ε α β g εγ + Γ ε α β g εγ + Γ ε αγ g βε + Γ ε αγ g β ε, Z α g β γ = Γ ε α β g ε γ + Γ ε α β g ε γ + Γ ε α γ g βε + Γ ε α γ g β ε, Zᾱg βγ = Γ ε ᾱβ g εγ + Γ ε ᾱβ g εγ + Γ ε ᾱγ g βε + Γ ε ᾱγ g β ε, Zᾱg β γ = Γ ε ᾱβ g ε γ + Γ ε ᾱβ g ε γ + Γ ε ᾱ γ g βε + Γ ε ᾱ γ g β ε, (7.7) (7.8) Zᾱg βγ = Γ ε ᾱ β g εγ + Γ ε ᾱ β g εγ + Γ ε ᾱγ g βε + Γ ε ᾱγ g β ε, Zᾱg β γ = Γ ε ᾱ β g ε γ + Γ ε ᾱ β g ε γ + Γ ε ᾱ γ g βε + Γ ε ᾱ γ g β ε ( X J)Y = X (JY ) J X Y ( Zα J)Z β = 1 Γ ε αβ Z ε, ( Zα J)Z β = 1 Γ ε α β Z ε, ( ZᾱJ)Z β = 1 Γ ε ᾱβ Z ε, ( ZᾱJ)Z β = 1 Γ ε ᾱ β Z ε. 7.1 J Γ ε αβ = 0, ΓAβ ε = 0, Γ ε = 0 β A Γ ε α β = 0, Γ ε ᾱβ = 0, Γ ε ᾱ β = 0. J = 0 (7.1) (7.8) : (7.9) (7.10) (7.11) (7.1) (7.13) (7.14) (7.15) (7.16) (7.9) (7.11) (7.17) (7.18) Z α g βγ = Γ ε αβ g εγ + Γ ε αγ g βε + Γ ε αγ g β ε, Z α g β γ = Γ ε αβ g ε γ + Γ ε α γ g βε + Γ ε α γ g β ε, Z α g βγ = Γ ε αγ g βε + Γ ε αγ g β ε, Z α g β γ = Γ ε α γ g βε + Γ ε α γ g β ε, Zᾱg βγ = Γ ε ᾱγ g βε + Γ ε ᾱγ g β ε, Zᾱg β γ = Γ ε ᾱ γ g βε + Γ ε ᾱ γ g β ε, Zᾱg βγ = Γ ε ᾱ β g εγ + Γ ε ᾱγ g βε + Γ ε ᾱγ g β ε, Zᾱg β γ = Γ ε ᾱ β g ε γ + Γ ε ᾱ γ g βε + Γ ε ᾱ γ g β ε. Γ γ αβ + Γ ε αωg εβ g ωγ = g γω Z α g ωβ + g γ ω Z α g ωβ, Γ γ αβ + Γ ε αωg εβ g ω γ = g γω Z α g ωβ + g γ ω Z α g ωβ 1

(7.1) (7.13) (7.19) (7.0) Γ γ α β = gγ ω Z α g ω β + g γω Z βg ωα, Γ γ α β = g γ ω Z α g ω β + g γω Z βg ωα (7.14) (7.16) (7.1) (7.) Γ γ ε + Γ ᾱ β ᾱ ωg ε βg ωγ = g γω Zᾱg ω β + g γ ω Zᾱg ω β, Γ γ ε + Γ ᾱ β ᾱ ωg ε βg ω γ = g γω Zᾱg ω β + g γ ω Zᾱg ω β, Kähler-like J = J 6.1 J = J g αβ = 0 ( gᾱ β = 0 ) (7.9) (7.16) (7.3) (7.4) (7.5) (7.6) (7.7) (7.8) (7.9) (7.30) Γ ε αγ g β ε = 0, Z α g β γ = Γ ε αβ g ε γ + Γ ε α γ g β ε, Z α g βγ = Γ ε αγ g βε, Γ ε α γ g βε = 0, Γ ε ᾱγ g β ε = 0, Zᾱg β γ = Γ ε ᾱ γ g β ε, Zᾱg βγ = Γ ε ᾱ β g εγ + Γ ε ᾱγ g βε, Γ ε ᾱ γ g βε = 0 (7.3) 0 = Γαγ ε g β ε g β ω = Γ αγ ε ( ε ω g β ε g β ω ) = Γαγ ω Γ ω αγ = 0 = 0, Γ ᾱγ ω = 0 (7.5) Z αg βγ g βω = Γ ε (7.6), (7.7), (7.30) Γ ω α γ Γ ω Aγ Γ αγ ε (ε ω g βε g βω ) = Γ ω αγ = 0, Γ ω A γ Γ ω αγ (7.8) Γ ω ᾱ γ Γ ω ᾱγ = Γ ω γᾱ = 0, Γ ω α γ Γαβ εg ε γg γω = Γαβ ε( ε ω = Γ ω γα = Z α g εγ g εω = 0, Γ ᾱ γ ω = 0 αγ g βε g βω = = Zᾱg ε γ g ε ω = 0 (7.4) Z α g β γ = Γαβ εg ε γ Z α g β γ g γω = g εγ g γω ) = Γ ω αβ Γ ω αβ = Z αg β ε g εω (7.9) Γ ω ᾱ β = Z ᾱg βε g ε ω ΓAB C = Γ AB C 7.1 Kähler-like (M n, g,, J) J = J = 13

(7.31) (7.3) (7.33) (7.34) (7.35) (7.36) (7.37) (7.38) (7.39) (7.40) Z α g βγ Z β g αγ = Γ ε αγ g βε + Γ ε αγ g β ε Γ ε βγ g αε Γ ε βγ g α ε, Z α g βγ Z γ g βα = Γ ε αβ g εγ Γ ε γβ g εα, Z α g β γ Z β g α γ = Γ ε α γ g βε + Γ ε α γ g β ε Γ ε β γ g αε Γ ε β γ g α ε, Z α g β γ Z γ g βα = Γ ε αβ g ε γ, Z α g βγ Z γ g βα = 0, Z γ g βα Z α g β γ = Γ ε γ β g εα, Zᾱg β γ Z γ g βᾱ = 0, Zᾱg βγ Z βgᾱγ = Γ ε ᾱγ g βε + Γ ε ᾱγ g β ε Γ ε βγ g ᾱε Γ ε βγ g ᾱ ε, Zᾱg β γ Z βgᾱ γ = Γ ε ᾱ γ g βε + Γ ε ᾱ γ g β ε Γ ε β γ g ᾱε Γ ε β γ g ᾱ ε, Zᾱg β γ Z γ g βᾱ = Γ ε ᾱ β g ε γ Γ ε γ β g εᾱ 7. J (7.41) (7.4) (7.43) (7.44) Z α g σω + g σε Γ ω αε Z α g σ ω + g σε Γ ω αε Zᾱg σω + g σε Γ ω ᾱε Zᾱg σ ω + g σε Γ ω ᾱε + g σ ε Γ ω α ε = 0, + g σ ε Γ ω α ε = 0, + g σ ε Γ ω ᾱ ε = 0, + g σ ε Γ ω ᾱ ε = 0. Nijenhuis N(X, Y ) = [JX, JY ] J[X, JY ] J[JX, Y ] [X, Y ], N (X, Y ) = [J X, J Y ] J [X, J Y ] J [J X, Y ] [X, Y ] Kähler-like N(X, Y ) = 0, N (X, Y ) = 0 8 ABC D = Z A ΓBC D Z B ΓAC D + ΓBC E ΓAE D ΓAC E ΓBE D ABγ = Z A Γ Bγ Z B Γ Aγ + Γ E Bγ Γ AE Γ E Aγ Γ BE = Γ ε BγΓ Aε + Γ ε BγΓ A ε Γ ε AγΓ Bε Γ ε AγΓ B ε = 0, AB γ = Z A ΓB γ Z B ΓA γ + Γ E B γ ΓAE ΓA γ E ΓBE = Γ ε B γγ Aε + Γ ε B γγ A ε Γ ε A γγ Bε Γ ε A γγ B ε = 0. 14

ABγ = Z A ΓBγ Z B ΓAγ + Γ E Bγ ΓAE ΓAγ E ΓBE = Z A ΓBγ Z B ΓAγ + ΓBγΓ ε Aε + ΓBγΓ ε A ε ΓAγΓ ε Bε ΓAγΓ ε B ε = Z A ΓBγ Z B ΓAγ + ΓBγΓ ε Aε ΓAγΓ ε Bε, AB γ = Z A Γ B γ Z B Γ A γ + Γ E B γ Γ AE Γ E A γ Γ BE = Z A Γ B γ Z B Γ A γ + ΓB γγ ε Aε + ΓB γγ ε A ε ΓA γγ ε Bε ΓA γγ ε B ε = Z A Γ B γ Z B Γ A γ + ΓB γγ ε A ε ΓA γγ ε B ε 8.1 (8.1) (8.) (8.3) (8.4) (8.5) (8.6) (8.7) (8.8) ABγ = 0, AB γ = 0, αβγ ᾱβγ ᾱ = Z αγ βγ Z βγ αγ + Γ ε βγ Γ αε Γ ε αγ Γ βε, = Z ᾱγ βγ, βγ = 0, αβ γ = 0, α β γ ᾱ β γ = Z αγ β γ, = Z ᾱγ β γ Z β Γ ᾱ γ + Γ ε β γ Γ ᾱ ε Γ ε ᾱ γ Γ β ε. 8. ic ic αβ = εαβ ε, ic α β = ε εα β = Z αγ ε ε β, icᾱβ = εᾱβ ε = Z ᾱγ ε icᾱ β = ε εᾱ β. εβ, ABCD = g((z A, Z B )Z C, Z D ), ABCD = g( (Z A, Z B )Z C, Z D ) (.) ABCD = ABDC (8.9) ABC D F = ABE g F C g ED 8.3 αβc D = ω D α βc = Z β Γ ω αε αβε g ωcg εd, D ω ᾱ βc = ᾱ β ε g ωcg εd. g ωc g εd Z α Γ ω β ε g ωcg εd, 15

ic ic AB = DAB D = DABE ged ic AB = DABEg DE = (ABDE + BDAE)g DE = ABED g ED + DBAEg DE = ( BEAD + EABD )g ED + ic BA = ic BA ic AB + ic BA ic AB ic BA = ic AB + ic BA 8.4 ic ic 8.5 ic ic αβ = εασ ω g ωβ g σε Z ε Γασ ω g ωβ g σ ε + Z α Γ ε σ ω g ωβ g σ ε, ic α β = εασ ω g ω βg σε Z ε Γασ ω g ω βg σ ε + Z α Γ ε σ ω g ω βg σ ε, ic ᾱβ = Z ᾱγ ω εσ ic ᾱ β = Z ᾱγ ω εσ g ωβ g σε Z ε Γᾱ σ ω g ωβ g σε g ω βg σε Z ε Γᾱ σ ω g ω βg σε εᾱ σ ω g ωβ g σ ε, εᾱ σ ω g ω βg σ ε. r = ic AB g AB, r = ic AB gab r = ic AB g AB = DABE g DE g AB = ADEB gab g DE = ic DE gde = r 8.6 r = r 9 Kähler-like Kähler-like (M, g,, J) (9.1) ( A, B ) C = c 4 [ g( B, C ) A g( A, C ) B g( B, J C )J A + g( A, J C )J B +{g( A, J B ) g(j A, B )}J C ].. (9.1) J J 7.1 9.1 (9.1) Kähler-like (M, g,, J) J = J (M, g,, J) c (9.1) 0 (9.) (9.3) αβγ α βγ = c (g βγ α g αγ β ), = c (g βγ α + g α β γ ), 16

(9.4) (9.5) α β γ ᾱ β γ = c (g α γ β = c + g α β γ ), (g β γ ᾱ gᾱ γ β ) (8.4) (8.7) (9.6) (9.7) Z βγ αγ = c (g βγ α + g βα γ ), Z α Γ β γ = c (g α γ β + g α β γ ) 8. (9.8) (9.9) (9.10) (9.11) ic βγ = c (n 1)g βγ, ic α β = c (n + 1)g α β, icᾱβ = c (n + 1)g ᾱβ, ic β γ = c (n 1)g β γ 9. (9.1) Kähler-like r (9.1) r = c{n(n + 1) g εω g εω }. 8.5 (9.), (9.5) (9.7) ic (9.13) (9.14) (9.15) (9.16) ic αβ = c {(n 1)g αβ 4g α ε g g ε ω β ω }, ic α β = c {(n + 1)g α β 4g αεg βω g εω }, ic ᾱβ = c {(n + 1)g ᾱβ 4gᾱε g βω g εω }, ic ᾱ β = c {(n 1)g ᾱ β 4g ᾱεg βω g εω } r (9.17) r = c{n(n + 1) 6g εω g εω + 4g αε g βω g αβ g εω } (9.18) r r = 4c(g εω g εω g αε g βω g αβ g εω ). 8.6 9.3 (9.1) Kähler-like c = 0 g εω g εω g αε g βω g αβ g εω = 0 (g ε ω g ε ω gᾱ ε g β ω gᾱ βg ε ω = 0) 17

A = (g αβ ), B = (g αβ ) g εω g εω g αε g βω g αβ g εω = 0 tr (AB) tr (AB) = 0 tr (E AB) = tr (E AB) E [1] S. Amari, Differential-Geometrical Methods in Statistics, Lecture Notes in Statistics, 8 Springer-Verlag, 1985. [] S. Amari and H. Nagaoka, Methods of Information Geometry, AMS & Oxford University Press, 000. [3] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, John Wiley & Sons, 1969. [4] M. Noguchi, Geometry of statistical manifolds, Differential Geom. Appl., (199), 197. [5] K. Nomizu and T. Sasaki, Affine Differential Geometry, Cambridge Univ. Press, Cambridge, 1994. [6] K. Takano, Statistical manifolds with almost complex structures and its statistical submersions, Tensor N. S., 65 (004), 18 14. [7], Examples of the statistical submersion on the statistical model, Tensor N. S., 65 (004), 170 178. [8], Statistical manifolds with almost contact structures and its statistical submersions, J. Geom., 85 (006), 171 187. [9], Geodesics on statistical models of the multivariate normal distribution, Tensor N. S., 67 (006), 16 169. [10], Examples of statistical manifolds with almost complex structures, Tensor N. S., 69 (008), 58 66. [11], Exponential families admitting almost complex structures, SUT J. Math., 46 (010), 1 1. [1] K. Yano and M. Kon, Structures on Manifolds, World Scientific, 1984. [13] 1993. [14] 1991. 18