untitled

Similar documents
4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

ssp2_fixed.dvi

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

IA

ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 5 Instrumentation and detectors

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

eto-vol1.dvi

QMI_10.dvi

QMI_09.dvi

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

Xray.dvi

TOP URL 1

30

QMI_10.dvi

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

4/15 No.

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

Gmech08.dvi

02-量子力学の復習

総研大恒星進化概要.dvi


ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

untitled

( ) ,

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

Gmech08.dvi

chap1.dvi

基礎数学I

chap03.dvi



Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x


SO(2)

I

4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

untitled

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

The Physics of Atmospheres CAPTER :

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru

スライド 1

QMI_09.dvi

QMI_10.dvi

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

Note.tex 2008/09/19( )

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )


4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

TOP URL 1

8 (2006 ) X ( ) 1. X X X 2. ( ) ( ) ( 1) X (a) (b) 1: (a) (b)

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

振動と波動

量子力学 問題

Gmech08.dvi

TOP URL 1

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

q π =0 Ez,t =ε σ {e ikz ωt e ikz ωt } i/ = ε σ sinkz ωt 5.6 x σ σ *105 q π =1 Ez,t = 1 ε σ + ε π {e ikz ωt e ikz ωt } i/ = 1 ε σ + ε π sinkz ωt 5.7 σ

t, x (4) 3 u(t, x) + 6u(t, x) u(t, x) + u(t, x) = 0 t x x3 ( u x = u x (4) u t + 6uu x + u xxx = 0 ) ( ): ( ) (2) Riccati ( ) ( ) ( ) 2 (1) : f

数学の基礎訓練I


A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

 

19 /


I ( ) ( ) (1) C z = a ρ. f(z) dz = C = = (z a) n dz C n= p 2π (ρe iθ ) n ρie iθ dθ 0 n= p { 2πiA 1 n = 1 0 n 1 (2) C f(z) n.. n f(z)dz = 2πi Re


x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

HITACHI 液晶プロジェクター CP-EX301NJ/CP-EW301NJ 取扱説明書 -詳細版- 【技術情報編】 日本語

t (x(t), y(t)), a t b (x(a), y(a)) t ( ) ( ) dy s + dt dt dt [a, b] a a t < t 1 < < t n b {(x(t i ), y(t i ))} n i ( s(t) ds ) ( ) dy dt + dt dt ( ) d

MOSFET HiSIM HiSIM2 1

1 1 x y = y(x) y, y,..., y (n) : n y F (x, y, y,..., y (n) ) = 0 n F (x, y, y ) = 0 1 y(x) y y = G(x, y) y, y y + p(x)y = q(x) 1 p(x) q(


Euler Appendix cos, sin 2π t = 0 kx = 0, 2π x = 0 (wavelength)λ kλ = 2π, k = 2π/λ k (wavenumber) x = 0 ωt = 0, 2π t = 0 (period)t T = 2π/ω ω = 2πν (fr

4‐E ) キュリー温度を利用した消磁:熱消磁

~nabe/lecture/index.html 2


meiji_resume_1.PDF

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w

重力方向に基づくコントローラの向き決定方法


Microsoft Word - 学士論文(表紙).doc

genron-3

QMII_10.dvi

Untitled

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1


Transcription:

4/6 S. Hara@ [.ppt]

On Road 4/9 4/6 4/ 5/7 4 Scott 5/4 5 Off Road 5/ 5/8 6 7 S. Hara@ [.ppt]

... 4. [] S. Hara@ [.ppt]

: 4 ε s ε a ε b Anti-bonding orbital bonding orbital Anion Cation ε c ε a ε a ε b Anion: ανοδοζ Cation: S. Hara@ [.ppt]

5 Bonds and Bands εp εs 4 } 4 } Conduction band Anti-bonding orbital Empt states Valence band bonding orbital filled states or. sp IV. ε p -ε s E G ε p -ε s S. Hara@ [Bond-Band.ai]

6 Cation Anion ε c ε a { { Gap ε c p ε c s ε a p ε a s Anion: ανοδοζ : Cation: S. Hara@ [IonicBand-Bond.ai]

7 (doping S. Hara@ [.ls]

8 intrinsic i n p E G E F E F E C E V E F E F E F E G E G E F n i ~ 0 ~ 0 ~ 0 5 6 / cm / cm / cm for GaAs ( E for Si ( E G for Ge ( E G G.44eV.eV 0.66eV E C E V (Conduction band (Valence band S. Hara@ [.ppt]

4 8 9 ( ( M. Born(96: * t r * dτ dτ Scrödinger ( ( ( cos ( ( * π / λ ( cos ( cos π λ or (4 ( r r e i (5 ( r ( r i e i e ( r ω t ω ( r t v ω λω p pase π m m ω πν Euler ( cos isin e i ( e cos isin i S. Hara@ [.ppt]

4 (plane wave ( r ep( i r r (,, r (,, ep( i r cos ( r isin( r * S. Hara@ ( n, n, n π n,n,n,,,... [.ai]

9 ( ( V core ( core electron V ( V ( V ( ( S. Hara@ [.ppt]

5 9 0 de Broglie94 p λ ( (λ p m( E V m( E V / [ { } ] i m( E V / ( epi ep E E > V [ { } ] i m( E V / ( ep E < V ( ep V ( 0 (/e 0 [ { } ] i m( V E / [ { } ] ep m( V E / V ( S. Hara@ [.ai]

0 Bloc V (0 V ( 0 V ( 0 < < 0 Scrödinger S. Hara@ [.ppt]

0. ( 0 ( 0 0, ( 0 ( E Asin m ( n πn n n,,,... n A Q d 0. Scrödinger eq. ( m E ( n 0 n :. Pauli ( Wavefunctions Energ levels π/ π/ Energ E 5 4 6 0 π/ wave vector S. Hara@ [.ai]

. ( r 0 ( 0,, 0, (,, 0. Scrödinger eq. m ( r E ( r. Pauli (r ( r X ( Y ( Z( X '' Y '' Z'' E m X m Y m Z X '' Y '' Z'' E, E, E m X m Y m Z E E E E d X m d X ( E 8 ( r E Asin m X sin π n π n, ( sin π n sin πn n,,,... A Q X d 0, n,n,n,,,... ( E m S. Hara@ [.ppt]

(periodic boundar condition (,, (,, Y (, Z( Scrödinger d X ( d X ( X ( π m E n n n 0,,,,... E m m n X X ( ep( ± i ( Q λn 0 X ( d n 0 X ( n,,,... X ( ep( ± i ep( iω t X (, t epi( ± i ω t ω / ep( ± a cosa ± isin a cos( m sin( m ω ω t t S. Hara@ X ( sin, X ( cos π λ ω cos ( m t [.ai]

5 (Born-von Karman boundar condition (,, (,, (,, (,, (,, (,, Scrödinger m ( r E ( r E m ( r ep( i r V V π π π n, n, n n, n, n, 0,,,,... π / S. Hara@ ep( i ep( i ep( i [.ai]

6 0 6 Energ E 4 5 wave vector Energ E wave vector π n π n,, π n π π π n, n, n n,n,n,,,... n, n, n, 0,,,,... S. Hara@ [.ai]

7 (,, (,, (,, (,, (,, (,, S. Hara@ [Bloc.ai]

8 Bloc ( r ( r ep( i r u u ( r u ( r T V( (r u Bragg T ep( i r u (r T (r ( r ep( i r u Bloc S. Hara@ [Bloc.ai]

9 Kronig-Penne( R. de. Kronig and W. G. Penne, Proc. Ro. Soc. A0, 499 (9. Bloc u (r K Q 0 0 ( d d d d A B C D, ik(a - B Q (C - D ( ( 0<<a: -b Aep( ik ( -b<<0: C ep( Q 0 a ab Bep( ik Dep( Q U 0 0 0 a Ae ik ika ika Qb Qb i ( b Be ( Ce De e a ika ika Qb Qb i ( b ( Ae Be Q( Ce De e a [( Q K / QK] sinqbsin Ka cosqbcoska cos ( a b ( Bloc ab ( a < < a b ( b < < 0 ep( i( a b K, Q Bloc S. Hara@ i i sin cos ep( Euler's cos ( e e / sin ( e e / K nπ / a V ( Δ δ ( n( a b m n [KronigPenne.ai; KroningPenne.sg]

0 Kronig-Penne( Dirac δ-function potential b [( Q K / QK] sinqbsin Ka cosqbcoska cos( a b U 0 Q b~0 Q - K ~ Q, sin Qb ~ Qb, cosqb ~ 0 U 0 0 a ( P / Kasin Ka coska cosa P Q ba / Ka ( P / Kasin Ka cos Ka 0 Ka E K /m 4π π 0 π 4π 0 π π π 4π wave vector a S. Hara@ i i sin cos ep( Euler's cos ( e e / sin ( e e / K nπ / a V ( Δ δ ( n( a b m [KronigPenne.ai; KroningPenne.sg]

band dispersion E- etended Brillouin ones 4 reduced Brillouin one E K /m E K /m 0 π/a π/a π/a 4π/a wave vector π/a 0 π/a wave vector S. Hara@ [.ppt]

or n: E top n ( E F( E de E C (E E dn de ( E F( E F(E Fermi-Dirac E E C 0 (EF(E de E F E C (E F(E E E F 0 0.5 F (E S. Hara@ [.ppt]

4 (E densit of states (E: ( E E C ( E M C m π E C (Conduction band S. Hara@ Ω total : total 4 π F π V π F V π me total d V m ( E E de π Ec Ω V EF F m Ω π F mef F π Ω Fermi spere 4 π [Fermi.ai]

5 Fermi-Dirac n l m m s a b Fermi-Dirac F( E E E ep T F : Boltman T: [K] ( r, r ( r, r ( r, r ϕa( r ϕb( r ϕb( r ϕa ( r He... S. Hara@ [.ppt]

6 n Here, E top n ( E F( E de E C ( E E C ( E M C m π F( E E E ep T C C F E top π E C ( E EC E E ep T F π C E π mdet F Fermi-Dirac integral η dη F ( η f 0 ( η η f e E T M η ( E EC / T, η f ( EF EC / T C F C de η f < 0 (E F - E c <0 F ( η f π e η E n C ep E p ep V m de ( m m m m d V f / C * * * E T E T V * * ( ml m F F π mdt * * m de ( ml mt for Si * * m l : longitudinal, m t : transverse E C E V M C * * m l : ligt ole, m (Conduction band (Valence band : eav ole d E m* d S. Hara@ EV EF p V F π T [.ppt]

7 n p n i n i n i n i np C V e E G / T n i : [cm - ] E G : [ev] 4.9 0 5 mdem m 0 d 4 T e E G / T m de : [g] m d : [g] m 0 : [g] n i ~ 0 ~ 0 ~ 0 5 6 / cm / cm / cm for for for GaAs ( E Si ( E G Ge ( E G G.44eV.eV 0.66eV S. Hara@ [.ppt]

8 n p E F E D E F ( E F E A Si 4 s p s p 5 P s p s p Al s p s p S. Hara@ [.ai]

9 "" "dose densit" D incorp. A incorp. "doping densit"? "impurit concentration"? "donor concentration" ( ( D A "ionied donor" - D A D D incorp. "carrier concentration" n p fied but variable [] SiE G incorp. D D > D n n A D p E G incorp. D >> D >> D n mobile & variable S. Hara@ [.ppt]

0 Fermi D D E g ep F E T D g 0 0 0 9 0 8 V Si @00K n-tpe D 0 6 cm - C n A A D E g ep A E T F g 4 E D E A Carrier Concentration [cm - ] 0 7 0 6 0 5 0 4 0 0 D p D p n C ep E C E T F D E ep E F F E T D 0 0 0 E V n i E F 0 9 0 0. 0.4 0.6 0.8.0 E F [ev] E D E C S. Hara@ E E n ep C F C T [.ppt]

S. Hara@ Appendi

[.ppt] Scrödinger t i m ( ep, ( t i t ω r r ω t i i i i r i j i nabla p p i i p (aplace ( ( p p p p p m ω ω p m t i m p m ω E E m (, ( e t t i ω (, ( t E E m 9 9 S. Hara@

40 V ( r m E V (r : : E, E, E,... :,,... eigenvalue eigenfunction, V (r Wavefunctions Energ levels π/ π/ 0 π/,,,... S. Hara@ [.ppt]