Similar documents
RIMS98R2.dvi

(Masatake MORI) 1., $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}.$ (1.1) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1


第5章 偏微分方程式の境界値問題

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

Lebesgue Fubini L p Banach, Hilbert Höld

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

Title 二重指数関数型変数変換を用いたSinc 関数近似 ( 科学技術における数値計算の理論と応用 II) Author(s) 杉原, 正顯 Citation 数理解析研究所講究録 (1997), 990: Issue Date URL

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

³ÎΨÏÀ

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

30

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

2000年度『数学展望 I』講義録

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a


Z: Q: R: C: sin 6 5 ζ a, b

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

sin cos No. sine, cosine : trigonometric function π : π = 3.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even.

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even.

App. of Leb. Integral Theory (S. Hiraba) Lebesgue (X, F, µ) (measure space)., X, 2 X, F 2 X σ (σ-field), i.e., (1) F, (2) A F = A c F, (3)

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

sim0004.dvi

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

chap03.dvi

構造と連続体の力学基礎


II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

untitled

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

基礎数学I

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

9 Feb 2008 NOGUCHI (UT) HDVT 9 Feb / 33

i

IA

TOP URL 1

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

master.dvi

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1.

ohpmain.dvi

meiji_resume_1.PDF

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

Note.tex 2008/09/19( )

. sinh x sinh x) = e x e x = ex e x = sinh x 3) y = cosh x, y = sinh x y = e x, y = e x 6 sinhx) coshx) 4 y-axis x-axis : y = cosh x, y = s

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin. sin. sin + π si

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

t (x(t), y(t)), a t b (x(a), y(a)) t ( ) ( ) dy s + dt dt dt [a, b] a a t < t 1 < < t n b {(x(t i ), y(t i ))} n i ( s(t) ds ) ( ) dy dt + dt dt ( ) d

Untitled

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1

201711grade1ouyou.pdf

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

量子力学 問題

実解析的方法とはどのようなものか

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

Microsoft Word - 信号処理3.doc

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co


π, R { 2, 0, 3} , ( R),. R, [ 1, 1] = {x R 1 x 1} 1 0 1, [ 1, 1],, 1 0 1,, ( 1, 1) = {x R 1 < x < 1} [ 1, 1] 1 1, ( 1, 1), 1, 1, R A 1

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

y = x 4 y = x 8 3 y = x 4 y = x 3. 4 f(x) = x y = f(x) 4 x =,, 3, 4, 5 5 f(x) f() = f() = 3 f(3) = 3 4 f(4) = 4 *3 S S = f() + f() + f(3) + f(4) () *4

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

2 2 ( Riemann ( 2 ( ( 2 ( (.8.4 (PDF 2

2 2 L 5 2. L L L L k.....

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

成長機構

H.Haken Synergetics 2nd (1978)

第1章 微分方程式と近似解法

Chap11.dvi

Transcription:

Design of highly accurate formulas for numerical integration in weighted Hardy spaces with the aid of potential theory 1 Ken ichiro Tanaka 1 Ω R m F I = F (t) dt (1.1) Ω m m 1 m = 1 1 Newton-Cotes Gauss [3, 9] F F (t) n F (a i ) l i (t) = i=1 Ω F (t) dt n c i F (a i ) i=1 ( ) c i = l i (t) dt Ω (1.2) 1 / 36

( ) {a i } {l i (t)} I Ω F t = ψ(x) I I = ψ 1 (Ω) F (ψ(x))ψ (x) dx (1.3) DE [13] Ω = ( 1, 1) DE DE ( π ) ψ : (, ) ( 1, 1), ψ(x) = tanh 2 sinh x (1.3) R = (, ) 2 I h = h k= M k= M (1.4) F (ψ(kh))ψ (kh) (1.5) F ( ( π )) tanh 2 sinh(kh) π cosh(kh) 2 cosh 2 ((π/2) sinh(kh)) (1.6) M N h R M + N + 1 h 1 DE f(t) = F (ψ(t))ψ (t) [7, 14] (1.5) R f R 3 4 (1.6) F x = ±1 ψ f DE F [7] DE f 2 [16] 3 [7] 4 1970 [4] 2.3 [4] DE 37

No.1 (2016) 1 Newton-Cotes Simpson Gauss DE (4.1) R (1.7) (1.8) DE-Sinc Gauss 4 (3.12) B { } H (, w) := f : C f f := sup f(z) z w(z) < d := {z C Im z < d} w 2.1 2.1 (2.3) f w [12] f H (, w) f w R 5 DE 6 (1.2) R Stenger [10, 11] sinc sinc sinc sinc sinc(x) = (sin πx)/(πx) 5 [7] w 1.1 SE 6 w(x) = O(exp( x )) (x ± ) Andersson [1], Andersson & Bojanov [2] 38

( ) f(x) f(kh) sinc(x kh) (1.7) k= M (1.7) (1.2) (, ) f(x) dx h f(kh) (1.8) k= M (1.5) 7 [8] sinc (1.7) DE DE-Sinc DE-Sinc [15] w H (, w) [6] (1.2) (1.8) 1 2 3 [15] 4 5 6 1.1. DE f f(x) = O(exp( (β x ) ρ )) (x ± ) Stenger [10, 11] SE SE F DE DE SE F DE [14] [5, 14] 7 h (1.7) (1.8) 39

No.1 (2016) 2 2.1 [7] w d := {z C Im z < d} B( ) ζ d lim ζ(x + iy) dy = 0 (2.1) x ± d lim ( ζ(x + iy) + ζ(x iy) ) dx < (2.2) y d 0 w 1 w 1. w B( ) 1 w { } H (, w) := f : C f f := sup f(z) z w(z) <. (2.3) w 2. w R 3. log w R 2.2 1 3 w H (, w) [8] f H (, w) R (2N + 1) N R f f e N (f) f f 1 f H (, w) e N (f) e N (f) f EN min (H (, w)) 40

:= inf 1 l N inf m l,...,m l m l + +m l =2N+1 ( ) m l j 1 inf inf sup sup a j ϕ jk f 1 x R f(x) f (k) (a j ) ϕ jk (x), distinct j= l k=0 (2.4) ϕ jk 2 {a j } EN min(h (, w)) ϕ jk a j 2.3 E. B. Saff V. Totik [6] [6] [15, 2.3] Green g Dd (x, z) = log tanh((π/(4d))(x z)) supp µ R Borel µ Green ( U µ π ) (x) = log tanh 4d (x z) dµ(z) (2.5) R U µ log w(x) 1 I w (µ) = = R R R R ( g Dd (x, z) log(w(x)w(z)) 1/M ) dµ(z)dµ(x) (2.6) ( ( π ) ) log tanh 4d (x z) log(w(x)w(z)) 1/M dµ(z)dµ(x) (2.7) µ [6, II.5.10] w 1 3 µ 2.1. w 1 3 M V w := inf µ M(R,M) I w (µ) (2.8) M(R, M) R Borel M 1. V w 2. µ w M(R, M) I w (µ w ) = V w. (2.9) µ w. 41

No.1 (2016) 3 [15] 3 4 2.2 EN min(h (, w)) [8] 4.3 w 1 ([8, 4.3]). w 1 2 E min N (H (, w)) [ N sup sup f 1 x R f(x) k= N [ sup B N (x; {a l }, ) w(x) x R = inf a l R = inf a l R ] f(a k ) B N;k(x; {a l }, )w(x) 4d B N;k (a k ; {a l }, )w(a k ) π T (a k x) ] (3.1) B N (x; {a l }, ) = B N;k (x; {a l }, ) = ( π ) T (x) = tanh 4d x, (3.2) N k= N N m N, m k ( π ) tanh 4d (x a k), (3.3) ( π ) tanh 4d (x a m) (3.4) (3.1) {a l } f N (x) = f(a k ) B N;k(x; {a l }, )w(x) B N;k (a k ; {a l }, )w(a k ) k= N 4d π T (a k x) (3.1) {a l } log B N (x; {a l }, ) w(x) = V σ a (x) + log w(x) (3.5) V σ a (x) = k= N ( π log tanh k)) 4d (x a (3.6) 42

( ) (2.5) µ µ(z) = σ a (z) := δ(z a k ) k= N Green ( 1) δ Dirac µ V µ = U µ (3.5) (3.1) 1. [ ( inf sup V σ a D a l R d (x) + log w(x) )] (3.7) x R {a l } 1 R Borel µ N M(R, 2(N + 1)) µ N (R) = 2(N + 1) 1 2N + 1 8 2. [ ( inf sup V µ N D µ N M(R,2(N+1)) d (x) + log w(x) )]. (3.8) x R supp µ N =[ α N,α N ] α N µ N M(R, 2(N + 1)) 2 2.1 (2.8) V µ N Green U µ N 2 V µ N µ N µ N µ N M(R, 2(N + 1)) C 2 ( α N, α N ) M(R, 2(N + 1)) R 2 3 3. V µ N (x) + log w(x) = K N for any x [ α N, α N ], (3.9) V µ N (x) + log w(x) K N for any x R \ [ α N, α N ] (3.10) α N, K N µ N M(R, 2(N + 1)) C 2 ( α N, α N ) 8 2N + 1 43

No.1 (2016) 3 V µ N (x) + log w(x) [ α N, α N ] 3 R V µ N (x, y) R 2 V µ N (x + i y) \ [ α N, α N ] Laplace V µ N 9 R V µ N v [15] Laplace v α N K N V µ N = v R 4. SP1 SP2 µ N M(R, 2(N + 1)) C 2 ( α N, α N ) α N, K N R V µ N v SP1 α N, K N, V µ N αn, K N, v R V µ N = v α N α N ( π ) log tanh 4d (x z) dµn (z) = v (x) x R, (3.11) µ N 4 SP1 (3.11) µ N (R) = 2(N + 1) v α N, K N (3.11) Fourier Fourier (FFT) 1 {a l } 2 µ N µ N 3 µ N 4 Green SP1 3 V µ N SP2 µ N 9 R 2 V µ N D = 0 d [ α N, α N ] V µ N D = log w K d N Green 44

( ) 1. d w, N 4 SP1 α N K N 2. 4 SP2 x [ α N, α N ] ν N := µ N ν N 10 3. x [ α N, α N ] I[ ν N ](x) := 4. I[ ν N ] I[ ν N ] 1 x 0 ν N (t) dt 5. a i a i = I[ ν N ] 1 (i) (i = N,..., N) 6. f N f N (x) := j= N f(a j ) B N:j(x; {a i }, ) w(x) B N:j (a j ; {a i }, ) w(a j ) 4d π T (a j x) (3.12) 1 4 (3.12) EN min(h (, w)) (3.12) w Ganelius [15] [15] w (3.12) w DE-Sinc 4 (3.12) x (, ) f(x) dx f N (x) dx = c N:j ({a i },, w) f(a j ) (4.1) j= N c N:j ({a i },, w) = B N:j (x; {a i }, ) w(x) B N:j (a j ; {a i }, ) w(a j ) 4d π T (a j x) dx (4.2) 10 F[ ν N ] Fourier FFT 45

No.1 (2016) (4.1) (3.12) H (, w) (4.1) d w N (4.2) c N:j (4.2) c N:j c N:j (4.1) (4.1) (4.2) (4.2) c N:j ({a i },, w) h n k= n B N:j (k h; {a i }, ) w(k h) B N:j (a j ; {a i }, ) w(a j ) 4d π T (a j k h) (4.3) 11 5 5.1 5.2 5.1 ( ). f(x) = sech(2x), f(x) dx = π 2. (5.1) 5.2 (Gaussian ). f(x) = x 2 (π/4) 2 + x 2 exp( x2 ), f(x) dx = π π2 exp((π/4) 2 ) 4 ( π ) erfc. (5.2) 4 5.3 ( DE ). f(x) = π cosh(2x) cosh((π/2) sinh(2x)), f(x) dx = π. (5.3) (4.1) H (, w) 11 (4.2) w T (x) = (π/(4d)) sech 2 ((π/(4d))x) 46

( ) 2 d d = π/4 1 (1.8) M = N 12 5.1 5.2 w SE 5.3 w DE h N w A MATLAB 2 H (D π/4, w) w w(x) (4.1) N (4.3) n h 5.1 sech(2x) N = 5,..., 100 (5 ) (n, h) = (500, 0.04) 5.2 exp( x 2 ) N = 5,..., 50 (5 ) (n, h) = (500, 0.02) 5.3 sech((π/2) sinh(2x)) N = 5,..., 25 (5 ) (n, h) = (500, 0.005) 1 3 (4.1) (1.8) 5.1 5.2 5.3 (4.1) 13 B 12 w 2 13 Gaussian (1.8) (4.1) N 10 10 15 10 16 N (4.2) 47

No.1 (2016) -2-4 Errors for the SE weighted function f SE trapezoid formula (4.1) -6 log 10 (error) -8-10 -12-14 -16 10 20 30 40 50 60 70 80 90 100 N 1 5.1 trapezoid formula (4.1) (4.1) -2-4 Errors for the Gauss weighted function f Gauss trapezoid formula (4.1) -6 log 10 (error) -8-10 -12-14 -16 5 10 15 20 25 30 35 40 45 50 N 2 5.2 trapezoid formula (4.1) (4.1) 48

( ) -2-4 Errors for the DE weighted function f DE trapezoid formula (4.1) -6 log 10 (error) -8-10 -12-14 -16 5 10 15 20 25 N 3 5.3 trapezoid formula (4.1) (4.1) 6 [15] (3.12) (4.1) SE DE (4.2) [1] J.-E. Andersson, Optimal quadrature of H p functions, Math. Z. 172 (1980), pp. 55 62. [2] J.-E. Andersson and B. D. Bojanov, A note on the optimal quadrature in H p, Numer. Math. 44 (1984), pp. 301 308. [3] P. J. Davis and P. Rabinowitz, Methods of numerical integration, second edition, Dover, New York, 1984. [4] M. Mori, Discovery of the double exponential transformation and its developments, Publ. RIMS Kyoto Univ. 41 (2005), pp. 897 935. [5] T. Okayama, K. Tanaka, T. Matsuo, and M. Sugihara, DE-Sinc methods have almost 49

No.1 (2016) the same convergence property as SE-Sinc methods even for a family of functions fitting the SE-Sinc methods, Part I: Definite integration and function approximation, Numer. Math. 125 (2013), pp. 511 543. [6] E. B. Saff and V. Totik, Logarithmic potentials with external fields, Springer, Berlin Heidelberg, 1997. [7] M. Sugihara, Optimality of the double exponential formula functional analysis approach, Numer. Math. 75 (1997), pp. 379 395. [8] M. Sugihara, Near optimality of the sinc approximation, Math. Comp. 72 (2003), pp. 767 786. [9] 1994. [10] F. Stenger, Numerical methods based on sinc and analytic functions, Springer, New York, 1993. [11] F. Stenger, Handbook of sinc numerical methods, CRC Press, Boca Raton, 2011. [12] 253 (1975), pp. 24 37. [13] H. Takahasi and M. Mori, Double exponential formulas for numerical integration, Publ. RIMS Kyoto Univ. 9 (1974), pp. 721 741. [14] K. Tanaka, M. Sugihara, K. Murota, and M. Mori, Function classes for double exponential integration formulas, Numer. Math. 111 (2009), pp. 631 655. [15] K. Tanaka, T. Okayama, and M. Sugihara, Potential theoretic approach to design of highly accurate formulas for function approximation in weighted Hardy spaces, arxiv:1511.04530, 14 Nov. 2015. (http://arxiv.org/abs/1511.04530) [16] L. N. Trefethen and J. A. C. Weideman, The exponentially convergent trapezoidal rule, SIAM Review 56 (2014), pp. 385 458. A (1.8) M = N N w h 5.1 5.3 (1.8) f(x) dx h k= N f(kh) = f(x) dx h f(kh) + h k= k >N f(kh) E D (f, h) + E T (f, h, N) (A.1) 50

( ) E D (f, h) E T (f, h, N) E D (f, h) = f(x) dx h E T (f, h, N) = h f(kh) k >N k= f(kh), (A.2) (A.3) E D (f, h) f H (, w) ( E D (f, h) C exp 2πd ) h (A.4) C h E T (f, h, N) f H (, w) E T (f, h, N) f h w(kh) (A.5) k N w (A.5) 5.1 E T (f, h, N) C 1 exp( 2Nh), 5.2 E T (f, h, N) C 2 exp( (Nh) 2 ), 5.3 E T (f, h, N) C 3 exp( (π/4) exp(2nh)) (A.6) (A.7) (A.8) C 1, C 2, C 3 N h (A.4) (A.6) (A.8) h h h 5.1 (A.4) (A.6) d = π/4 2πd 2πd h = 2Nh h = 2N = π 2 N (A.9) 5.2 5.3 2πd h = (Nh)2 h = 2πd h = π 4 ( ) 1/3 ( ) 2πd π 2 1/3 N 2 = 2N 2, (A.10) exp(2nh) h = W (16dN) 2N = W (4πN) 2N log(4πn) 2N (A.11) W g(x) = x e x Lambert W 5 5.1 5.3 (A.9) (A.11) h (A.11) log 51

No.1 (2016) B 3 4 w w 1/2 3 ( ) (B.1) 1/2 w 1/2 1 1/2 1 w ( ) w w 1/2 4 6-2 -4 Errors for the SE weighted function f SE trapezoid formula (4.1) modified formula (4.1) -6 log 10 (error) -8-10 -12-14 -16 10 20 30 40 50 60 70 80 90 100 N 4 5.1 trapezoid formula (4.1) (4.1) modified formula (4.1) (4.1) (B.1) 52

( ) -2-4 Errors for the Gauss weighted function f Gauss trapezoid formula (4.1) modified formula (4.1) -6 log 10 (error) -8-10 -12-14 -16 5 10 15 20 25 30 35 40 45 50 N 5 5.2 trapezoid formula (4.1) (4.1) modified formula (4.1) (4.1) (B.1) N = 35, 45 0-2 -4 Errors for the DE weighted function f DE trapezoid formula (4.1) modified formula (4.1) -6 log 10 (error) -8-10 -12-14 -16 5 10 15 20 25 N 6 5.3 trapezoid formula (4.1) (4.1) modified formula (4.1) (4.1) (B.1) ( : 2015 12 18 ; : 2016 1 25 ) 53