Feb THE JAPANESE JOURNAL OF ANTIBIOTICS ,4 2,4 2,4 2,3,4 2,3,4 2,3, ,3, Garenoxacin GRNX Levofloxacin LV

Similar documents
CHEMOTHERAPY

THE JAPANESE JOURNAL OF ANTIBIOTICS 68 3 June 2015 Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis % 2 S. pneumon

1272 CHEMOTHERAPY MAR. 1975


CHEMOTHERAPY FEB Table 1. Activity of cefpirome and others against clinical isolates

epidermidis, Enterococcus faecalis, Enterococcus Klebsiella pneumoniae, Proteus mirabilis, indolepositive Proteus spp., Enterobacter spp., Serratia

THE JAPANESE JOURNAL OF ANTIBIOTICS 65 6 Dec DNA 2, , % 1.65% 1.17% 90% 9 Escherichia coli -

日本化学療法学会雑誌第53巻第S-3号

Fig. 1 Chemical structure of DL-8280

coccus aureus Corynebacterium sp, Haemophilus parainfluenzae Klebsiella pneumoniae Pseudornonas aeruginosa Pseudomonas sp., Xanthomonas maltophilia, F

Table 1. Antibacterial activitiy of grepafloxacin and other antibiotics against clinical isolates

CHEMOTHERAPY aureus 0.10, Enterococcus faecalis 3.13, Escherichia coli 0.20, Klebsiella pneumoniae, Enterobacter spp., Serratia marcescens 0.78, Prote

日本化学療法学会雑誌第61巻第6号

CHEMOTHERAPY JUNE 1993 Table 1. Background of patients in pharmacokinetic study

THE JAPANESE JOURNAL OF ANTIBIOTICS 65 6 Dec LVFX 100 mg 3 / mg 2 / LVFX PK PD mg mg 1 1 AUC/MIC

日本化学療法学会雑誌第64巻第4号

Fig.1 Chemical structure of BAY o 9867


Clostridium difficile ciprofloxacin, ofloxacin, norfloxacin Bifidobacterium Lactobacillus Lactobacillus Bacteroides fragilis B. fragilis C. difficile



THE JAPANESE JOURNAL OF ANTIBIOTICS 48-8 Enterococcus avium 5Š, Corynebacterium xerosis 10Š, Corynebacterium pseudodiphtheriticum 10Š, Corynebacterium

988 CHEMOTHERAPY NOV. 1971

VOL.42 S-1

VOL. 40 S- 1 Table 1. Susceptibility of methicillin-resistant Staphylococcus aureus to meropenem Table 2. Coagulase typing of methicillin-resistant St



Feb THE JAPANESE JOURNAL OF ANTIBIOTICS Tebipenem pivoxil 1 1, Meiji Seika 2 Meiji Seika G 3 Meiji Seika Tebipen

Staphylococcus sp. K.pneumoniae P.mirabilis C.freundii E. cloacae Serratia sp. P. aeruginosa ml, Enterococcus avium >100ƒÊg/ml

CHEMOTHERAPY

Oct THE JAPANESE JOURNAL OF ANTIBIOTICS Pseudomonas aeruginosa 186 P. aeruginosa piperacillin PIPC, taz

VOL. 23 NO. 3 CHEMOTHERAPY 1067 Table 2 Sensitivity of gram positive cocci isolated from various diagnostic materials Table 3 Sensitivity of gram nega

VOL.32 S-7 CHEMOTHERAPY Table 1 MIC of standard strains of CTRX Fig. 2 Cumulative curves of MIC S. aureus (26 strains )

Table 1. Antibacterial spectrum SBT ABPC ABPC CPZ : sulbactamiampicillin : ampicillin : cefoperazone

CHEMOTHERAPY JUN Citrobacter freundii 27, Enterobacter aerogenes 26, Enterobacter cloacae 27, Proteus rettgeri 7, Proteus inconstans 20, Proteus




CHEMOTHERAPY APRIL 1992 Acinetobacter calcoaceticus Staphylococcus aureus, Escherichia coli P. aeruginosa E. eoli, Klebsiella pneumoniae Serratia marc

CHEMOTHERAPY Table 1 Urinary excretion of mezlocillin Fig. 4 Urinary excretion of mezlocillin Fig. 3 Blood levels of mezlocillin

Table 1. Antimicrobial drugs using for MIC

VOL.47 NO.5 Table 1. Susceptibility distribution of Ĉ- lactams against clinical isolates of MRSA MRSA: rnethicillin- resistant Staphylococcus aureus


THE JAPANESE JOURNAL OF ANTIBIOTICS ( 37 ) methicillin-susceptible Staphylococcus aureus (MSSA) Escherichia coli levof

CHEMOTHERAPY Fig. 1 Chemical structure of CXM-AX


CHEMOTHERAPY Methicillin-resistant S.aureus(MRSA) coccus epidermidis 105 Streptococcus pyogenes E.faecali senterococcus avium Enterococcus faecium Str

CHEMOTHERAPY NOV S. aureus, S. epidermidis, E. coli, K. pgeumoniae, E. cloacae, S. marcescens, P. mirabilis, Proteus, P. aeruginosa Inoculum siz


VOL.35 S-2 CHEMOTHERAPY Table 1 Sex and age distribution Table 2 Applications of treatment with carumonam Table 3 Concentration of carumonam in human

Fig.2. Sensitivity distribution of clinical isolates of S. epidermidis (24 strains, 106 CFU/ml) Staphylococcus aureus Staphylococcus epider- midis Ent

Streptococcus pneumoniae,streptococcus pyogenes,streptococcus agalactiae,neisseria gonorrhoeae,h.influenzae,moraxella subgenus Branhamella catarrharis


日本化学療法学会雑誌第51巻第2号

CHEMOTHERAPY


VOL.48 NO.7 lase negative staphylococci, Escherichia coli, Klebsiella spp., Citrobacter freundii, Enterobacter spp., indole-positive Proteus, Serratia

VOL.42 S-1 methicillin-susceptible Staphylococcus aureus (MSSA), Staphylococcus epidermidis, Enterococcus faecalis, Escherichia coli, Klebsiella pneum



pneumoniae 30, C. freundii 32, E. aerogenes 27, E. cloacae 32, P. mirabilis 31, P. vulgaris 34, M. morganii 32, S. marcescens 31, H. influenzae 27, P.


VOL. 43 NO. 4

2 2 THE JAPANESE JOURNAL OF ANTIBIOTICS 69 1 Feb Neisseria gonorrhoeae ceftriaxone CTRX % 2010 CTRX 20 FQ staphylococci, E. faecium, N.

CHEMOTHERAPY APR Fig. 2 The inactivation of aminoglycoside antibiotics by PC-904 Fig. 3 Serum concentration of PC-904 (1) Fig. 4 Urinary recover

CHEMOTHERAPY Table 1 Clinical effect of Sultamicillin

特殊病態下感染症における抗菌薬治験の手引き作成委員会報告書(案)

THE JAPANESE JOURNAL OF ANTIBIOTICS 67 3 June 2014 STFX mg mg mg mg mg 1

日本化学療法学会雑誌第58巻第4号

CHEMOTHERAPY JUNE 1987 Table1 Media used *BHIB, brain heart infusion broth (Difco); /3 -NAD, S -nicotinamidoadeninedinucleotide (Sigma Chemical Co.);

Fig. 1 Chemical structure of KW-1070

CHEMOTHERAPY Proteus mirabilis GN-79 Escherichia coli No. 35 Proteus vulgaris GN-76 Pseudomonas aeruginosa No. 11 Escherichia coli ML-1410 RGN-823 Kle


日本化学療法学会雑誌第57巻第1号


日本化学療法学会雑誌第65巻第4号



CHEMOTHERAPY DEC (NFLX), ofloxacin (OFLX), ciprofloxacin (CPFX) Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Enterococcus faecali


2108 CHEMOTHERAPY SEPT Table 1 Antimicrobial spectrum Fig. 1

日本化学療法学会雑誌第59巻第5号

CHEMOTHERAPY FEB Table 1 Background of volunteers

04-c-„FŒ{›xŒ¾-4.01


VOL.30 S-1 CHEMOTHERAPY Table 1 Antibacterial activity of CTT against standard strains Table 2 Antibacterial activity of CTT against standard strains

Fig. 1 Chemical structure of TE-031 Code number: TE-031 Chemical name: (-) (3R, 4S, 5S, 6R, 7R, 9R, 11R, 12R, 13S, 14R)-4-[(2, 6-dideoxy-3-C-methyl-3-




Table1MIC of BAY o 9867 against standard strains

Clinical studies on Cef triaxone in the field of oral surgery JIRO SASAKI,*1 MASATAKA UEMATSU,*l AKIHIRO KANEKO,*1 YOSHIHIDE OHTA,*1 KAZUO SHIIKI,*2 T

VOL. 23 NO. 3 CHEMOTHERAPY 1379 Table 1 Susceptibility of clinical isolated strains to Tobramycin

日本化学療法学会雑誌第60巻第4号

CHEMOTHERAPY

Key words: bacterial meningitis, Haemophilus influenzae type b, Streptococcus pneumoniae, rapid diagnosis, childhood

日本化学療法学会雑誌第57巻第5号


Title 泌尿器科領域に於ける17-Ketosteroidの研究 17-Ketosteroidの臨床的研究 第 III 篇 : 尿 Author(s) 卜部, 敏入 Citation 泌尿器科紀要 (1958), 4(1): 3-31 Issue Date URL

VOL.27 S-5 CHEMOTHERAPY Table 1 Clinical evaluations of cefamandole on UTI (1) Benign prostatic hypertrophy (2) Transurethral resection of bladder tum

Transcription:

Feb. 2016 THE JAPANESE JOURNAL OF ANTIBIOTICS 69 1 27 27 1,4 2,4 2,4 2,3,4 2,3,4 2,3,4 2 1 2,3,4 1 2 3 4 2015 10 21 9 Garenoxacin GRNX Levofloxacin LVFX Sitafloxacin STFX Moxifloxacin MFLX Pharmacokinetics-Pharmacodynamics PK-PD GRNX LVFX STFX 9 Streptococcus pneumoniae 15 Streptococcus pyogenes 14 Streptococcus agalactiae 19 Methicillin-susceptible Staphylococcus aureus MSSA 24 Escherichia coli 35 Haemophilus influenzae 17 Klebsiella pneumoniae 14 Pseudomonas aeruginosa 31 Moraxella catarrhalis 11 LVFX S. pneumoniae S. pyogenes S. agalactiae MSSA MIC 90 2 16 16 8 μg/ml E. coli GRNX LVFX STFX MFLX MIC 90 16 16 1 16 μg/ml PK-PD f AUC/MIC S. pneumoniae 86.9 100% E. coli 52.1 66.2% CLcr S. pneumoniae S. pyogenes S. agalactiae LVFX MSSA LVFX STFX 3 GRNX, LVFX, STFX

28 28 THE JAPANESE JOURNAL OF ANTIBIOTICS 69 1 Feb. 2016 1,2 Levofloxacin LVFX Moxifloxacin MFLX Garenoxacin GRNX Sitafloxacin STFX MFLX GRNX STFX 3 Prevotella Fusobacterium 3 5 6 8 2014 JANIS 897 95.4% 856 36.1% 13.1% 3.4% 9 Pharmacokinetics-Pharmacodynamics PK-PD 10 PK-PD f 11 PK-PD f AUC/MIC f Cmax/MIC PK-PD f AUC/MIC 30 100 120 12 LVFX GRNX STFX MFLX PK-PD Monte Carlo simulation; MCS PK MIC PK-PD PK-PD 1. 2012

Feb. 2016 THE JAPANESE JOURNAL OF ANTIBIOTICS 69 1 29 29 2 6 4 Streptococcus pneumoniae 15 Streptococcus pyogenes 14 Streptococcus agalactiae 19 Methicillin-susceptible Staphylococcus aureus MSSA 24 4 Escherichia coli 35 Haemophilus influenzae 17 Klebsiella pneumoniae 14 Pseudomonas aeruginosa 31 1 Moraxella catarrhalis 11 β ESBL E. coli 35 4 2. MIC Clinical and Laboratory Standards Institute CLSI 13 GRNX LVFX MFLX STFX 4 MIC 50 MIC 90 0.015 16 μg/ml 12 AUC Dose F/CL GRNX LVFX STFX MFLX 75% 19 30% 20 39% 16 50% 21 f % PK-PD GRNX MFLX 400 mg 1 1 LVFX 500 mg 1 1 STFX 100 mg 1 1 PK-PD f AUC 0 24h /MIC f dose/clcr/ MIC 30 MSSA 100 125 12 PK-PD CLcr 20 140 ml/ min MCS MFLX CLcr 3. PK-PD MCS MCS Oracle Crystal Ball 14 18 1 CL/ F 5,000 CLcr TANIGAWARA 16 STFX CLcr 75 ml/min 1. 2 S. pneumoniae MIC 50 /MIC 90 GRNX STFX 0.03/0.06 μg/ml MFLX 0.12/0.25 μg/ml LVFX 1/2 μg/ml S. pyogenes STFX 0.03/0.06 μg/ml GRNX 0.06/0.25 μg/ ml S. agalactiae STFX 0.06/0.5 μg/ml GRNX 0.06/2 μg/ml MSSA MIC 50 /MIC 90 STFX 0.03/0.25 μg/ml GRNX 0.03/1 μg/ml MFLX 0.06/2 μg/ml LVFX MIC

30 30 THE JAPANESE JOURNAL OF ANTIBIOTICS 69 1 Feb. 2016 1.

Feb. 2016 THE JAPANESE JOURNAL OF ANTIBIOTICS 69 1 31 31 2.

32 32 THE JAPANESE JOURNAL OF ANTIBIOTICS 69 1 Feb. 2016 S. pyogenes S. agalactiae MSSA MIC 90 16 μg/ml 16 μg/ ml 8 μg/ml K. pneumoniae H. influenzae MIC E. coli MIC 90 GRNX 16 μg/ml LVFX MFLX 16 μg/ml P. aeruginosa MIC 90 STFX 0.5 μg/ml GRNX LVFX MFLX 4 μg/ml M. catarrhalis MIC 50 /MIC 90 GRNX STFX 0.015/ 0.015 μg/ml LVFX MFLX 0.12/0.12 μg/ml 2. PK-PD PK-PD 30 MSSA 100 125 1 GRNX LVFX STFX MFLX S. pneumoniae 100%, 86.9%, 100%, 100% S. pyogenes 93.9%, 67.5%, 94.6%, 78.6% S. agalactiae 60.5%, 47.6%, 59.9%, 58.7% MSSA 73.4%, 50.1%, 76.2%, 70.0% GRNX STFX 4 GRNX LVFX STFX MFLX 82.0% 63.0% 82.7% 76.8% LVFX E. coli 66.2% STFX 65.7% GRNX 65.1% LVFX 1. PK-PD 1 PK-PD

Feb. 2016 THE JAPANESE JOURNAL OF ANTIBIOTICS 69 1 33 33 MFLX 52.1% 6 H. influenzae STFX 94.7% GRNX LVFX MFLX 87.9 88.9% K. pneumoniae 93% GRNX LVFX 92.8% STFX 91.7% MFLX 20.5% M. catarrhalis K. pneumoniae GRNX STFX LVFX 100% 99% 91% MFLX 61.2% P. aeruginosa 6% PK-PD 20 ml/min LVFX 69.1% STFX 49.6% M. catarrhalis 80% CLcr 50 ml/min GRNX 200 mg/ STFX 50 mg/ LVFX 250 mg/ GRNX PK-PD LVFX PK-PD 3. PK-PD PK-PD GRNX STFX LVFX MCS 2 GRNX 400 mg/ STFX 100 mg/ LVFX 500 mg/ S. pneumoniae, S. pyogenes, S. agalactiae, MSSA LVFX CLcr 80 ml/min 80% GRNX STFX E. coli H. influenzae 80% K. pneumoniae CLcr 120 ml/min STFX 80% P. aeruginosa LVFX STFX CLcr 4 GRNX, LVFX, STFX, MFLX MCS PK-PD 3 GRNX, LVFX, STFX 9 S. pneumoniae S. pyogenes MSSA LVFX S. agalactiae LVFX MFLX 22 S. pneumoniae 2005 2007

34 34 THE JAPANESE JOURNAL OF ANTIBIOTICS 69 1 Feb. 2016 2. PK-PD 1 20 140 ml/ min PK-PD GRNX 400 mg 1 / GRNX 200 mg 1 / STFX 100 mg 1 / STFX 50 mg 1 / LVFX 500 mg 1 / LVFX 250 mg 1 /

Feb. 2016 THE JAPANESE JOURNAL OF ANTIBIOTICS 69 1 35 35 2. GRNX LVFX MFLX MIC 90 0.125 1 0.125 μg/ml 1 MCS GRNX 400 mg 1 / MFLX 400 mg 1 / PK-PD 100% LVFX 500 mg 1 / 84.8% GRNX 100%, MFLX 100%, LVFX 86.9% 2014 JANIS 3.4% 9 KIMURA 23 S. agalactiae K. pneumoniae H. influenzae M. catarrhalis MIC 50 MIC 90 E. coli ESBL 24 S. pneumoniae H. influenzae M. catarrhalis K. pneumoniae Staphylococcus aureus 25 S. pneumoniae MCS GRNX STFX MFLX 100% LVFX 86.9%

36 36 THE JAPANESE JOURNAL OF ANTIBIOTICS 69 1 Feb. 2016 3 2010 26 S. pneumoniae MIC LVFX 5 90% MFLX M. catarrhalis K. pneumoniae 61.2% 20.5% S. pneumoniae H. influenzae M. catarrhalis MFLX LVFX 2008 E. coli Enterococcus faecalis S. agalactiae K. pneumoniae P. aeruginosa E. coli 90% 67.5 86.9% 27 E. coli PK-PD 52.1 66.2% S. agalactiae 47.6 60.5% P. aeruginosa 0 5.7% JAID/JSC 2014 E. coli 20% 6 PK-PD 70% LVFX 28 PAI 29 68 BMI 40 kg/m 2 LVFX PK LVFX CLcr LUQUE 30 179 kg, BMI: 56.2 kg/m 2, CLcr: 78 ml/min LVFX 1 2 750 mg LVFX MFLX 98 166 kg BMI: 43 58.2 kg/m 2 MFLX 31 GRNX 60 kg 100 kg Cmax AUC 0.86 1 1 400 mg 14 CKD

Feb. 2016 THE JAPANESE JOURNAL OF ANTIBIOTICS 69 1 37 37 2012 32 CLcr 50 ml/min 1 STFX CLcr 50 ml/min 1 50 mg 24 48 LVFX CLcr 50 20 ml/min 500 mg 2 250 mg CLcr 20 ml/ min 500 mg 3 250 mg 2 1 GRNX 40 kg CLcr 30 ml/min 200 mg GRNX STFX LVFX MCS CLcr 50 ml/min LVFX PK-PD CLcr 50 ml/min S. pneumoniae E. coli 6 GRNX PK-PD GRNX 40 kg CLcr 30 ml/min Antimicrobial stewardship 1 BALL, P.: Quinolone generations: natural history or natural selection? J. Antimicrob. Chemother. 46: 17 24, 2000 2 ZHANEL, G. G.; S. FONTAINE, H. ADAM, et al.: A review of new fluoroquinolones: Focus on their use in respiratory tract infections. Treat. Respir. Med. 5: 437 465, 2006 3 STEIN, G. E. & E. J. GOLDSTEIN: Fluoroquinolones and anaerobes. Clin. Infect. Dis. 42: 1598 1607, 2006 4 LIEBETRAU, A.; A. C. RODLOFF & J. BEHRA- MIELLET: In vitro activities of a new des-fluoro 6 quinolone, garenoxacin, against clinical anaerobic bacteria. Antimicrob. Agents Chemother. 47: 3667 3671, 2003 5 KEATING, G. M.: Sitafloxacin: in bacterial infections. Drugs 71: 731 744, 2011 6 GOETTSCH, W.; W. VAN PELT & N. NAGELKERKE: Increasing resistance to fluoroquinolones in Escherichia coli from urinary tract infections in the Netherlands. J. Antimicrob. Chemother. 46: 223 228, 2000 7 CHEN, D. K.; A. MCGEER, J. C. DE AZAVEDO, et al.: Decreased susceptibility of Streptococcus pneumoniae to fluoroquinolones in Canada. N. Engl. J. Med. 341: 233 239, 1999 8 DAVIDSON, R.; R. CAVALCANTI, J. L. BRUNTON, et al.: Resistance to levofloxacin and failure of treatment of pneumococcal pneumonia. N. Engl. J. Med. 346: 747 750, 2002 9 JANIS http://www.nih-janis.jp/report/open_ report/2014/3/1/ken_open_report_201400.pdf

38 38 THE JAPANESE JOURNAL OF ANTIBIOTICS 69 1 Feb. 2016 10 CRAIG, W. A.: Does the dose matter? Clin. Infect. Dis. 33: S233 237, 2001 11 CRAIG, W. A.: Protein binding: Do we ever learn? Antimicrob. Agents Chemother. 55: 3067 3074, 2011 12 ANDERSSON, M. I. & A. P. MACGOWAN: Development of the quinolones. J. Antimicrob. Chemother. 51 S1 : 1 11, 2003 13 Clinical and Laboratory Standards Institute: Performance standards for antimicrobial susceptibility testing; twenty-second informational supplement. CLSI document M100-S22, Wayne PA, 2012 14 TANIGAWARA, Y.; K. NOZAWA, H. TSUDA, et al.: Optimal dose finding of garenoxacin based on population pharmacokinetics/pharmacodynamics and Monte Carlo simulation. Eur. J. Clin. Pharmacol. 68: 39 53, 2012 15 Levofloxacin 500 mg 57 S-2 47 54, 2009 16 TANIGAWARA, Y.; M. KAKU, K. TOTSUKA, et al.: Population pharmacokinetics and pharmacodynamics of sitafloxacin in patients with community-acquired respiratory tract infections. J. Infect. Chemother. 19: 858 866, 2013 17 GUMBO, T.: New susceptibility breakpoints for first-line antituberculosis drugs based on antimicrobial pharmacokinetic/pharmacodynamic science and population pharmacokinetic variability. Antimicrob. Agents Chemother. 54: 1484 1491, 2010 18 SIMON, N.; E. SAMPOL & J. ALBANESE: Population pharmacokinetics of moxifloxacin in plasma and bronchial secretions in patients with severe bronchopneumonia. Clin. Pharmacol. Ther. 74: 353 363, 2003 19 VAN WART, S.; L. PHILLIPS, E. A. LUDWIG, et al.: Population pharmacokinetics and pharmacodynamics of garenoxacin in patients with community-acquired respiratory tract infections. Antimicrob. Agents Chemother. 48: 4766 4777, 2004 20 FREI, C. R.; N. P. WIEDERHOLD & D. S. BURGESS: Antimicrobial breakpoints for Gram-negative aerobic bacteria based on pharmacokineticpharmacodynamic models with Monte Carlo simulation. J. Antimicrob. Chemother. 61: 621 628, 2008 21 SIEFERT, H. M.; A. DOMDEY-BETTE, K. HENNINGER, et al.: Pharmacokinetics of the 8-methoxyquinolone, moxifloxacin: a comparison in humans and other mammalian species. J. Antimicrob. Chemother. 43: 69 76, 1999 22 Jpn. J. Antibiotics 63: 1 9, 2010 23 KIMURA, K.; N. NAGANO, Y. NAGANO, et al.: High frequency of fluoroquinolone- and macrolideresistant streptococci among clinically isolated group B streptococci with reduced penicillin susceptibility. J. Antimicrob. Chemother. 68: 539 542, 2013 24 NAKAMURA, T.; C. SHIMIZU, M. KASAHARA, et al.: Monte Carlo simulation for evaluation of the efficacy of carbapenems and new quinolones against ESBL-producing Escherichia coli. J. Infect. Chemother. 15: 13 17, 2009 25 2007 26 YANAGIHARA, K.; J. KADOTA, N. AOKI, et al.: Nationwide surveillance of bacterial respiratory pathogens conducted by the surveillance committee of Japanese Society of Chemotherapy, the Japanese Association for Infectious Diseases, and the Japanese Society for Clinical Microbiology in 2010: General view of the pathogens antibacterial susceptibility. J. Infect. Chemother. 21: 410 420, 2015 27 58: 466 481, 2010 28 POLSO, A. K.; J. L. LASSITER & J. L. NAGEL: Impact of hospital guideline for weight-based antimicrobial dosing in morbidly obese adults and comprehensive literature review: J. Clin. Pharm. Ther. 39: 584 608, 2014

Feb. 2016 THE JAPANESE JOURNAL OF ANTIBIOTICS 69 1 39 39 29 PAI, M. P.; P. COJUTTI & F. PEA: Levofloxacin dosing regimen in severely morbidly obese patients BMI 40 kg/m 2 should be guided by creatinine clearance estimates based on ideal body weight and optimized by therapeutic drug monitoring. Clin. Pharmacokinet. 53: 753 762, 2014 30 LUQUE, S.; S. GRAU, M. VALLE, et al.: Levofloxacin weight-adjusted dosing and pharmacokinetic disposition in a morbidly obese patient. J. Antimicrob. Chemother. 66: 1653 1654, 2011 31 KEES, M. G.; S. WEBER, F. KEES, et al.: Pharmacokinetics of moxifloxacin in plasma and tissue of morbidly obese patients. J. Antimicrob. Chemother. 66: 2330 2035, 2011 32 CKD 2012

40 40 THE JAPANESE JOURNAL OF ANTIBIOTICS 69 1 Feb. 2016 Susceptibility of clinically-isolated bacteria strains to respiratory quinolones and evaluation of antimicrobial agent efficacy by Monte Carlo simulation TADASHI KOSAKA 1,4, YUKIJI YAMADA 2,4, TAKESHI KIMURA 2,4, MAI KODAMA 2,3,4, YUMIKO FUJITOMO 2,3,4, MASAKI NAKANISHI 2,3,4, TOSHIAKI KOMORI 2, KEISUKE SHIKATA 1 and NAOHISA FUJITA 2,3,4 1 Department of Pharmacy, 2 Department of Clinical Laboratory, 3 Division of Infectious Diseases, 4 Department of Infection Control, Kyoto Prefectural University of Medicine, Kyoto, Japan Respiratory quinolones RQs are broad-spectrum antimicrobial agents used for the treatment of a wide variety of community-acquired and nosocomial infections. However, bacterial resistance to quinolones has been on the increase. In this study, we investigated the predicted efficacy of RQs for various strains of 9 bacterial species clinically isolated at our university hospital using the Monte Carlo simulation MCS method based on pharmacokinetics/pharmacodynamics modeling. In addition, the influence of the patients renal function on the efficacy of RQs was evaluated. We surveyed antimicrobial susceptibility testing of 9 bacterial species n number of strains Streptococcus pneumoniae n 15, Streptococcus pyogenes n 14, Streptococcus agalactiae n 19, methicillin-susceptible Staphylococcus aureus MSSA n 24, Escherichia coli n 35, Haemophilus influenzae n 17, Klebsiella pneumoniae n 14, Pseudomonas aeruginosa n 31, and Moraxella catarrhalis n 11 to 4 RQs garenoxacin GRNX, levofloxacin LVFX, sitafloxacin STFX, and moxifloxacin MFLX. We found that compared with the other RQs, Gram-positive cocci was most resistant to LVFX, and that the minimum inhibitory concentration MIC 90 values for S. pneumoniae, S. pyogenes, S. agalactiae, and MSSA were high 2, 16, 16, and 8 μg/ml, respectively. In regard to Gram-negative rods, the susceptibility of E. coli to RQs was found to be decreased, with the MIC 90 values of GRNX, LVFX, STFX, and MFLX being 16, 16, 1, and 16 μg/ml, respectively. MCS revealed that the target attainment rate of the area under the unbound concentration- time curve divided by the MIC 90 f AUC/MIC ratio, against S. pneumoniae was 86.9-100%, but against E. coli was low 52.1-66.2%. The f AUC/MIC target attainment rate of LVFX against S. pneumoniae, S. pyogenes, and S. agalactiae tended to decrease due to increased creatinine clearance, and that of LVFX and STFX against MSSA also tended to decrease. The findings of this study suggest that the drug susceptibility distribution of each RQ varies, even within the same bacterial species, and that the expected efficacy also varies between the drugs. Moreover, the influence of the patient s renal function on the efficacy differed among the 3 renal excretory drugs GRNX, LVFX, and STFX, thus suggesting that the efficacy also differs. In conclusion, the findings of this study show that for the administration of RQs, it is desirable to select agents in consideration of surveyed sensitivity within the population and the pharmacokinetic characteristics.